Araştırma Makalesi
BibTex RIS Kaynak Göster

Hava sızdırmazlığının konvansiyonel pencerelerin ortalama ısıl yalıtım performansındaki rolü

Yıl 2017, Cilt: 8 Sayı: 1, 159 - 174, 01.03.2017

Öz

Binalarda yapı elemanlarının ısıl direnç yeteneklerinin iyileştirilmesi
ve yapı elemanlarından gerçekleşen enerji kayıplarında ciddi bir role sahip
olan hava sızdırmazlığının maliyet etkin yöntemlerle minimize edilmesi güncel
düşük/sıfır karbon bina standartlarının yakalanabilmesi açısından büyük önem
arz etmektedir. Bina yapı elemanları arasında pencereler infiltrasyon esaslı
ısı kayıplarına hatırı sayılır ölçüde etki ederler. Cam yüzeylerden gerçekleşen
infiltrasyon kaynaklı ısı kayıpları özellikle eski pencerelerde ve özensizce
gerçekleştirilen montajlarda azımsanmayacak değerlere ulaşabilmektedir.
Literatürde hava sızdırmazlığının konvansiyonel pencerelerden olan enerji
kayıplarına etkisini belirlemeye yönelik bazı teşebbüsler olmasına rağmen, elde
edilen sonuçlar arasında pek çok çelişkiler mevcuttur. Bu yüzden bu
araştırmada, hava sızdırmazlığının konvansiyonel hava dolgulu çift camlı
pencerelerin ortalama ısı transfer katsayısına (U-değeri) olan etkisi kapsamlı
bir deneysel çalışma ile incelenmektedir. Testler Nottingham’da bulunan ve
konvansiyonel hava dolgulu çift camlı pencerelerle restore edilmiş karakteristik
Birleşik Krallık mimarisine sahip bir konutta gerçekleştirilmektedir. Konuttaki
pencerelerden bir tanesi ısıl yalıtım testlerine tabi tutulmaktadır. Test
penceresinin bir kanadı mükemmel hava sızdırmazlığı temin eden özel saydam bir
örtü ile ön yüzeyden kaplanırken, diğer pencere kanadı sıradan durumu temsil
edecek şekilde olduğu gibi bırakılmaktadır. Ölçümler Nisan 2016’da yapılmakta
ve dinamik co-heating test metodu ile hava sızdırmaz pencere kanadının
U-değerindeki iyileşme miktarı değerlendirilmektedir. Elde edilen sonuçlara
göre, hava sızdırmazlığı ve saydam örtü ile hava sızdırmaz pencere kanadının iç
cam yüzeyi arasında oluşan sera etkisine bağlı olarak özellikle gündüz
saatlerinde etkisi belirginleşen ters ısı akıları neticesinde, hava sızdırmaz
pencere kanadının ortalama U-değeri sıradan pencere kanadına göre kayda değer
ölçüde düşük çıkmaktadır. Sıradan pencere kanadının ortalama U-değeri 2.67 W/m2K
iken, hava sızdırmaz pencere kanadının ortalama U-değeri 1.79 W/m2K
olarak belirlenmektedir. Buradan hareketle, hava sızdırmazlığı temin edilen
konvansiyonel pencerelerde enerji kayıplarının %33 mertebesinde
azaltılabileceği sonucuna varılmaktadır.

