Araştırma Makalesi
BibTex RIS Kaynak Göster

Kesir dereceli PI denetleyici ile kesir dereceli kararsız zaman gecikmeli sistemler için kararlılık bölgelerinin elde edilmesi

Yıl 2018, Cilt: 9 Sayı: 2, 625 - 636, 25.09.2018

Öz

Kesir
dereceli türev ve integral, tam dereceli türev ve integralin genelleştirilmiş
hali olarak kabul edilmektedir. Kesir dereceli matematiğin kontrol alanındaki
uygulamaları kesirli türev derecesi (µ) ve kesirli integral derecesinin (λ)
sağladığı avantajlar nedeniyle son yıllarda hatırı sayılır derecede artmıştır. Bu
uygulamalarının artmasıyla beraber, sistem ihtiyaçlarını en uygun şekilde
karşılayacak kesir dereceli denetleyici tasarlamanın önemi de giderek
artmıştır. Ancak, zaman çalışma bölgesinde kesir dereceli denetleyici tasarımı
hala çeşitli zorluklar barındırdığından, kesir dereceli denetleyici tasarımı
genellikle frekans çalışma bölgesinde yapılmaktadır. Frekans çalışma bölgesinde
tasarım yapılırken en çok kullanılan parametreler kazanç payı, faz payı, kazanç
geçiş frekansı ve faz geçiş frekansı gibi sistemin frekans cevabı
parametreleridir. Bu çalışmada, kesir dereceli PI denetleyici ile kontrol
edilen birinci derece kesir dereceli kararsız bir kapalı çevrim bir sistemi
kararlı duruma getiren kararlılık bölgeleri, tasarımcı tarafından istenilen faz
ve kazanç paylarını sağlayacak şekilde, elde edilmiştir. Ayrıca, bu bölgelerin
elde edilmesinin yanı sıra, kesirli integral derecesi, faz payı, kazanç payı, sistemin
kesir derecesi, süreç transfer fonksiyonu kazancı gibi parametrelerin kararlılık
bölgeleri üzerindeki etkilerinin gösterilmesi amaçlanmıştır. Elde edilen
kararlılık bölgelerinin ağırlık merkezine yakın noktalarından seçilen kesir
dereceli PI denetleyici parametreleri kullanılarak kesir dereceli kararsız ve
zaman gecikmeli sistemin kapalı çevrim birim basamak cevapları elde edilmiştir.

