Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THE EFFECT OF LATTİCE STRUCTURED FEMUR PLATES ON STRESS SHIELDING WITH FINITE ELEMENTS

Yıl 2025, Cilt: 16 Sayı: 1, 167 - 176
https://doi.org/10.24012/dumf.1588755

Öz

In recent years, the demand for lattice structures has risen to assure the long-term efficacy of implant design. Due to their high porosity, lattice structures diminish the elastic modulus of the implant and alleviate the stress shielding between the bone and the implant. The controlled mechanical features of the porous structure enhance load distribution and maintain the physiological loading capacity of the bone. This possesses significant potential for enhancing patient outcomes and decreasing medical costs. This work involved the production of a half-thickness porous plate to decrease the stress shielding in plates utilized for femur fracture therapy. The lower layer was built as solid to inhibit bone fusion with the lattice structure and facilitate the removal of the plate post-treatment, whilst the top layer of the plate was developed independently using Body Centered Cubic (BCC), Diamond, and Octet Truss (OT) cage structures. Subsequently, finite element analysis was employed to compare the acquired plates with the customarily utilized Solid Plate (KP). In the evaluations of deformation and stress values, lattice-structured plates exhibited less deformation and lower stress levels compared to KP. Among the lattice-structured plates, the Diamond-OT lattice-structured plate demonstrated superior performance.

