Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the melting and supercooling behavior of GO, GNP and hBN nanoparticle-doped sodium acetate trihydrate phase change material using the T-history method under different cooling conditions

Yıl 2025, Cilt: 16 Sayı: 1, 157 - 166
https://doi.org/10.24012/dumf.1578017

Öz

Sodium acetate trihydrate (SAT) is a preferred salt hydrate phase change material in thermal energy storage applications due to its high latent heat storage capacity. However, due to its supercooling behavior, it cannot give back the stored heat. In the study, one of the biggest disadvantages of SAT, the supercooling degrees, was determined. In order to improve the thermal performances of SAT, graphene oxide (GO), graphene nanoplatelets (GNP) and hexagonal boron nitride (hBN) nanoparticles were added at certain ratios. A total of 11 different samples were prepared as pure SAT, SAT/01GO, SAT/025GO, SAT/05GO, SAT/1GO, SAT/025GO/025hBN, SAT/025GO/075hBN, SAT/05hBN, SAT/025GO/025GNP, SAT/025GO/075GNP and SAT/05GNP. The effect of nanoparticles on the supercooling degree and melting temperatures of SAT was investigated. For this purpose, the T-history method was used in the study. In the T-history method, it is a very useful method for large-scale industrial applications since the behavior of PCMs in real conditions is determined. The temperatures of the samples were recorded by heating and cooling under certain conditions. The cooling process was applied under two different conditions as fast and slow cooling. Melting temperature ranges were obtained from the temperature data at the time of heating. The supercooling degrees of the samples were determined and compared from the temperature changes obtained during the fast and slow cooling process.

Kaynakça

  • [1] A. Sharma, V. Tyagi, C. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 2, pp. 318-345, 2009.
  • [2] M. Liu, W. Saman, F. Bruno, “Development of a novel refrigeration system for refrigerated trucks incorporating phase change material,” Applied Energy, vol. 92, pp. 336-342, 2012.
  • [3] B. Stutz, N. Le Pierres, F. Kuznik, K. Johannes, E. P. Del Barrio, J.P. Bedecarrats, S. Gibout, P. Marty, L. Zalewski, J. Soto, N. Mazet, R. Olives, J.J. Bezian, D.P. Minh, “Storage of thermal solar energy,” Comptes Rendus Physique, vol. 18, no. 7-8, pp. 401-414, 2017.
  • [4] W. Hua, X. Zhang, M. J. Muthoka, X. Han, “Preparation and performance analysis of modified sodium acetate trihydrate,” Materials, vol. 11, no. 6, pp. 1016, 2018.
  • [5] D. Zhou, C. Zhao, Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, vol. 92, pp. 593-605, 2012.
  • [6] G. Zhou, Y. Xiang, “Experimental investigations on stable supercooling performance of sodium acetate trihydrate PCM for thermal storage,” Solar Energy, vol. 155, pp. 1261-1272, 2017.
  • [7] Z. Yinping, J. Yi, “A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials,” Measurement Science and Technology, vol. 10, no. 3, pp. 201, 1999.
  • [8] J. M. Marín, B. Zalba, L. F. Cabeza, H. Mehling, “Determination of enthalpy–temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties,” Measurement science and technology, vol. 14, no. 2, pp. 184, 2003.
  • [9] P. Rolka, R. Kwidzinski, T. Przybylinski, A. Tomaszewski, “Thermal Characterization of Medium-Temperature Phase Change Materials (PCMs) for Thermal Energy Storage Using the T-History Method,” Materials, vol. 14, no. 23, pp. 7371, 2020.
  • [10] T. Xu, S. N. Gunasekara, J. N. Chiu, B. Palm, S. Sawalha, “Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests,” Applied Energy, vol. 261, pp. 114432, 2020.
  • [11] H. Hong, S. K. Kim, Y. Kim, “Accuracy improvement of T-history method for measuring heat of fusion of various materials,” International Journal of Refrigeration, vol. 27, no. 4, pp. 360-366, 2004.
  • [12] J. H. Peck, J. J. Kim, C. Kang, H. Hong, “A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method,” International Journal of Refrigeration, vol. 29, no. 7, pp. 1225-1232, 2006.
  • [13] P. K. V. Rao, B. Raghu Kumar, A. Saiteja, N. S. V. Srikar, V. Sreenivasulu, D. Adithya Prakash, “Experimental investigation of thermal stability of carbon nanotubes reinforced aluminum matrix using TGA-DSC analysis,” International Journal of Mechanical and Production Engineering Research and Development, vol. 8, no. 3, pp. 161-168, 2018.
  • [14] K. Nagano, K. Ogawa, T. Mochida, K. Hayashi, H. Ogoshi, “Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat,” Applied Thermal Engineering, vol. 24, no. 2-3, pp. 221-232, 2004.
  • [15] C. Liu, P. Hu, Z. Xu, X. Ma, Z. Rao, “Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage,” Thermochimica Acta, vol. 674, pp. 28-35, 2019.
  • [16] C. Wang, S. Wang, P. Liu, X. Cheng, Z. Wang, “Improvement of the Subcooling Problem of Sodium Acetate Trihydrate by a Combination of Stirring or Internal Electric Field and Nucleating Agent,” Journal of Thermal Science, vol. 33, no. 6, pp. 2235-2244, 2024.
  • [17] S. Kılıçkap Işık, “Optimizing thermal performance of sodium acetate trihydrate phase-change-materials through synergistic effects of binary graphene nanoadditives for prolonged hot beverage maintenance,” Case Studies in Thermal Engineering, vol. 62, pp. 105187, 2024.
  • [18] Grafen oksit, Nanografi, Türkiye, 2024. Available: https://nanografi.com/popular-products/graphene-oxide-2-5-layer-dia-4-5-m-sa-420-m2-gr?value=1
  • [19] Grafen nanoplatelets, Nanografi, Türkiye, 2024. Available: https://nanografi.com/graphene/graphene-nanoplatelet-purity-99-9-size-3-nm-s-a-800-m2-g-dia-1-5-m?value=1
  • [20] L. Wu, J. Li, H. Wang, Y. Zhang, S. Feng, Y. Guo, J. Zhao, X. Wang, L. Guo, “Experimental investigation on mechanism of latent heat reduction of sodium acetate trihydrate phase change materials,” Materials, vol. 13, no. 3, 584, 2020.
  • [21] S. Kılıçkap Işık, E. El, “Experimental investigation of distilled water production performance of conventional solar stills using CaCl2·6H2O phase change material reinforced with SrCl2·6H2O and graphene-based nanoparticles,” Case Studies in Thermal Engineering, vol. 62, pp. 105184, 2024.

