Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 10 Sayı: 1, 169 - 180, 15.03.2019
https://doi.org/10.24012/dumf.472854

Öz

Kaynakça

  • Chabi, A.R., Peyghambarzadeh, S.M., Hashemabadi, S.H. ve Salimi, M., (2017). Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink, Heat and Mass Transfer, 53, 2, 661-671.
  • Choi, S.U.S. ve Eastman, J.A., (1995). Enhancing thermal conductivity of fluids with nanoparticles, Proceedings, ASME International Mechanical Engineering Congress and Exposition, 99-105, San Francisco.
  • Dang, T. ve Teng, J-T., (2011). The effects of configurations on the performance of microchannel counter-low heat exchangers-An experimental study, Applied Thermal Engineering, 31, 17-18, 3946-3955.
  • Domongues, G., Volz, S., Joulain, K. ve Greffet, J.J., (2005). Heat transfer between two nanoparticles through near field interaction, Physical Review Letters, 94, 8, 085901.
  • Feng, Z-Z. ve Li, W., (2013). Laminar mixed convection of large-Prandtl-number in-tube nanofluid flow, Part I: Experimental study, International Journal of Heat and Mass Transfer, 65, 919-927.
  • Hwang, Y.J., Ahn, Y.C, Shin, H.S., Lee, C.G., Kim, G.T., Park, H.S. ve Lee, J.K., (2006). Investigation on characteristics of thermal conductivity enhancement of nanofluids. Current Applied Physics, 6, 6, 1068-1071.
  • Izadi, M., Shahmardan, M.M. ve Behzadmehr, A., (2013). Richardson number ratio effect on laminar mixed convection of a nanofluid flow in an annulus, International Journal for Computational Methods in Engineering Science and Mechanics, 14, 4, 304-316.
  • Malvandi, A. Ve Ganji, D.D., (2014). Mixed convective heat transfer of water/alümina nanofluid inside a vertical microchannel, Powder Technology, 263, 37-44.
  • Manay, E., Sahin, B., Yilmaz M. ve Gelis, K., (2012). Thermal performance analysis of nanofluids in microchannel heat sinks, WASET International Journal of Mechanical and Mechatronics Engineering, 6, 7, 1130-1135.Manay, E. ve Sahin, B., (2017). Heat transfer and pressure drop of nanofluids in a microchannel heat sink, Heat Transfer Engineering, 38, 5, 510-522.
  • Mirmasoumi, S. ve Behzadmehr, A., (2008). Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Applied Thermal Engineering, 28, 7, 717-727.
  • Mokarani, O., Bourouga, B., Catelain, C. ve Peerhossaini, H., (2009). Fluid flow and convective heat transfer in flat microchannels, International Journal of Heat and Mass Transfer, 52, 5-6, 1337-1352.
  • Prasher, R., Phelan, P.E. ve Bhattacharya, P., (2006). Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nano Letters, 6, 7, 1529-1534.
  • Sahin, B., Gedik, G., Manay, E. ve Karagoz, S., (2013). Experimental investigation of heat transfer and pressure drop characteristics of Al2O3–water nanofluid. Experimental Thermal and Fluid Science, 50, 21–28.
  • Sahin, B., Manay, E. ve Akyürek, E. F., (2015). An experimental study on heat transfer and pressure drop of CuO–water nanofluid, Journal of Nanomaterials, 2015, 1-10.
  • Shannon, R.L. ve Depew, C.A., (1969). Forced laminar flow convection in a horizontal tube with variable viscosity and free-convection effects, Journal of Heat Transfer, 91, 2, 251-258.
  • Singh, H. ve Randhawa, H.S., (2015). Numerically study on heat transfer performance of microchannels heat sink with different shape by using n-octane, International Journal for Innovative Research in Science & Technology, 1, 10, 63-67.
  • Tang, H.H., Li, Z., He, Y.L. ve Tao, W.Q., (2007). Experimental study of compressibility, roughness and rarefaction influences on microchannel flow, International Journal of Heat and Mass Transfer, 50, 11-12, 2282-2295.
  • Yang, C., Peng, K., Nakayama, A. ve Qiu T., (2016). Forced convective transport of alümina-water nanofluid in micro-channels subject to constant heat flux, Chemical Engineering Science, 152, 311-322.
  • Yu, W., Xie, H., Chen, L. ve Li, Y., (2009). Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochimica Acta, 491, 1-2, 92-96.
  • Zanchini, E., (2008). Mixed convection with variable viscosity in a vertical annulus with uniform wall temperatures. International Journal of Heat and Mass Transfer, 51, 1-2, 30-40.
  • Zhang, X., Gu, H. ve Fujii, M., (2007). Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Science, 31, 6, 593-599.

