Araştırma Makalesi
BibTex RIS Kaynak Göster

Birleşik Deprem Etkilerinin ve Ek Dışmerkezliğin Betonarme Binaların Davranışına Etkisi

Yıl 2024, Cilt: 15 Sayı: 4, 993 - 1002
https://doi.org/10.24012/dumf.1563505

Öz

Bu çalışmada birleşik deprem etkilerinin ve ek dışmerkezliğin betonarme binaların davranışına etkisi incelenmiştir. Çalışma kapsamında modellenen betonarme yapının beş zemin sınıfına (ZA, ZB, ZC, ZD ve ZE) göre X ve Y yönlerinde olmak üzere toplam 30 adet doğrusal olmayan statik itme analizleri yapılmıştır. Kolon ve kirişlerin doğrusal olmayan davranışları toplanmış plastik mafsal kabulüne göre, perde duvarların doğrusal olmayan davranışları ise yayılı plastik mafsal kabulüne göre yapılmıştır. Analizler sonucunda birleşik deprem etkileri ve ek dışmerkezlik dikkate alınarak her zemin sınıfı için kapasite eğrileri, her zemin sınıfı için X ve Y yönlerinde en düşük yük faktöründe oluşan plastik mafsal dağılımları, X ve Y yönlerinde ilk mafsalın oluştuğu yük faktörü ve maksimum yük faktörü değerleri elde edilmiştir. Analizler sonucunda zemin sınıfı ZA’dan ZE’ye doğru gidildikçe hem kapasite değerlerinde hem de yük faktörü değerlerinde azalmanın olduğu belirlenmiştir. Bununla birlikte, ek dışmerkezlik ve birleşik deprem etkileri dikkate alındığı zemin sınıfındaki değişime bağlı olarak plastik mafsal dağılımlarının yoğunlaştığı tespit edilmiştir. Sonuç olarak betonarme yapıların tasarımlarında ve performans değerlendirmelerinde zemin sınıflarına ilave olarak birleşik deprem etkilerinin ve ek dışmerkezliğin dikkate alınması gereken önemli parametreler olduğu tespit edilmiştir.

Kaynakça

  • [1] D. Dismukes, M. Kreger, and R. Tso, “Seismic load combinations and their effects on building performance,” Earthquake Engineering & Structural Dynamics, 49(1), pp.22-38, 2020.
  • [2] A. J. Kappos, M. Papadrakakis, I. Koutromanos, “Performance-Based seismic design of structures,” CRC Press, 2019.
  • [3] A. Askan, and E. Kalkan, “Improved seismic performance assessment of structures using combined seismic load cases” Journal of Structural Engineering, 144(3), 2018, 04017121.
  • [4] S. L. Kramer, “Geotechnical earthquake engineering,” Prentice Hall, 2021.
  • [5] A. K. Chopra, “Dynamics of structures: Theory and applications to earthquake engineering,” Pearson, 2017.
  • [6] J. P. Moehle., “Building performance assessment: Lessons from the past, challenges for the future,” Journal of Structural Engineering, 140(3), 2014, 04014007.
  • [7] J. H. Kuo, Y. T. Chen, and L. C. Hsu, “Effects of eccentricity on structural seismic response,” Engineering Structures, 214, 2020, 110408.
  • [8] J. Jankowski, “Structural analysis: Principles methods and applications,” Springer, 2019.
  • [9] M. H. El Naggar, and M. Elgawady, “Seismic performance of structures with eccentricities: A comprehensive study,” Earthquake Engineering and Structural Dynamics, 47(7), pp.1416-1436, 2018.
  • [10] J. Kozak, “Dynamic response of eccentric structures under seismic loads. Journal of Structural Engineering, 147(5), 2021, 04021052.
  • [11] Türkiye Bina Deprem Yönetmeliği, 2018
  • [12] G. Mucedero, D. Perrone, and R. Monteiro, “Nonlinear static characterisation of masonry-infilled RC building portfolios accounting for variability of infill properties,” Bulletin of Earthquake Engineering, 19(6), pp.2597-2641, 2021.
  • [13] G. Srinath, S. Swain, and K. Gopikrishna, “Seismic capacity estimation for composite multi-storeyed RC buildings,” Materials Today: Proceedings, 93, pp.362-369, 2023.
  • [14] R. Kurniawan, A. L. Budi, and S. H. Sourkan, “Pushover analysis of 10-floors reinforced concrete building (Case study: Mahkota Majolelo Sati Bautique Hotel),” In IOP Conference Series: Materials Science and Engineering, Vol. 1041, No. 1, p. 012003. IOP Publishing, 2021.
  • [15] B. Yön, and Y. Calayır, “Effects of confinement reinforcement and concrete strength on nonlinear behaviour of RC buildings,” Computers and Concrete: An International Journal, 14(3), pp.279-297, 2014.
  • [16] O. Onat, B. Yön, and Y. Calayır, “Seismic assessment of existing RC buildings before and after shear-wall retrofitting,” Gradevinar, 70(8), pp.703-712, 2018.
  • [17] M. E. Öncü, and M. Şahin Yön, “Assessment of nonlinear static and incremental dynamic analyses for RC structures, Computers and Concrete, 18(6), pp.1195-1211, 2016.
  • [18] K. K. Kuria, O. K. Kegyes-Brassai, “Nonlinear static analysis for seismic evaluation of existing RC Hospital Building,” Applied Sciences, 13(21), 2023, 11626.
  • [19] J. B. Mander, M. J. N, Priestley, R. Park, “Theoretical stress-strain model for confined concrete,” J Struct Eng, 114:1804–26, 1988.
  • [20] M. Menegotto, P. E. Pinto, “Method of Analysis for Cyclically Loaded RC. plane frames including changes in geometry and non-elastic behavior of elements under 106 combined normal force and bending. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, pp. 15-22, 1973.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Betonarme Yapılar
Bölüm Makaleler
Yazarlar

Gürkan Tam 0009-0003-9948-2141

Burak Yön 0000-0001-5155-6963

Erken Görünüm Tarihi 23 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 8 Ekim 2024
Kabul Tarihi 13 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: 4

Kaynak Göster

IEEE G. Tam ve B. Yön, “Birleşik Deprem Etkilerinin ve Ek Dışmerkezliğin Betonarme Binaların Davranışına Etkisi”, DÜMF MD, c. 15, sy. 4, ss. 993–1002, 2024, doi: 10.24012/dumf.1563505.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456