Araştırma Makalesi
BibTex RIS Kaynak Göster

Charpy darbe testinin deneysel ve sayısal analizi

Yıl 2019, Cilt: 10 Sayı: 3, 945 - 957, 29.09.2019
https://doi.org/10.24012/dumf.475979

Öz

Bu çalışmada,
St37 çeliğine Charpy darbe testi uygulayarak malzemenin darbe absorbe enerjisi
incelenmiştir. Ortasında dairesel delik bulunan ve deliksiz olmak üzere iki
farklı numune modeli kullanılmıştır. Deneysel prosedürde, numuneler 50x20x2 mm boyutlarında
hazırlandıktan sonra dairesel delik etkisini inceleyebilmek için numune
merkezine 9 mm çapında dairesel delik açılmıştır. Deneyler üniversal Charpy
darbe test cihazında tüm numuneler için üçer kez tekrar edilmiştir. Test
cihazının vurucu kütlesi 6.784 kg olup kapasitesi 49.05 J dür. Sayısal
çalışmada, ANSYS yazılımı ön işlemci olarak, LS-DYNA ise çözücü olarak
kullanılmıştır. St37 çelik malzeme numunesi için, çözücüde Mat 15(Johson-Cook)
malzeme modeli tercih edilmiştir. Vurucu ve mesnet modeli için Mat 20 (Rigid)
malzeme modeli seçilmiştir.

Enerji
sönümleme mekanizması hem deneysel hem de sayısal yöntemlerle analiz edilerek, delikli
ve deliksiz numuneler için karşılaştırılmıştır. Elde edilen verilere göre deliksiz
numunelerin darbe dirençleri, merkezinde 9 mm çapında dairesel delik bulunan
numunelerle kıyaslandığında önemli bir üstünlüğe sahip olduğu gözlemlenmiştir.
Numune kesitinde sürekliliğin bozulmasıyla birlikte darbe sönümleme enerjisinin
deneysel olarak % 46.53 oranında düştüğü tespit edilmiştir. Numunelerin deneysel
çalışmalar sonrasında ölçülen darbe absorbe enerjileri ile sonlu elemanlar
metodu kullanılarak elde edilen sayısal analiz sonuçları karşılaştırılarak grafikler
halinde sunulmuştur. Çalışma sonucunda, sayısal ve deneysel yöntemlerle elde
edilen sonuçlar arasındaki maksimum fark tüm numuneler için %4.62 olarak elde
edilmiştir.
Kullanılan sayısal
darbe test metodunun deneylere gerek kalmadan karmaşık ve farklı geometrilere
sahip numuneler için uygulanabilirliği ortaya çıkmıştır.