Mikrokanallı ısı alıcıda SiO2-su nanoakışkanının karma taşınım özelliklerinin deneysel olarak incelenmesi

Yıl 2019, Cilt: 10 Sayı: 1, 169 - 180, 15.03.2019
https://doi.org/10.24012/dumf.472854

Öz

Mikro
üretim teknolojilerindeki gelişmeler fonksiyonelliği arttırılmış daha küçük
cihaz ve sistemlerin üretimine olanak sağlamıştır. Günden güne minyatürleşen ve
daha karmaşık hale gelen elektronik sistemlerde yeterli soğutma yüzeyinin
olmaması cihazların çalışması sırasında açığa çıkan ısının geleneksel ısıl
yönetim metodlarıyla sistemden uzaklaştırılmasını imkansız hale getirmiştir. Bu
durum, araştırmacıları etkin ısı transfer artırımı sağlamak için farklı
metodlar geliştirmeye zorlamıştır. Temel soğutucu akışkan içerisine nano
büyüklükteki parçacıkların süspanse edilmesiyle elde edilen nanoakışkan
kullanımı bu konuda çalışan araştırmacıların ilgisini çekmiştir. Bu deneysel
çalışmada, farklı kanal genişliğine (400µm ve 500µm) sahip dikdörtgen kesitli
mikrokanallar kullanılarak oluşturulan çoklu mikrokanallı ısı alıcıların ısı
transfer karaktersitikleri sunulmuştur. Soğutucu akışkan olarak saf su ve %1
hacimsel konsantrasyona sahip SiO2-saf su nanoakışkanı
kullanılmıştır. Nanoakışkanların sentezlenmesinde 10nm boyutundaki SiO2
nanopartikülleri kullanılmıştır ve iki adım metodu uygulanmıştır. Deneyler
sabit yüzey ısı akısı sınır şartında gerçekleştirilmiş olup taşınım
mekanizmasında karma taşınım etkilerini inceleyebilmek için Reynolds sayısı
20-110 aralığında tutulmuştur. Deneysel verilere göre, %1 hacimsel oranda
nanoakışkan kullanımı saf suya göre Nusselt sayısını 400 µm genişliliğinde
mikrokanallara sahip ısı alıcıda %22 arttırırken bu değer 500 µm’lik
genişlikteki mikrokanallı ısı alıcıda %16 olarak hesaplanmıştır.

