Araştırma Makalesi
BibTex RIS Kaynak Göster

868 MHz UHF bandında H-şeklinde katlanmış implant mikroşerit dipol anten tasarımı

Yıl 2019, Cilt: 10 Sayı: 3, 797 - 806, 29.09.2019
https://doi.org/10.24012/dumf.445660

Öz

Vücuda yerleştirilebilir anten uygulamaları, biyomedikal mühendisliğinde
çokça çalışılan güncel bir konudur. Vücuda yerleştirilebilen devreler sayesinde
haraketli hastaların takibi ve tedavi yöntemlerinde de her geçen gün yenikler
ortaya çıkmaktadır. Buna bağlı olarak ta yeni çalışma alanları ortaya
çıkmaktadır. Bu çalışmada vücuda yerleştirilebilen biyomedikal antenler üzerine
yeni bir tasarım önerilmiştir. Vücuda yerleştirilecek antenlerin tasarımında birçok
zorluk vardır. Burada anteni çevreleyen doku ve bu dokuları da çevreleyen diğer
dokuların dielektrik ve geometrik özelliklerinin doğru tespit edilmesi, antenin
tasarım ve benzetimi açısından oldukça önemli bir konudur. Bu çalışma için
önerilen anten deri ve yağ doku arasında konumlandırılmış ve farklı dokular ile
anten birlikte tasarlanarak simüle edilmiştir. Bu anten, elektromanyetik teori
ve sonlu elemanlar metodunun uygulandığı bir benzetim programı ile bazı uzunluk
parametreleri referans alınarak tasarlanmış ve simüle edilmiştir. Simülasyon H
şeklinde katlanmış mikro şerit dipol anten ile biyolojik doku ortamından
oluşmaktadır. Doku ortamı 3 farklı katmandan meydana gelmektedir: Kas (31x30x8
mm3), yağ (31x30x2 mm3), deri (31x30x2.1 mm3).
Antenin yerleştirildiği bölge deri ile yağ katmanı sınırıdır. Bu çalışma
tasarlanan antenin rezonans frekansı UHF bandında 868MHz’dir. Antenin
gerçekleştirilebilmesi için alt taş malzeme olarak yaygın kullanılan FR4
kullanılmıştır. Bu çalışmada doku içi uygulama için önerilen antenin boyutları
16
´15´1.5mm3 olarak tasarlanmıştır. 

