Araştırma Makalesi
BibTex RIS Kaynak Göster

Design and Simulation of the Guidance and Control System for Gliding Munitions

Yıl 2024, Cilt: 15 Sayı: 2, 285 - 291, 30.06.2024
https://doi.org/10.24012/dumf.1378130

Öz

In this paper, a fixed wing, tail fin controlled gliding munition has been designed. A guidance and control system is developed for the designed model and the glide towards the target is tested in the XPLANE 11 flight simulator environment. The simulation was carried out in two stages, both in the software loop and in the hardware loop. After the munition system is released from the aircraft, it measures the angles that will enable gliding to the target coordinates with the guidance system and starts to control fin movements. It compares the instantaneous position data received from GPS with the target position data. With the LOS method, the pitch angle is found by comparing the heading angle required to reach the target and the instantaneous altitude information with the target altitude information. The angles found are compared with the information from the IMU sensor and the errors are processed in the PID controller. The output of the PID controller is converted as a PWM signal to the tail fins in accordance with the munition dynamics. The system was transferred to XPLANE 11 and scenarios with different initial conditions were tested.

Proje Numarası

KÜ-ÖOP/2022-07

Kaynakça

  • [1] A. Attallah, A. Hafez, and A. Mohammady, “Attitude Control of Gliding Bomb using Classical PID and Modified PI-D Controllers,” Journal of Multidisciplinary Engineering Science and Technology (JMEST), vol. 3, pp. 2458–9403, 2016, Accessed: Oct. 16, 2023. [Online]. Available: https://www.jmest.org/wp-content/uploads/JMESTN42351489.pdf
  • [2] I. H. Elandy, A. N. Ouda, A. Kamel, and Y. Z. Elhalwagy, “Modeling and Simulation of an Aerial Gliding Body in Free-Fall,” International Journal of Engineering Research and Technology, vol. 7, no. 08, Aug. 2018.
  • [3] S. Theodoulis and P. Wernert, “Flight Dynamics & Control for Smart Munition: The ISL Contribution,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15512–15517, Jul. 2017, doi: https://doi.org/10.1016/j.ifacol.2017.08.2127.
  • [4] T. R. Yechout, Introduction to Aircraft Flight Mechanics. AIAA, 2003.
  • [5] A. Mahmood, F. ur Rehman, and A. I. Bhatti, “Trajectory Optimization of a Subsonic Unpowered Gliding Vehicle Using Control Vector Parameterization,” Drones, vol. 6, no. 11, p. 360, Nov. 2022, doi: https://doi.org/10.3390/drones6110360.
  • [6] Lim, S., Pak, C., Cho, C., & Bang, H. (2014). Development of Flight Control System for Gliding Guided Artillery Munition-Part II: Guidance and Control. Journal of the Korean Society for Aeronautical & Space Sciences, 42(3), 229-236.
  • [7] Seung-Han Lim, Jang-Ho Park, Chang-Yeon Cho, & Hyo-Chung Bang. (2014). Güdümlü süzülme mühimmatı uçuş kontrol sisteminin geliştirilmesi BölümⅡ: Güdüm ve kontrol. Kore Havacılık ve Uzay Topluluğu Dergisi, 42(3), 229-236.
  • [8] A. S. Atallah, G. A. El-Sheikh, A. E.-D. S. Mohamedy, and A. T. Hafez, “Modeling and Simulation for Free Fall Bomb Dynamics in Windy Environment,” International Conference on Aerospace Sciences and Aviation Technology, vol. 16, no. AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 – May 26 - 28, 2015, pp. 1–12, May 2015, doi: https://doi.org/10.21608/asat.2015.23009.
  • [9] X. Li, Daobo Wang and Qi Wang, "Design and Realization of a Hardware-in-the-Loop Simulation System for Aerial Guided Bombs," 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, 2008, pp. 1-5, doi: 10.1109/ISSCAA.2008.4776203.
  • [10] A. I. Hentati, L. Krichen, M. Fourati and L. C. Fourati, "Simulation Tools, Environments and Frameworks for UAV Systems Performance Analysis," 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 2018, pp. 1495-1500, doi: 10.1109/IWCMC.2018.8450505.
  • [11] Y. Günbatar, “Varying mass missile dynamics, guidance & control,” open.metu.edu.tr, 2007. https://open.metu.edu.tr/handle/11511/16983 (accessed Oct. 16, 2023). [12] A. Bittar, H. V. Figuereido, P. A. Guimaraes, and A. C. Mendes, “Guidance Software-In-the-Loop simulation using X-Plane and Simulink for UAVs,” 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, Accessed: Dec. 06, 2022. [Online]. Available: https://www.academia.edu/32831263/Guidance_Software_In_the_Loop_simulation_using_X_Plane_and_Simulink_for_UAVs
  • [13] Susanto, T., Setiawan, M. B., Jayadi, A., Rossi, F., Hamdhi, A., & Sembiring, J. P. (2021, October). Application of Unmanned Aircraft PID Control System for Roll, Pitch and Yaw Stability on Fixed Wings. In 2021 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE) (pp. 186-190). IEEE.
  • [14] Arindya, R. (2016, April). Penalaan Kendali PID untuk pengendali proses. In PROSIDING SEMINAR NASIONAL CENDEKIAWAN.
  • [15] Lim, S., Pak, C., Cho, C., & Bang, H. (2014). Development of Flight Control System for Gliding Guided Artillery Munition-Part I: Operational Concept and Navigation. Journal of the Korean Society for Aeronautical & Space Sciences, 42(3), 221-228.
  • [16] West, K., Al-Nimer, S., Goel, V. R., Yanof, J. H., Hanlon, A. T., Weunski, C. J., ... & Farivar, B. S. (2021). Three-dimensional holographic guidance, navigation, and control (3D-GNC) for endograft positioning in porcine aorta: feasibility comparison with 2-dimensional x-ray fluoroscopy. Journal of Endovascular Therapy, 28(5), 796-803.
  • [17] URL-1: STMicroelectronics STM32F407VG Microcontroller Documentation https://www.st.com/en/microcontrollers-microprocessors/stm32f407vg.html [Accessed: 12.03.2024]
  • [18] URL-2: Radiolink SE100 User Manual https://radiolink.com.cn/doce/UploadFile/ProductFile/SE100Manual.pdf [Accessed: 12.03.2024]
  • [19] URL-3: Waveshare 10 DOF IMU Sensor Documentation https://www.waveshare.com/wiki/10_DOF_IMU_Sensor_(D) [Accessed: 12.03.2024]
  • [20] URL-4: Dorji DRF1278DM Data Sheet http://www.dorji.com/docs/data/DRF1278DM.pdf [Accessed: 12.03.2024]
  • [21] M. Gün, “External configuration design and aerodynamic optimization of modular guided munitions,” open.metu.edu.tr, 2019. https://open.metu.edu.tr/handle/11511/44560