Kaynakça

  • Bhisikar, K. K., Vyawahare, V. A. and Joshi, M. M. (2015) ‘Design of fractional-order PD Controller for Unstable and Integrating Systems’, in Proceedings of the World Congress on Intelligent Control and Automation (WCICA), pp. 4698–4703. doi: 10.1109/WCICA.2014.7053507.
  • Bhisrkar, K. K., Vyawahare, V. A. and Tare, A. V. (2014) ‘Design of fractional-order PI controller for linear unstable systems’, in 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, SCEECS 2014. doi: 10.1109/SCEECS.2014.6804523.
  • Caponetto, R. et al. (2010) Fractional Order Systems: Modeling and Control Applications.
  • Chen, Y. Q., Petráš, I. and Xue, D. (2009) ‘Fractional order control - A tutorial’, Proceedings of the American Control Conference, (May 2014), pp. 1397–1411. doi: 10.1109/ACC.2009.5160719.
  • Cheng, Y. C. and Hwang, C. (2006) ‘Stabilization of unstable first-order time-delay systems using fractional-order pd controllers’, Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch’eng Hsuch K’an, 29(2), pp. 241–249. doi: 10.1080/02533839.2006.9671121.
  • Hamamci, S. E. (2007) ‘An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers’, IEEE Transactions on Automatic Control, 52(10), pp. 1964–1969. doi: 10.1109/TAC.2007.906243.
  • Hamamci, S. E. (2008) ‘Stabilization using fractional-order PI and PID controllers’, Nonlinear Dynamics, 51(1–2), pp. 329–343. doi: 10.1007/s11071-007-9214-5.
  • Hamamci, S. E. and Koksal, M. (2010) ‘Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems’, Computers and Mathematics with Applications. Elsevier Ltd, 59(5), pp. 1621–1629. doi: 10.1016/j.camwa.2009.08.049.
  • De Keyser, R., Muresan, C. I. and Ionescu, C. M. (2015) ‘A novel auto-tuning method for fractional order PI/PD controllers’, ISA Transactions. Elsevier, 62, pp. 268–275. doi: 10.1016/j.isatra.2016.01.021.
  • Luo, Y. and Chen, Y. Q. (2009) ‘Fractional order [proportional derivative] controller for a class of fractional order systems’, Automatica. Elsevier Ltd, 45(10), pp. 2446–2450. doi: 10.1016/j.automatica.2009.06.022.
  • Monje, C. A. et al. (2008) ‘Tuning and auto-tuning of fractional order controllers for industry applications’, Control Engineering Practice, 16(7), pp. 798–812. doi: 10.1016/j.conengprac.2007.08.006.
  • Monje, C. A. et al. (2010) Fractional-Order Systems And Control Fundamentals And Applications. London: Springer.
  • Oustaloup, A. et al. (2008) An overview of the CRONE approach in system analysis, modeling and identification, observation and C, IFAC Proceedings Volumes (IFAC-PapersOnline). IFAC. doi: 10.3182/20080706-5-KR-1001.3668.
  • Padula, F. and Visioli, A. (2015) Advances in robust fractional control, Advances in Robust Fractional Control. doi: 10.1007/978-3-319-10930-5.
  • Podlubny, I. (1999) ‘Feactional Differential Equations’, Mathematics in Science And Engineering, 198.
  • Ruszewski, A. (2008) ‘Stability regions of closed loop system with time delay inertial plant of fractional order and fractional order PI controller’, Bulletin of the Polish Academy of Sciences-Technical Sciences, 56(4), pp. 329–332.
  • Sabatier, J., Agrawal, O. P. and Machado, J. (2007) Advances in fractional calculus: Theoretical developments and applications in physics and engineering. doi: 10.1007/978-1-4020-6042-7.
  • Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993) Fractional integrals and derivatives, Theory and Applications, Gordon and Breach, Yverdon.
  • Sondhi, S. and Hote, Y. V. (2015) ‘Fractional-order PI controller with specific gain-phase margin for MABP control’, IETE Journal of Research. Taylor & Francis, 61(2), pp. 142–153. doi: 10.1080/03772063.2015.1009395.
  • Wang, J. C. (1987) ‘Realizations of generalized warburg impedance with RC ladder networks and transmission lines’, Electrochemical Society, 134, pp. 1915–1920.
Yıl 2018, Cilt: 9 Sayı: 2, 625 - 636, 25.09.2018