Kaynakça

  • Alfano, F.R.D., Dell’Isola, M., Ficco, G., (2012). Tassini F. Experimental analysis of air tightness in Mediterranean buildings using the fan pressurization method. Building and Environment, 53, 16-25.
  • Bossche, N.V.D., Huyghe, W., Moens, J., Janssens, A., Depaepe, M., (2012). Airtightness of the window–wall interface in cavity brick walls. Energy and Buildings, 45, 32-42.
  • Cuce, E., (2014). Cuce E. Development of innovative window and fabric technologies for low-carbon buildings. Ph.D. Thesis, The University of Nottingham.
  • Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B., (2014a). Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renewable and Sustainable Energy Reviews, 34, 273-299.
  • Cuce, E., Young, C.H., Riffat, S.B., (2014b). Performance investigation of heat insulation solar glass for low-carbon buildings. Energy Conversion and Management, 88, 834-841.
  • Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B., (2014c). Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy and Buildings, 77, 28-39.
  • Cuce, E., (2015). Toward thermal superinsulation technologies in buildings: Latest developments in glazing and building fabric. LAP Lambert Academic Publishing, Saarbrücken, Germany.
  • Cuce, E., Riffat, S.B., (2015a). A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews, 41, 695-714.
  • Cuce, E., Riffat, S.B., (2015b). Vacuum tube window technology for highly insulating building fabric: An experimental and numerical investigation. Vacuum, 111, 83-91.
  • Cuce, E., Riffat, S.B., (2015c). Aerogel-assisted support pillars for thermal performance enhancement of vacuum glazing: A CFD research for a commercial product. Arabian Journal for Science and Engineering, 40(8), 2233-2238.
  • Cuce, E., Young, C.H., Riffat, S.B., (2015a). Thermal insulation, power generation, lighting and energy saving performance of heat insulation solar glass as a curtain wall application in Taiwan: A comparative experimental study. Energy Conversion and Management, 96, 31-38.
  • Cuce, E., Young, C.H., Riffat, S.B., (2015b). Thermal performance investigation of heat insulation solar glass: A comparative experimental study. Energy and Buildings, 86, 595-600.
  • Cuce, E., (2016a). Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass - Latest developments and future prospects. Renewable and Sustainable Energy Reviews 60, 1286-1301.
  • Cuce, E., (2016b). Experimental and numerical investigation of a novel energy-efficient window technology for low-carbon buildings: Vacuum tube window. Indoor and Built Environment, (In Press). Doi: 10.1177/1420326X15599188.
  • Cuce, E., Cuce, P.M., (2016a). Vacuum glazing for highly insulating windows: Recent developments and future prospects. Renewable and Sustainable Energy Reviews, 54, 1345-1357.
  • Cuce, E., Cuce, P.M., (2016b). The impact of internal aerogel retrofitting on the thermal bridges of residential buildings: An experimental and statistical research. Energy and Buildings, 116, 449-454.
  • Cuce, E., Cuce, P.M., Riffat, S.B., (2016). Novel glazing technologies to mitigate energy consumption in low-carbon buildings: A comparative experimental investigation. International Journal of Energy Research, 40, 537-549.
  • Energy Saving Trust, (2007). CE248 Achieving airtightness in new dwellings: case studies.
  • Hilliaho, K., Makitalo, E., Lahdensivu, J., (2015). Energy saving potential of glazed space: Sensitivity analysis. Energy and Buildings, 99, 87-97.
  • Kalamees, T., (2007). Air tightness and air leakages of new lightweight single-family detached houses in Estonia. Building and Environment, 42, 2369-2377.
  • NHBC Foundation, (2009). A practical guide to building airtight dwellings. Published by IHS BRE Press on behalf of the NHBC Foundation, ISBN 978-1-84806-095-1.
  • Perez-Lombard, L., Ortiz, J., Pout, C., (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398.
  • Pilkington, (2016). Understanding the Government’s data on U-values. http://www.pilkington.com. (Last access is on 30.05.2016).
  • Riffat, S.B., Cuce, E., (2012). Aerogel with its outstanding features and building applications. Eleventh International Conference on Sustainable Energy Technologies, 2-5 September, Vancouver, Canada.
  • Sadauskiene, J., Seduikyte, L., Paukstys, V., Banionis, K., Gailius, A., (2016). The role of air tightness in assessment of building energy performance: Case study of Lithuania. Energy for Sustainable Development, 32, 31-39.
  • Sfakianaki, A., Pavlou, K., Santamouris, M., Livada, I., Assimakopoulos, M.N., Mantas, P., Christakopoulos, A., (2008). Air tightness measurements of residential houses in Athens, Greece. Building and Environment 43, 398-405.
  • Sherman, M.H., Chan, R., (2004). Building airtightness: research and practice. Lawrence Berkeley National Laboratory Report No. LBNL-53356. Lawrence Berkeley National Laboratory, Berkeley, U.S.
  • Sinnott, D., Dyer, M., (2012). Air-tightness field data for dwellings in Ireland. Building and Environment, 51, 269-275.
  • Webb, B.C., Barton, R., (2002). BRE report BR448 Airtightness in commercial and public buildings, 978-1-86081-578-2.
Yıl 2017, Cilt: 8 Sayı: 1, 159 - 174, 01.03.2017