SÜZÜLEN MÜHİMMATLAR İÇİN GÜDÜM VE KONTROL SİSTEMİ TASARLANMASI VE SİMÜLASYONU

Yıl 2024, Cilt: 15 Sayı: 2, 285 - 291, 30.06.2024
https://doi.org/10.24012/dumf.1378130

Öz

Bu makalede, sabit kanatlı, kuyruk kanadı kontrollü süzülen bir mühimmat tasarlanmıştır. Tasarlanan model için bir güdüm ve kontrol sistemi geliştirilmiş ve hedefe doğru süzülüşü XPLANE 11 uçuş simülatörü ortamında test edilmiştir. Simülasyon hem yazılım döngüsünde hem de donanım döngüsünde olmak üzere iki aşamada gerçekleştirilmiştir. Mühimmat sistemi uçaktan serbest bırakıldıktan sonra güdüm sistemi ile hedef koordinatlarına süzülmeyi sağlayacak açıları ölçer ve kanatçık hareketlerini kontrol etmeye başlar. GPS'den aldığı anlık konum verisi ile hedef konum verisini karşılaştırır. LOS yöntemi ile hedefe ulaşmak için gereken istikamet açısı ve anlık irtifa bilgisi ile hedef irtifa bilgisi karşılaştırılarak yunuslama açısı bulunur. Bulunan açılar IMU sensöründen gelen bilgilerle karşılaştırılır ve hatalar PID denetleyicide işlenir. PID kontrolörün çıkışı mühimmat dinamiğine uygun olarak kuyruk kanatçıklarına PWM sinyali olarak dönüştürülür. Sistem XPLANE 11'e aktarılmış ve farklı başlangıç koşullarına sahip senaryolar test edilmiştir.

Destekleyen Kurum

Kastamonu University Scientific Research Projects Coordination Department KÜ-ÖOP/2022-07