Kaynakça

  • [1] Babhulkar, S., Trikha, V., Babhulkar, S., & Gavaskar, A. S., Current concepts in management of distal femur fractures. Injury, 55, 111357, (2024).
  • [2] Abdelmonem, A. H., Saber, A. Y., El Sagheir, M., & El-Malky, A., Evaluation of the results of minimally invasive plate osteosynthesis using a locking plate in the treatment of distal femur fractures. Cureus, 14(3), (2022).
  • [3] Chmielewska, A., & Dean, D., The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomaterialia, 173, 51-65, (2024).
  • [4] Safavi, S., Yu, Y., Robinson, D. L., Gray, H. A., Ackland, D. C., & Lee, P. V., Additively manufactured controlled porous orthopedic joint replacement designs to reduce bone stress shielding: a systematic review. Journal of orthopaedic surgery and research, 18(1), 42., (2023).
  • [5] Jafari Chashmi, M., Fathi, A., Shirzad, M., Jafari-Talookolaei, R. A., Bodaghi, M., & Rabiee, S. M., Design and analysis of porous functionally graded femoral prostheses with improved stress shielding. Designs, 4(2), 12., (2020).
  • [6] Savio, D., & Bagno, A., When the total hip replacement fails: A review on the stress-shielding effect. Processes, 10(3), 612., (2022).
  • [7] Ahirwar, H., Gupta, V. K., & Nanda, H. S., Finite element analysis of fixed bone plates over fractured femur model. Computer Methods in Biomechanics and Biomedical Engineering, 24(15), 1742-1751., (2021). [8] Pan, C., Han, Y., & Lu, J., Design and optimization of lattice structures: A review. Applied Sciences, 10(18), 6374., (2020).
  • [9] Wang, H., Wan, Y., Li, Q., Xia, Y., Liu, X., Liu, Z., & Li, X., Porous fusion cage design via integrated global-local topology optimization and biomechanical analysis of performance. Journal of the Mechanical Behavior of Biomedical Materials, 112, 103982., (2020).
  • [10] Cortis, G., Mileti, I., Nalli, F., Palermo, E., & Cortese, L., Additive manufacturing structural redesign of hip prostheses for stress-shielding reduction and improved functionality and safety. Mechanics of Materials, 165, 104173., (2022).
  • [11] Wang, X., Zhang, L., Song, B., Zhang, J., Fan, J., Zhang, Z., ... & Shi, Y., Anisotropic mechanical and mass-transport performance of Ti6Al4V plate-lattice scaffolds prepared by laser powder bed fusion. Acta Biomaterialia, 148, 374-388., (2022).
  • [12] Alkhatib, S. E., Tarlochan, F., Mehboob, H., Singh, R., Kadirgama, K., & Harun, W. S. B. W., Finite element study of functionally graded porous femoral stems incorporating body‐centered cubic structure. Artificial organs, 43(7), E152-E164., (2019).
  • [13] Cheng, C. K., Wang, X. H., Luan, Y. C., Zhang, N. Z., Liu, B. L., Ma, X. Y., & Nie, M. D., Challenges of pre-clinical testing in orthopedic implant development. Medical Engineering & Physics, 72, 49-54., (2019).
  • [14] Yan, L., Lim, J. L., Lee, J. W., Tia, C. S. H., O’Neill, G. K., & Chong, D. Y., Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation. Medical & biological engineering & computing, 58, 921-931., (2020).
  • [15] Naidubabu, Y., Mohana Rao, G., Rajasekhar, K., & Ratna Sunil, B., Design and simulation of polymethyl methacrylate-titanium composite bone fixing plates using finite element analysis: optimizing the composition to minimize the stress shielding effect. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(23), 4402-4412., (2017).
  • [16] Jia, D., Li, F., Zhang, C., Liu, K., & Zhang, Y., Design and simulation analysis of Lattice bone plate based on finite element method. Mechanics of Advanced Materials and Structures, 28(13), 1311-1321., (2021).
  • [17] Alkentar, R., & Mankovits, T., Investigation of the performance of Ti6Al4V lattice structures designed for biomedical implants using the finite element method. Materials, 15(18), 6335., (2022).
  • [18] Chmielewska, A., & Dean, D., The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomaterialia, 173, 51-65., (2024).
  • [19] Maharaj, P. S., Maheswaran, R., & Vasanthanathan, A., Numerical analysis of fractured femur bone with prosthetic bone plates. Procedia Engineering, 64, 1242-1251., (2013).
  • [20] Sadiq, K., Sim, M. A., Black, R. A., & Stack, M. M., Mapping the micro-abrasion mechanisms of CoCrMo: some thoughts on varying ceramic counterface diameter on transition boundaries in vitro. Lubricants, 8(7), 71., (2020).
  • [21] Eldesouky, I., Abdelaal, O., & El-Hofy, H., Femoral hip stem with additively manufactured cellular structures. In 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES) (pp. 181-186). IEEE., (2014, December).
  • [22] Asgharpour, Z., Fressmann, D., Schuller, E., & Peldschus, S., Implementation of a Strain Rate Dependent Human Bone Model. In 8th European LS-DYNA Users Conference, Strasbourg., (2011).
  • [23] Bordin, A., Ghiotti, A., Bruschi, S., Facchini, L., & Bucciotti, F., Machinability characteristics of wrought and EBM CoCrMo alloys. Procedia Cirp, 14, 89-94., (2014).
  • [24] Fazira, M. F., Mohammad, M., Roslani, N., Saleh, M. H., & Ahmad, M. A. Low strain rate upset forging of preformed CoCrMo powder alloy for load bearing application: A review. Procedia Engineering, 68, 405-410., (2013).
  • [25] Ali, M., Sajjad, U., Hussain, I., Abbas, N., Ali, H. M., Yan, W. M., & Wang, C. C., On the assessment of the mechanical properties of additively manufactured lattice structures. Engineering Analysis with Boundary Elements, 142, 93-116., (2022).
  • [26] Bandyopadhyay, A., Mitra, I., Avila, J. D., Upadhyayula, M., & Bose, S., Porous metal implants: processing, properties, and challenges. International Journal of Extreme Manufacturing, 5(3), 032014., (2023).
  • [27] Khiavi, S. G., Sadeghi, B. M., & Divandari, M. Effect of topology on strength and energy absorption of PA12 non-auxetic strut-based lattice structures. journal of materials research and technology, 21, 1595-1613., (2022).
  • [28] Ye, J., Sun, Z., Ding, Y., Zheng, Y., & Zhou, F., The deformation mechanism, energy absorption behavior and optimal design of vertical-reinforced lattices. Thin-Walled Structures, 190, 110988., (2023).
  • [29] Vilardell, A. M., Takezawa, A., Du Plessis, A., Takata, N., Krakhmalev, P., Kobashi, M., ... & Yadroitsev, I. Topology optimization and characterization of Ti6Al4V ELI cellular lattice structures by laser powder bed fusion for biomedical applications. Materials Science and Engineering: A, 766, 138330., (2019).
  • [30] Alkentar, R., Kladovasilakis, N., Tzetzis, D., & Mankovits, T., Effects of pore size parameters of titanium additively manufactured lattice structures on the osseointegration process in orthopedic applications: a comprehensive review. Crystals, 13(1), 113., (2023).