Kaynakça

  • Ali, M.B., Abdullah, S., Nuawi, M.Z. ve Ariffin, A.K., (2011). Test simulation using finite element method, IOP Conference Series, Materials Science and Engineering, IOP Publishing,17,1.
  • Altenhof, W., Raczy, A., Laframboise, M., Loscher, J. ve Alpas, A., (2004). Numerical simulation of AM50A magnesium alloy under large deformation, International Journal of Impact Engineering, 30(2), 117-142.
  • Ansari, M. M. Ve Chakrabarti, A., (2016). Impact behavior of FRP composite plate under low to hyper velocity impact, Composites Part B, 95, 462-474.
  • Banerjee, A., Dhar, S., Acharyya, S., Datta, D., ve Nayak, N. (2015). Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Materials Science and Engineering: A, 640, 200-209.
  • Buzyurkin, A. E., Gladky, I. L., ve Kraus, E. I., (2015). Determination and verification of Johnson–Cook model parameters at high-speed deformation of titanium alloys, Aerospace science and technology, 45, 121-127.
  • Ceylan, İ., (2008). Metallerin plastik şekillendirilmesinde kullanılan malzeme modellerinin sonlu elemanlar ile analizi, Yüksek lisans tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Ghaith, F. A. (2010). Nonlinear finite element modeling of charpy impact test, Advanced materials research, Trans Tech Publications, 83, 182-189.
  • Ghaith, Fadi. ve A. Khan., (2013). Three dimensional nonlinear finite element modeling of charpy impact test, International Journal of Mechanical Engineering and Technology, IAEME Publication, 4(4), 377-386.
  • Jeong, D. Y., Yu, H., Gordon, J. E. ve Tang, Y. H., (2008). Finite element analysis of un notched charpy impact tests, Proceedings of the Materials Science and Technology 2008 Conference and Exhibition.
  • Kılıçaslan, C. ve Odacı, İ.K., (2012). Düşük hızlarda darbeye maruz kalan 1050 H14 Ve 3003 alüminyum alaşımı plakalarda hasar oluşumu ve sonlu elemanlar simülasyonları, TMMOB MMO Mühendis ve Makina Dergisi, 53, 632, 40-48.
  • Kim, J. B., Shin, H., ve Yoo, Y. H., (2015). A calibration of the Wierzbicki-Xue damage model using charpy test results, MATEC Web of Conferences, EDP Sciences Publishing, 26.
  • Kumar, M., Devaraj, M. R. ve LakshmiNarayana, H., (2012). Finite element modelling for numerical simulation of charpy impact test on materials, International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies.
  • Liu, C., Zhang, Y. X., ve Li, J., (2017). Impact responses of sandwich panels with fibre metal laminate skins and aluminum foam core. Composite Structures, 182, 183-190.
  • Madhusudhan, D., Chand, S., Ganesh, S., ve Saibhargavi, U., (2018). Modeling and simulation of charpy impact test of maraging steel 300 using Abaqus, IOP Conference Series, Materials Science and Engineering, IOP Publishing, 330,1.
  • Majzoobi, G. H., Morshedi, H. ve Farhadi, K., (2018). The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs, Thin-Walled Structures, 122, 1-7.
  • Ozturk, G., (2010). Numerical and experimental investigation of perforation of ST-37 steel plates by oblique impact, Master Thesis, Mechanical Engineering Department, Middle East Technical University, Ankara.
  • Puech, L. Ramakrishnan, K. R., Le Moigne, N., Corn, S., Slangen, P. R., Le Duc, A., Boudhani, H. ve Bergeret, A., (2018). Investigating the impact behaviour of short hemp fibres reinforced polypropylene bio composites through high speed imaging and finite element modelling. Composites Part A, Applied Science and Manufacturing, 109, 428-439.
  • Santiago, R. C., Cantwell, W. J., Jones, N., ve Alves, M., (2018). The modelling of impact loading on thermoplastic fibre-metal laminates, Composite Structures, 189, 228-238.
  • Serizawa, H., WU, Z. ve Murakawa, H., (2001). Computational analysis of charpy impact tests using interface elements (Mechanics, Strength and Structure Design), Transactions of JWRI, 30(2), 97-102.
  • Trajkovski, J., Kunc, R., Pepel, V., ve Prebil, I., (2015). Flow and fracture behavior of high-strength armor steel PROTAC 500, Materials & Design, 66, 37-45.
  • Wang, K., Eng, B., (2016). Calibration of the Johnson-Cook failure parameters as the chip separation criterion in the modelling of the orthogonal metal cutting process, Ph. D. Thesis, McMaster University, Kanada.
  • Wang, H., Ramakrishnan, K. R., ve Shankar, K., (2016). Experimental study of the medium velocity impact response of sandwich panels with different cores, Materials and Design, 99, 68-82.
  • Zmindak, M., Pelagić, Z., Pastorek, P., Močilan, M. ve Vybošťok, M., (2016). Finite element modelling of high velocity impact on plate structures. Procedia Engineering, 136, 162-168.
  • Flores-Johnson, E. A., Shen, L., Guiamatsia, I.,ve Nguyen, G. D., (2014). Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Composites Science and Technology, 96, 13-22.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mustafa Albayrak 0000-0002-2913-6652

Mete Onur Kaman 0000-0003-0178-6079

Yayımlanma Tarihi 29 Eylül 2019
Gönderilme Tarihi 30 Ekim 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 10 Sayı: 3

Kaynak Göster

IEEE M. Albayrak ve M. O. Kaman, “Charpy darbe testinin deneysel ve sayısal analizi”, DÜMF MD, c. 10, sy. 3, ss. 945–957, 2019, doi: 10.24012/dumf.475979.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456