Proje Numarası

KÜ-ÖOP/2022-07

Kaynakça

  • [1] A. Attallah, A. Hafez, and A. Mohammady, “Attitude Control of Gliding Bomb using Classical PID and Modified PI-D Controllers,” Journal of Multidisciplinary Engineering Science and Technology (JMEST), vol. 3, pp. 2458–9403, 2016, Accessed: Oct. 16, 2023. [Online]. Available: https://www.jmest.org/wp-content/uploads/JMESTN42351489.pdf
  • [2] I. H. Elandy, A. N. Ouda, A. Kamel, and Y. Z. Elhalwagy, “Modeling and Simulation of an Aerial Gliding Body in Free-Fall,” International Journal of Engineering Research and Technology, vol. 7, no. 08, Aug. 2018.
  • [3] S. Theodoulis and P. Wernert, “Flight Dynamics & Control for Smart Munition: The ISL Contribution,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15512–15517, Jul. 2017, doi: https://doi.org/10.1016/j.ifacol.2017.08.2127.
  • [4] T. R. Yechout, Introduction to Aircraft Flight Mechanics. AIAA, 2003.
  • [5] A. Mahmood, F. ur Rehman, and A. I. Bhatti, “Trajectory Optimization of a Subsonic Unpowered Gliding Vehicle Using Control Vector Parameterization,” Drones, vol. 6, no. 11, p. 360, Nov. 2022, doi: https://doi.org/10.3390/drones6110360.
  • [6] Lim, S., Pak, C., Cho, C., & Bang, H. (2014). Development of Flight Control System for Gliding Guided Artillery Munition-Part II: Guidance and Control. Journal of the Korean Society for Aeronautical & Space Sciences, 42(3), 229-236.
  • [7] Seung-Han Lim, Jang-Ho Park, Chang-Yeon Cho, & Hyo-Chung Bang. (2014). Güdümlü süzülme mühimmatı uçuş kontrol sisteminin geliştirilmesi BölümⅡ: Güdüm ve kontrol. Kore Havacılık ve Uzay Topluluğu Dergisi, 42(3), 229-236.
  • [8] A. S. Atallah, G. A. El-Sheikh, A. E.-D. S. Mohamedy, and A. T. Hafez, “Modeling and Simulation for Free Fall Bomb Dynamics in Windy Environment,” International Conference on Aerospace Sciences and Aviation Technology, vol. 16, no. AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 – May 26 - 28, 2015, pp. 1–12, May 2015, doi: https://doi.org/10.21608/asat.2015.23009.
  • [9] X. Li, Daobo Wang and Qi Wang, "Design and Realization of a Hardware-in-the-Loop Simulation System for Aerial Guided Bombs," 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, 2008, pp. 1-5, doi: 10.1109/ISSCAA.2008.4776203.
  • [10] A. I. Hentati, L. Krichen, M. Fourati and L. C. Fourati, "Simulation Tools, Environments and Frameworks for UAV Systems Performance Analysis," 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 2018, pp. 1495-1500, doi: 10.1109/IWCMC.2018.8450505.
  • [11] Y. Günbatar, “Varying mass missile dynamics, guidance & control,” open.metu.edu.tr, 2007. https://open.metu.edu.tr/handle/11511/16983 (accessed Oct. 16, 2023). [12] A. Bittar, H. V. Figuereido, P. A. Guimaraes, and A. C. Mendes, “Guidance Software-In-the-Loop simulation using X-Plane and Simulink for UAVs,” 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, Accessed: Dec. 06, 2022. [Online]. Available: https://www.academia.edu/32831263/Guidance_Software_In_the_Loop_simulation_using_X_Plane_and_Simulink_for_UAVs
  • [13] Susanto, T., Setiawan, M. B., Jayadi, A., Rossi, F., Hamdhi, A., & Sembiring, J. P. (2021, October). Application of Unmanned Aircraft PID Control System for Roll, Pitch and Yaw Stability on Fixed Wings. In 2021 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE) (pp. 186-190). IEEE.
  • [14] Arindya, R. (2016, April). Penalaan Kendali PID untuk pengendali proses. In PROSIDING SEMINAR NASIONAL CENDEKIAWAN.
  • [15] Lim, S., Pak, C., Cho, C., & Bang, H. (2014). Development of Flight Control System for Gliding Guided Artillery Munition-Part I: Operational Concept and Navigation. Journal of the Korean Society for Aeronautical & Space Sciences, 42(3), 221-228.
  • [16] West, K., Al-Nimer, S., Goel, V. R., Yanof, J. H., Hanlon, A. T., Weunski, C. J., ... & Farivar, B. S. (2021). Three-dimensional holographic guidance, navigation, and control (3D-GNC) for endograft positioning in porcine aorta: feasibility comparison with 2-dimensional x-ray fluoroscopy. Journal of Endovascular Therapy, 28(5), 796-803.
  • [17] URL-1: STMicroelectronics STM32F407VG Microcontroller Documentation https://www.st.com/en/microcontrollers-microprocessors/stm32f407vg.html [Accessed: 12.03.2024]
  • [18] URL-2: Radiolink SE100 User Manual https://radiolink.com.cn/doce/UploadFile/ProductFile/SE100Manual.pdf [Accessed: 12.03.2024]
  • [19] URL-3: Waveshare 10 DOF IMU Sensor Documentation https://www.waveshare.com/wiki/10_DOF_IMU_Sensor_(D) [Accessed: 12.03.2024]
  • [20] URL-4: Dorji DRF1278DM Data Sheet http://www.dorji.com/docs/data/DRF1278DM.pdf [Accessed: 12.03.2024]
  • [21] M. Gün, “External configuration design and aerodynamic optimization of modular guided munitions,” open.metu.edu.tr, 2019. https://open.metu.edu.tr/handle/11511/44560
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gömülü Sistemler
Bölüm Makaleler
Yazarlar

Muhammed Alaçam 0009-0005-8163-7592

Osman Çiçek 0000-0002-2765-4165

Proje Numarası KÜ-ÖOP/2022-07
Erken Görünüm Tarihi 30 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 18 Ekim 2023
Kabul Tarihi 29 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: 2

Kaynak Göster

IEEE M. Alaçam ve O. Çiçek, “Design and Simulation of the Guidance and Control System for Gliding Munitions”, DÜMF MD, c. 15, sy. 2, ss. 285–291, 2024, doi: 10.24012/dumf.1378130.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456