KAFES YAPILI FEMUR PLAKLARIN STRES KALKANI ÜZERİNDEKİ ETKİSİNİN SONLU ELEMANLAR İLE İNCELENMESİ

Yıl 2025, Cilt: 16 Sayı: 1, 167 - 176
https://doi.org/10.24012/dumf.1588755

Öz

İmplant tasarımında uzun vadeli performansın sağlanabilmesi için son yıllarda kafes yapılara olan rağbet artmaktadır. Kafes yapılar sahip olduğu yüksek gözeneklilik özelliği sayesinde implantın elastisite modülünü düşürerek kemik ile implant arasında oluşan stres kalkanının azalmasını sağlar. Gözenekli yapı kontrollü mekanik özellikleri sayesinde, yük dağılımını optimize eder ve kemiğin fizyolojik yüklenme kapasitesini korur. Bu durum hem hasta sonuçlarını iyileştirme hem de sağlık hizmetleri maliyetlerini düşürme açısından büyük bir potansiyele sahiptir. Bu çalışmada da femur kırıklarının tedavisinde kullanılan plaklardaki stres kalkanını azaltmak için plağın yarı kalınlığı gözenekli olarak üretildi. Kemiğin kafes yapıya kaynaşmasını önlemek ve tedavi sonrası plağın rahatlıkla çıkarılması için alt katmanı katı olarak oluşturuldu, plağın üst katmanı ise Gövde Merkezli Kübik (BCC), Elmas ve Octet Truss (OT) kafes yapıları ile ayrı ayrı tasarlandı. Daha sonra elde edilen plakların geleneksel olarak kullanılan Katı Plak (KP) ile karşılaştırılması için sonlu eleman analizi uygulandı. Deformasyon ve gerilme değerlerinin incelendiği analizlerde kafes yapılı plaklar KP’a göre daha az deforme olarak daha düşük gerilme değerlerine sahip oldu. Kafes yapılı plaklar arasında ise Elmas-OT kafes yapılı plağın en iyi performansı sergilediği ortaya çıktı.