Öz

Kaynakça

  • Alfano, F.R.D., Dell’Isola, M., Ficco, G., (2012). Tassini F. Experimental analysis of air tightness in Mediterranean buildings using the fan pressurization method. Building and Environment, 53, 16-25.
  • Bossche, N.V.D., Huyghe, W., Moens, J., Janssens, A., Depaepe, M., (2012). Airtightness of the window–wall interface in cavity brick walls. Energy and Buildings, 45, 32-42.
  • Cuce, E., (2014). Cuce E. Development of innovative window and fabric technologies for low-carbon buildings. Ph.D. Thesis, The University of Nottingham.
  • Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B., (2014a). Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renewable and Sustainable Energy Reviews, 34, 273-299.
  • Cuce, E., Young, C.H., Riffat, S.B., (2014b). Performance investigation of heat insulation solar glass for low-carbon buildings. Energy Conversion and Management, 88, 834-841.
  • Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B., (2014c). Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy and Buildings, 77, 28-39.
  • Cuce, E., (2015). Toward thermal superinsulation technologies in buildings: Latest developments in glazing and building fabric. LAP Lambert Academic Publishing, Saarbrücken, Germany.
  • Cuce, E., Riffat, S.B., (2015a). A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews, 41, 695-714.
  • Cuce, E., Riffat, S.B., (2015b). Vacuum tube window technology for highly insulating building fabric: An experimental and numerical investigation. Vacuum, 111, 83-91.
  • Cuce, E., Riffat, S.B., (2015c). Aerogel-assisted support pillars for thermal performance enhancement of vacuum glazing: A CFD research for a commercial product. Arabian Journal for Science and Engineering, 40(8), 2233-2238.
  • Cuce, E., Young, C.H., Riffat, S.B., (2015a). Thermal insulation, power generation, lighting and energy saving performance of heat insulation solar glass as a curtain wall application in Taiwan: A comparative experimental study. Energy Conversion and Management, 96, 31-38.
  • Cuce, E., Young, C.H., Riffat, S.B., (2015b). Thermal performance investigation of heat insulation solar glass: A comparative experimental study. Energy and Buildings, 86, 595-600.
  • Cuce, E., (2016a). Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass - Latest developments and future prospects. Renewable and Sustainable Energy Reviews 60, 1286-1301.
  • Cuce, E., (2016b). Experimental and numerical investigation of a novel energy-efficient window technology for low-carbon buildings: Vacuum tube window. Indoor and Built Environment, (In Press). Doi: 10.1177/1420326X15599188.
  • Cuce, E., Cuce, P.M., (2016a). Vacuum glazing for highly insulating windows: Recent developments and future prospects. Renewable and Sustainable Energy Reviews, 54, 1345-1357.
  • Cuce, E., Cuce, P.M., (2016b). The impact of internal aerogel retrofitting on the thermal bridges of residential buildings: An experimental and statistical research. Energy and Buildings, 116, 449-454.
  • Cuce, E., Cuce, P.M., Riffat, S.B., (2016). Novel glazing technologies to mitigate energy consumption in low-carbon buildings: A comparative experimental investigation. International Journal of Energy Research, 40, 537-549.
  • Energy Saving Trust, (2007). CE248 Achieving airtightness in new dwellings: case studies.
  • Hilliaho, K., Makitalo, E., Lahdensivu, J., (2015). Energy saving potential of glazed space: Sensitivity analysis. Energy and Buildings, 99, 87-97.
  • Kalamees, T., (2007). Air tightness and air leakages of new lightweight single-family detached houses in Estonia. Building and Environment, 42, 2369-2377.
  • NHBC Foundation, (2009). A practical guide to building airtight dwellings. Published by IHS BRE Press on behalf of the NHBC Foundation, ISBN 978-1-84806-095-1.
  • Perez-Lombard, L., Ortiz, J., Pout, C., (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398.
  • Pilkington, (2016). Understanding the Government’s data on U-values. http://www.pilkington.com. (Last access is on 30.05.2016).
  • Riffat, S.B., Cuce, E., (2012). Aerogel with its outstanding features and building applications. Eleventh International Conference on Sustainable Energy Technologies, 2-5 September, Vancouver, Canada.
  • Sadauskiene, J., Seduikyte, L., Paukstys, V., Banionis, K., Gailius, A., (2016). The role of air tightness in assessment of building energy performance: Case study of Lithuania. Energy for Sustainable Development, 32, 31-39.
  • Sfakianaki, A., Pavlou, K., Santamouris, M., Livada, I., Assimakopoulos, M.N., Mantas, P., Christakopoulos, A., (2008). Air tightness measurements of residential houses in Athens, Greece. Building and Environment 43, 398-405.
  • Sherman, M.H., Chan, R., (2004). Building airtightness: research and practice. Lawrence Berkeley National Laboratory Report No. LBNL-53356. Lawrence Berkeley National Laboratory, Berkeley, U.S.
  • Sinnott, D., Dyer, M., (2012). Air-tightness field data for dwellings in Ireland. Building and Environment, 51, 269-275.
  • Webb, B.C., Barton, R., (2002). BRE report BR448 Airtightness in commercial and public buildings, 978-1-86081-578-2.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Erdem Cüce

Yayımlanma Tarihi 1 Mart 2017
Gönderilme Tarihi 6 Haziran 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE E. Cüce, “Hava sızdırmazlığının konvansiyonel pencerelerin ortalama ısıl yalıtım performansındaki rolü”, DÜMF MD, c. 8, sy. 1, ss. 159–174, 2017.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456