GO, GNP ve hBN nanoparçacık katkılı sodyum asetat trihidrat faz değişim malzemesinin farklı soğutma koşulları altında T-history yöntemi kullanılarak erime ve süpercooling davranışının incelenmesi

Yıl 2025, Cilt: 16 Sayı: 1, 157 - 166
https://doi.org/10.24012/dumf.1578017

Öz

Sodyum asetat trihidrat (SAT), gizli ısı depolama kapasitesinin yüksek olması nedeniyle termal enerji depolama uygulamalarında tercih edilen tuz hidrat faz değişim malzemesidir. Fakat, aşırı soğuma (süpercooling) davranışı yüzünden depoladığı ısıyı geri verememektedir. Çalışmada, SAT’ın en büyük dezavantajlarından biri olan süpercooling dereceleri belirlenmiştir. SAT’ın termal performanslarını iyileştirmek için belirli oranlarda grafen oksit (GO), grafen nanoplatelets (GNP) ve hekzagonal bor nitrür (hBN) nanoparçacıkları ilave edilmiştir. Saf SAT, SAT/01GO, SAT/025GO, SAT/05GO, SAT/1GO, SAT/025GO/025hBN, SAT/025GO/075hBN, SAT/05hBN, SAT/025GO/025GNP, SAT/025GO/075GNP ve SAT/05GNP olmak üzere toplamda 11 farklı numune hazırlanmıştır. Nanoparçacıkların, SAT’ın süpercooling derecesine ve erime sıcaklıklarına etkisi incelenmiştir. Bu amaçla çalışmada T-history metodu kullanılmıştır. T-history yönteminde, FDM’lerin gerçek koşullardaki davranışları belirlendiğinden geniş ölçekli endüstriyel uygulamalar için oldukça faydalı bir yöntemdir. Numunelere, belirli koşullarda ısıtma ve soğutma işlemi uygulanarak sıcaklıkları kaydedilmiştir. Soğutma işlemi, hızlı ve yavaş soğutma şeklinde iki farklı koşulda uygulanmıştır. Isıtma anındaki sıcaklık verilerinden erime sıcaklık aralıkları elde edilmiştir. Hızlı ve yavaş soğutma işlemi sırasında elde edilen sıcaklık değişimlerinden numunelerin süpercooling dereceleri belirlenerek karşılaştırılmıştır.