Kaynakça

  • Ahlbom, A., Bergqvist, U., Bernhardt, J., Cesarini, J., Grandolfo, M., Hietanen, M., Stolwijk, J. A. (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health physics, 74(4), 494-521.
  • Balanis, C. A. (1992). Antenna theory: A review. Proceedings of the IEEE, 80(1), 7-23.
  • Barnes, F. S., & Greenebaum, B. (2006). Biological and medical aspects of electromagnetic fields: CRC press.
  • Bashirullah, R. (2010). Wireless implants. IEEE microwave magazine, 11(7), S14-S23.
  • BTK, Bilgi Teknolojileri ve İletişimi Kurumu, Milli Frekans Planı ve Diğer Planlar. Retrieved 28.02.2016, from https://ifis.btk.gov.tr/wmfys/millifrekanssorgu.aspx
  • Cheng, T.-Y., & Herman, C. (2011). Optimization of skin cooling for thermographic imaging of near-surface lesions. Paper presented at the ASME 2011 International Mechanical Engineering Congress and Exposition.
  • Çelik, A. R., Kurt, M. B., & Helhel, S. (2016). Design an Ultra-Wide Band Antenna for Microwave Imaging Systems. Paper presented at the International Conference on Advanced Technology & Sciences (ICAT’16) Konya/TURKEY.
  • Çelik, A. R., Kurt, M. B., & Helhel, S. (2018). Mikrodalga görüntüleme uygulamaları için bir düzlemsel dikdörtgen monopol anten tasarımı ve optimizasyonu. DÜMF Mühendislik Dergisi, 9(1), 1-12.
  • Doddipalli, S., Kothari, A., & Peshwe, P. (2017). A Low Profile Ultrawide Band Monopole Antenna for Wearable Applications. International Journal of Antennas and Propagation, 2017.
  • Doğan, A. K., Celep, M., & Ogan, S. (2014). Sar ölçümlerinde kullanılmak üzere dipol anten yapımı ve karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 20(8), 310-313.
  • Doğan, H., Çağlar, M. F., Yavuz, M., & Gözel, M. A. (2016). Hayvan İzlemede Radyo Frekanslı Tanımlama Sistemlerinin Kullanımı. Süleyman Demirel Üniversitesi Uluslarası Teknolojik Bilimler Dergisi, 8(2), 38-53.
  • Gözel, M. A., & Çağlar, M. F. (2016). RFID Tag Antenna Design in Different ISM Bands for Implant Identification. Paper presented at the International Conference on Advanced Technology & Sciences (ICAT’16) Konya/TURKEY.
  • Gözel, M. A., Çağlar, M. F., & Doğan, H. (2016). İmplant Tanımlama için Katlanmış Dipollü RFID Etiket Anteni Tasarımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(3), 579-586.
  • Houzen, T., Takahashi, M., Saito, K., & Ito, K. (2008). Implanted planar inverted F-antenna for cardiac pacemaker system. Paper presented at the Antenna Technology: Small Antennas and Novel Metamaterials, 2008. iWAT 2008. International Workshop on.
  • Huang, W., & Kishk, A. A. (2011). Embedded spiral microstrip implantable antenna. International Journal of Antennas and Propagation, 2011. Institute of Applied Physics. from http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php
  • Kang, C.-H., Wu, S.-J., & Tarng, J.-H. (2012). A novel folded UWB antenna for wireless body area network. IEEE Transactions on antennas and propagation, 60(2), 1139-1142.
  • Karacolak, T., Hood, A. Z., & Topsakal, E. (2008). Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 56(4), 1001-1008.
  • Kim, J., & Rahmat-Samii, Y. (2004). Implanted antennas inside a human body: Simulations, designs, and characterizations. IEEE Transactions on Microwave Theory and Techniques, 52(8), 1934-1943.
  • Kim, S., Vyas, R., Bito, J., Niotaki, K., Collado, A., Georgiadis, A., & Tentzeris, M. M. (2014). Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649-1666.
  • Kiourti, A., Christopoulou, M., Koulouridis, S., & Nikita, K. S. (2010). Design of a novel miniaturized implantable PIFA for biomedical telemetry. Paper presented at the International Conference on Wireless Mobile Communication and Healthcare.
  • Kiourti, A., & Nikita, K. S. (2012a). Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: design, safety considerations and link budget analysis. IEEE Transactions on antennas and propagation, 60(8), 3568-3575.
  • Kiourti, A., & Nikita, K. S. (2012b). A review of implantable patch antennas for biomedical telemetry: Challenges and solutions [wireless corner]. IEEE Antennas and Propagation Magazine, 54(3), 210-228.
  • Kiourti, A., Tsakalakis, M., & Nikita, K. S. (2011). Parametric study and design of implantable PIFAs for wireless biotelemetry. Paper presented at the International Conference on Wireless Mobile Communication and Healthcare.
  • Lee, C. M., Yo, T. C., Huang, F. J., & Luo, C. H. (2009). Bandwidth enhancement of planar inverted‐F antenna for implantable biotelemetry. Microwave and Optical Technology Letters, 51(3), 749-752.
  • Liu, W.-C., Chen, S.-H., & Wu, C.-M. (2008). Implantable broadband circular stacked PIFA antenna for biotelemetry communication. Journal of Electromagnetic Waves and Applications, 22(13), 1791-1800.
  • Liu, X., Stachel, J. R., Sejdic, E., Mickle, M. H., & Berger, J. L. (2013). The UHF Gen 2 RFID System for transcutaenous operation for orthopedic implants. Paper presented at the Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International.
  • Lodato, R., & Marrocco, G. (2016). Close Integration of a UHF-RFID transponder into a limb prosthesis for tracking and sensing. IEEE Sensors Journal, 16(6), 1806-1813.
  • Merli, F., Bolomey, L., Meurville, E., & Skrivervik, A. (2008). Implanted antenna for biomedical applications. Paper presented at the Antennas and Propagation Society International Symposium, 2008. AP-S 2008. IEEE.
  • Merli, F., Bolomey, L., Zürcher, J.-F., Corradini, G., Meurville, E., & Skrivervik, A. K. (2011). Design, realization and measurements of a miniature antenna for implantable wireless communication systems. IEEE Transactions on antennas and propagation, 59(10), 3544-3555.
  • Panescu, D. (2008). Emerging technologies [wireless communication systems for implantable medical devices]. IEEE Engineering in Medicine and Biology Magazine, 27(2).
  • Polk, C., & Postow, E. (1995). Handbook of Biological Effects of Electromagnetic Fields, -2 Volume Set: CRC press.
  • Rosen, A., Stuchly, M. A., & Vander Vorst, A. (2002). Applications of RF/microwaves in medicine. IEEE Transactions on Microwave Theory and Techniques, 50(3), 963-974.
  • Soontornpipit, P., Furse, C. M., & Chung, Y. C. (2004). Design of implantable microstrip antenna for communication with medical implants. IEEE Transactions on Microwave Theory and Techniques, 52(8), 1944-1951.
  • Wessapan, T., & Rattanadecho, P. (2018). Temperature induced in human organs due to near-field and far-field electromagnetic exposure effects. International Journal of Heat and Mass Transfer, 119, 65-76.
  • Xue, R.-F., Cheng, K.-W., & Je, M. (2013). High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(4), 867-874.
  • Yang, G.-Z., & Yang, G. (2006). Body sensor networks (Vol. 1): Springer.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mahmut Gözel 0000-0002-0360-7188

Ömer Kasar

Mesud Kahriman 0000-0003-0731-0936

Yayımlanma Tarihi 29 Eylül 2019
Gönderilme Tarihi 18 Temmuz 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 10 Sayı: 3

Kaynak Göster

IEEE M. Gözel, Ö. Kasar, ve M. Kahriman, “868 MHz UHF bandında H-şeklinde katlanmış implant mikroşerit dipol anten tasarımı”, DÜMF MD, c. 10, sy. 3, ss. 797–806, 2019, doi: 10.24012/dumf.445660.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456