Öz

Kaynakça

  • Bhisikar, K. K., Vyawahare, V. A. and Joshi, M. M. (2015) ‘Design of fractional-order PD Controller for Unstable and Integrating Systems’, in Proceedings of the World Congress on Intelligent Control and Automation (WCICA), pp. 4698–4703. doi: 10.1109/WCICA.2014.7053507.
  • Bhisrkar, K. K., Vyawahare, V. A. and Tare, A. V. (2014) ‘Design of fractional-order PI controller for linear unstable systems’, in 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, SCEECS 2014. doi: 10.1109/SCEECS.2014.6804523.
  • Caponetto, R. et al. (2010) Fractional Order Systems: Modeling and Control Applications.
  • Chen, Y. Q., Petráš, I. and Xue, D. (2009) ‘Fractional order control - A tutorial’, Proceedings of the American Control Conference, (May 2014), pp. 1397–1411. doi: 10.1109/ACC.2009.5160719.
  • Cheng, Y. C. and Hwang, C. (2006) ‘Stabilization of unstable first-order time-delay systems using fractional-order pd controllers’, Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch’eng Hsuch K’an, 29(2), pp. 241–249. doi: 10.1080/02533839.2006.9671121.
  • Hamamci, S. E. (2007) ‘An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers’, IEEE Transactions on Automatic Control, 52(10), pp. 1964–1969. doi: 10.1109/TAC.2007.906243.
  • Hamamci, S. E. (2008) ‘Stabilization using fractional-order PI and PID controllers’, Nonlinear Dynamics, 51(1–2), pp. 329–343. doi: 10.1007/s11071-007-9214-5.
  • Hamamci, S. E. and Koksal, M. (2010) ‘Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems’, Computers and Mathematics with Applications. Elsevier Ltd, 59(5), pp. 1621–1629. doi: 10.1016/j.camwa.2009.08.049.
  • De Keyser, R., Muresan, C. I. and Ionescu, C. M. (2015) ‘A novel auto-tuning method for fractional order PI/PD controllers’, ISA Transactions. Elsevier, 62, pp. 268–275. doi: 10.1016/j.isatra.2016.01.021.
  • Luo, Y. and Chen, Y. Q. (2009) ‘Fractional order [proportional derivative] controller for a class of fractional order systems’, Automatica. Elsevier Ltd, 45(10), pp. 2446–2450. doi: 10.1016/j.automatica.2009.06.022.
  • Monje, C. A. et al. (2008) ‘Tuning and auto-tuning of fractional order controllers for industry applications’, Control Engineering Practice, 16(7), pp. 798–812. doi: 10.1016/j.conengprac.2007.08.006.
  • Monje, C. A. et al. (2010) Fractional-Order Systems And Control Fundamentals And Applications. London: Springer.
  • Oustaloup, A. et al. (2008) An overview of the CRONE approach in system analysis, modeling and identification, observation and C, IFAC Proceedings Volumes (IFAC-PapersOnline). IFAC. doi: 10.3182/20080706-5-KR-1001.3668.
  • Padula, F. and Visioli, A. (2015) Advances in robust fractional control, Advances in Robust Fractional Control. doi: 10.1007/978-3-319-10930-5.
  • Podlubny, I. (1999) ‘Feactional Differential Equations’, Mathematics in Science And Engineering, 198.
  • Ruszewski, A. (2008) ‘Stability regions of closed loop system with time delay inertial plant of fractional order and fractional order PI controller’, Bulletin of the Polish Academy of Sciences-Technical Sciences, 56(4), pp. 329–332.
  • Sabatier, J., Agrawal, O. P. and Machado, J. (2007) Advances in fractional calculus: Theoretical developments and applications in physics and engineering. doi: 10.1007/978-1-4020-6042-7.
  • Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993) Fractional integrals and derivatives, Theory and Applications, Gordon and Breach, Yverdon.
  • Sondhi, S. and Hote, Y. V. (2015) ‘Fractional-order PI controller with specific gain-phase margin for MABP control’, IETE Journal of Research. Taylor & Francis, 61(2), pp. 142–153. doi: 10.1080/03772063.2015.1009395.
  • Wang, J. C. (1987) ‘Realizations of generalized warburg impedance with RC ladder networks and transmission lines’, Electrochemical Society, 134, pp. 1915–1920.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

İbrahim Kaya 0000-0002-8393-1358

Erdal Çökmez 0000-0001-7297-7441

Yayımlanma Tarihi 25 Eylül 2018
Gönderilme Tarihi 13 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE İ. Kaya ve E. Çökmez, “Kesir dereceli PI denetleyici ile kesir dereceli kararsız zaman gecikmeli sistemler için kararlılık bölgelerinin elde edilmesi”, DÜMF MD, c. 9, sy. 2, ss. 625–636, 2018.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456