Kaynakça

  • [1] A. Sharma, V. Tyagi, C. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 2, pp. 318-345, 2009.
  • [2] M. Liu, W. Saman, F. Bruno, “Development of a novel refrigeration system for refrigerated trucks incorporating phase change material,” Applied Energy, vol. 92, pp. 336-342, 2012.
  • [3] B. Stutz, N. Le Pierres, F. Kuznik, K. Johannes, E. P. Del Barrio, J.P. Bedecarrats, S. Gibout, P. Marty, L. Zalewski, J. Soto, N. Mazet, R. Olives, J.J. Bezian, D.P. Minh, “Storage of thermal solar energy,” Comptes Rendus Physique, vol. 18, no. 7-8, pp. 401-414, 2017.
  • [4] W. Hua, X. Zhang, M. J. Muthoka, X. Han, “Preparation and performance analysis of modified sodium acetate trihydrate,” Materials, vol. 11, no. 6, pp. 1016, 2018.
  • [5] D. Zhou, C. Zhao, Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, vol. 92, pp. 593-605, 2012.
  • [6] G. Zhou, Y. Xiang, “Experimental investigations on stable supercooling performance of sodium acetate trihydrate PCM for thermal storage,” Solar Energy, vol. 155, pp. 1261-1272, 2017.
  • [7] Z. Yinping, J. Yi, “A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials,” Measurement Science and Technology, vol. 10, no. 3, pp. 201, 1999.
  • [8] J. M. Marín, B. Zalba, L. F. Cabeza, H. Mehling, “Determination of enthalpy–temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties,” Measurement science and technology, vol. 14, no. 2, pp. 184, 2003.
  • [9] P. Rolka, R. Kwidzinski, T. Przybylinski, A. Tomaszewski, “Thermal Characterization of Medium-Temperature Phase Change Materials (PCMs) for Thermal Energy Storage Using the T-History Method,” Materials, vol. 14, no. 23, pp. 7371, 2020.
  • [10] T. Xu, S. N. Gunasekara, J. N. Chiu, B. Palm, S. Sawalha, “Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests,” Applied Energy, vol. 261, pp. 114432, 2020.
  • [11] H. Hong, S. K. Kim, Y. Kim, “Accuracy improvement of T-history method for measuring heat of fusion of various materials,” International Journal of Refrigeration, vol. 27, no. 4, pp. 360-366, 2004.
  • [12] J. H. Peck, J. J. Kim, C. Kang, H. Hong, “A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method,” International Journal of Refrigeration, vol. 29, no. 7, pp. 1225-1232, 2006.
  • [13] P. K. V. Rao, B. Raghu Kumar, A. Saiteja, N. S. V. Srikar, V. Sreenivasulu, D. Adithya Prakash, “Experimental investigation of thermal stability of carbon nanotubes reinforced aluminum matrix using TGA-DSC analysis,” International Journal of Mechanical and Production Engineering Research and Development, vol. 8, no. 3, pp. 161-168, 2018.
  • [14] K. Nagano, K. Ogawa, T. Mochida, K. Hayashi, H. Ogoshi, “Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat,” Applied Thermal Engineering, vol. 24, no. 2-3, pp. 221-232, 2004.
  • [15] C. Liu, P. Hu, Z. Xu, X. Ma, Z. Rao, “Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage,” Thermochimica Acta, vol. 674, pp. 28-35, 2019.
  • [16] C. Wang, S. Wang, P. Liu, X. Cheng, Z. Wang, “Improvement of the Subcooling Problem of Sodium Acetate Trihydrate by a Combination of Stirring or Internal Electric Field and Nucleating Agent,” Journal of Thermal Science, vol. 33, no. 6, pp. 2235-2244, 2024.
  • [17] S. Kılıçkap Işık, “Optimizing thermal performance of sodium acetate trihydrate phase-change-materials through synergistic effects of binary graphene nanoadditives for prolonged hot beverage maintenance,” Case Studies in Thermal Engineering, vol. 62, pp. 105187, 2024.
  • [18] Grafen oksit, Nanografi, Türkiye, 2024. Available: https://nanografi.com/popular-products/graphene-oxide-2-5-layer-dia-4-5-m-sa-420-m2-gr?value=1
  • [19] Grafen nanoplatelets, Nanografi, Türkiye, 2024. Available: https://nanografi.com/graphene/graphene-nanoplatelet-purity-99-9-size-3-nm-s-a-800-m2-g-dia-1-5-m?value=1
  • [20] L. Wu, J. Li, H. Wang, Y. Zhang, S. Feng, Y. Guo, J. Zhao, X. Wang, L. Guo, “Experimental investigation on mechanism of latent heat reduction of sodium acetate trihydrate phase change materials,” Materials, vol. 13, no. 3, 584, 2020.
  • [21] S. Kılıçkap Işık, E. El, “Experimental investigation of distilled water production performance of conventional solar stills using CaCl2·6H2O phase change material reinforced with SrCl2·6H2O and graphene-based nanoparticles,” Case Studies in Thermal Engineering, vol. 62, pp. 105184, 2024.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Makaleler
Yazarlar

Sinem Kılıçkap Işık 0000-0002-1044-5092

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 2 Kasım 2024
Kabul Tarihi 6 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 1

Kaynak Göster

IEEE S. Kılıçkap Işık, “GO, GNP ve hBN nanoparçacık katkılı sodyum asetat trihidrat faz değişim malzemesinin farklı soğutma koşulları altında T-history yöntemi kullanılarak erime ve süpercooling davranışının incelenmesi”, DÜMF MD, c. 16, sy. 1, ss. 157–166, 2025, doi: 10.24012/dumf.1578017.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456