Kaynakça

  • Chabi, A.R., Peyghambarzadeh, S.M., Hashemabadi, S.H. ve Salimi, M., (2017). Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink, Heat and Mass Transfer, 53, 2, 661-671.
  • Choi, S.U.S. ve Eastman, J.A., (1995). Enhancing thermal conductivity of fluids with nanoparticles, Proceedings, ASME International Mechanical Engineering Congress and Exposition, 99-105, San Francisco.
  • Dang, T. ve Teng, J-T., (2011). The effects of configurations on the performance of microchannel counter-low heat exchangers-An experimental study, Applied Thermal Engineering, 31, 17-18, 3946-3955.
  • Domongues, G., Volz, S., Joulain, K. ve Greffet, J.J., (2005). Heat transfer between two nanoparticles through near field interaction, Physical Review Letters, 94, 8, 085901.
  • Feng, Z-Z. ve Li, W., (2013). Laminar mixed convection of large-Prandtl-number in-tube nanofluid flow, Part I: Experimental study, International Journal of Heat and Mass Transfer, 65, 919-927.
  • Hwang, Y.J., Ahn, Y.C, Shin, H.S., Lee, C.G., Kim, G.T., Park, H.S. ve Lee, J.K., (2006). Investigation on characteristics of thermal conductivity enhancement of nanofluids. Current Applied Physics, 6, 6, 1068-1071.
  • Izadi, M., Shahmardan, M.M. ve Behzadmehr, A., (2013). Richardson number ratio effect on laminar mixed convection of a nanofluid flow in an annulus, International Journal for Computational Methods in Engineering Science and Mechanics, 14, 4, 304-316.
  • Malvandi, A. Ve Ganji, D.D., (2014). Mixed convective heat transfer of water/alümina nanofluid inside a vertical microchannel, Powder Technology, 263, 37-44.
  • Manay, E., Sahin, B., Yilmaz M. ve Gelis, K., (2012). Thermal performance analysis of nanofluids in microchannel heat sinks, WASET International Journal of Mechanical and Mechatronics Engineering, 6, 7, 1130-1135.Manay, E. ve Sahin, B., (2017). Heat transfer and pressure drop of nanofluids in a microchannel heat sink, Heat Transfer Engineering, 38, 5, 510-522.
  • Mirmasoumi, S. ve Behzadmehr, A., (2008). Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Applied Thermal Engineering, 28, 7, 717-727.
  • Mokarani, O., Bourouga, B., Catelain, C. ve Peerhossaini, H., (2009). Fluid flow and convective heat transfer in flat microchannels, International Journal of Heat and Mass Transfer, 52, 5-6, 1337-1352.
  • Prasher, R., Phelan, P.E. ve Bhattacharya, P., (2006). Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nano Letters, 6, 7, 1529-1534.
  • Sahin, B., Gedik, G., Manay, E. ve Karagoz, S., (2013). Experimental investigation of heat transfer and pressure drop characteristics of Al2O3–water nanofluid. Experimental Thermal and Fluid Science, 50, 21–28.
  • Sahin, B., Manay, E. ve Akyürek, E. F., (2015). An experimental study on heat transfer and pressure drop of CuO–water nanofluid, Journal of Nanomaterials, 2015, 1-10.
  • Shannon, R.L. ve Depew, C.A., (1969). Forced laminar flow convection in a horizontal tube with variable viscosity and free-convection effects, Journal of Heat Transfer, 91, 2, 251-258.
  • Singh, H. ve Randhawa, H.S., (2015). Numerically study on heat transfer performance of microchannels heat sink with different shape by using n-octane, International Journal for Innovative Research in Science & Technology, 1, 10, 63-67.
  • Tang, H.H., Li, Z., He, Y.L. ve Tao, W.Q., (2007). Experimental study of compressibility, roughness and rarefaction influences on microchannel flow, International Journal of Heat and Mass Transfer, 50, 11-12, 2282-2295.
  • Yang, C., Peng, K., Nakayama, A. ve Qiu T., (2016). Forced convective transport of alümina-water nanofluid in micro-channels subject to constant heat flux, Chemical Engineering Science, 152, 311-322.
  • Yu, W., Xie, H., Chen, L. ve Li, Y., (2009). Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochimica Acta, 491, 1-2, 92-96.
  • Zanchini, E., (2008). Mixed convection with variable viscosity in a vertical annulus with uniform wall temperatures. International Journal of Heat and Mass Transfer, 51, 1-2, 30-40.
  • Zhang, X., Gu, H. ve Fujii, M., (2007). Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Science, 31, 6, 593-599.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Bayram Şahin 0000-0002-7016-644X

Rahim Aytuğ Özer 0000-0002-3162-5551

İbrahim Ateş 0000-0002-9644-9667

Eyüphan Manay 0000-0002-5456-8756

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 20 Ekim 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 10 Sayı: 1

Kaynak Göster

IEEE B. Şahin, R. A. Özer, İ. Ateş, ve E. Manay, “Mikrokanallı ısı alıcıda SiO2-su nanoakışkanının karma taşınım özelliklerinin deneysel olarak incelenmesi”, DÜMF MD, c. 10, sy. 1, ss. 169–180, 2019, doi: 10.24012/dumf.472854.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456