Kaynakça

  • [1] Babhulkar, S., Trikha, V., Babhulkar, S., & Gavaskar, A. S., Current concepts in management of distal femur fractures. Injury, 55, 111357, (2024).
  • [2] Abdelmonem, A. H., Saber, A. Y., El Sagheir, M., & El-Malky, A., Evaluation of the results of minimally invasive plate osteosynthesis using a locking plate in the treatment of distal femur fractures. Cureus, 14(3), (2022).
  • [3] Chmielewska, A., & Dean, D., The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomaterialia, 173, 51-65, (2024).
  • [4] Safavi, S., Yu, Y., Robinson, D. L., Gray, H. A., Ackland, D. C., & Lee, P. V., Additively manufactured controlled porous orthopedic joint replacement designs to reduce bone stress shielding: a systematic review. Journal of orthopaedic surgery and research, 18(1), 42., (2023).
  • [5] Jafari Chashmi, M., Fathi, A., Shirzad, M., Jafari-Talookolaei, R. A., Bodaghi, M., & Rabiee, S. M., Design and analysis of porous functionally graded femoral prostheses with improved stress shielding. Designs, 4(2), 12., (2020).
  • [6] Savio, D., & Bagno, A., When the total hip replacement fails: A review on the stress-shielding effect. Processes, 10(3), 612., (2022).
  • [7] Ahirwar, H., Gupta, V. K., & Nanda, H. S., Finite element analysis of fixed bone plates over fractured femur model. Computer Methods in Biomechanics and Biomedical Engineering, 24(15), 1742-1751., (2021). [8] Pan, C., Han, Y., & Lu, J., Design and optimization of lattice structures: A review. Applied Sciences, 10(18), 6374., (2020).
  • [9] Wang, H., Wan, Y., Li, Q., Xia, Y., Liu, X., Liu, Z., & Li, X., Porous fusion cage design via integrated global-local topology optimization and biomechanical analysis of performance. Journal of the Mechanical Behavior of Biomedical Materials, 112, 103982., (2020).
  • [10] Cortis, G., Mileti, I., Nalli, F., Palermo, E., & Cortese, L., Additive manufacturing structural redesign of hip prostheses for stress-shielding reduction and improved functionality and safety. Mechanics of Materials, 165, 104173., (2022).
  • [11] Wang, X., Zhang, L., Song, B., Zhang, J., Fan, J., Zhang, Z., ... & Shi, Y., Anisotropic mechanical and mass-transport performance of Ti6Al4V plate-lattice scaffolds prepared by laser powder bed fusion. Acta Biomaterialia, 148, 374-388., (2022).
  • [12] Alkhatib, S. E., Tarlochan, F., Mehboob, H., Singh, R., Kadirgama, K., & Harun, W. S. B. W., Finite element study of functionally graded porous femoral stems incorporating body‐centered cubic structure. Artificial organs, 43(7), E152-E164., (2019).
  • [13] Cheng, C. K., Wang, X. H., Luan, Y. C., Zhang, N. Z., Liu, B. L., Ma, X. Y., & Nie, M. D., Challenges of pre-clinical testing in orthopedic implant development. Medical Engineering & Physics, 72, 49-54., (2019).
  • [14] Yan, L., Lim, J. L., Lee, J. W., Tia, C. S. H., O’Neill, G. K., & Chong, D. Y., Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation. Medical & biological engineering & computing, 58, 921-931., (2020).
  • [15] Naidubabu, Y., Mohana Rao, G., Rajasekhar, K., & Ratna Sunil, B., Design and simulation of polymethyl methacrylate-titanium composite bone fixing plates using finite element analysis: optimizing the composition to minimize the stress shielding effect. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(23), 4402-4412., (2017).
  • [16] Jia, D., Li, F., Zhang, C., Liu, K., & Zhang, Y., Design and simulation analysis of Lattice bone plate based on finite element method. Mechanics of Advanced Materials and Structures, 28(13), 1311-1321., (2021).
  • [17] Alkentar, R., & Mankovits, T., Investigation of the performance of Ti6Al4V lattice structures designed for biomedical implants using the finite element method. Materials, 15(18), 6335., (2022).
  • [18] Chmielewska, A., & Dean, D., The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomaterialia, 173, 51-65., (2024).
  • [19] Maharaj, P. S., Maheswaran, R., & Vasanthanathan, A., Numerical analysis of fractured femur bone with prosthetic bone plates. Procedia Engineering, 64, 1242-1251., (2013).
  • [20] Sadiq, K., Sim, M. A., Black, R. A., & Stack, M. M., Mapping the micro-abrasion mechanisms of CoCrMo: some thoughts on varying ceramic counterface diameter on transition boundaries in vitro. Lubricants, 8(7), 71., (2020).
  • [21] Eldesouky, I., Abdelaal, O., & El-Hofy, H., Femoral hip stem with additively manufactured cellular structures. In 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES) (pp. 181-186). IEEE., (2014, December).
  • [22] Asgharpour, Z., Fressmann, D., Schuller, E., & Peldschus, S., Implementation of a Strain Rate Dependent Human Bone Model. In 8th European LS-DYNA Users Conference, Strasbourg., (2011).
  • [23] Bordin, A., Ghiotti, A., Bruschi, S., Facchini, L., & Bucciotti, F., Machinability characteristics of wrought and EBM CoCrMo alloys. Procedia Cirp, 14, 89-94., (2014).
  • [24] Fazira, M. F., Mohammad, M., Roslani, N., Saleh, M. H., & Ahmad, M. A. Low strain rate upset forging of preformed CoCrMo powder alloy for load bearing application: A review. Procedia Engineering, 68, 405-410., (2013).
  • [25] Ali, M., Sajjad, U., Hussain, I., Abbas, N., Ali, H. M., Yan, W. M., & Wang, C. C., On the assessment of the mechanical properties of additively manufactured lattice structures. Engineering Analysis with Boundary Elements, 142, 93-116., (2022).
  • [26] Bandyopadhyay, A., Mitra, I., Avila, J. D., Upadhyayula, M., & Bose, S., Porous metal implants: processing, properties, and challenges. International Journal of Extreme Manufacturing, 5(3), 032014., (2023).
  • [27] Khiavi, S. G., Sadeghi, B. M., & Divandari, M. Effect of topology on strength and energy absorption of PA12 non-auxetic strut-based lattice structures. journal of materials research and technology, 21, 1595-1613., (2022).
  • [28] Ye, J., Sun, Z., Ding, Y., Zheng, Y., & Zhou, F., The deformation mechanism, energy absorption behavior and optimal design of vertical-reinforced lattices. Thin-Walled Structures, 190, 110988., (2023).
  • [29] Vilardell, A. M., Takezawa, A., Du Plessis, A., Takata, N., Krakhmalev, P., Kobashi, M., ... & Yadroitsev, I. Topology optimization and characterization of Ti6Al4V ELI cellular lattice structures by laser powder bed fusion for biomedical applications. Materials Science and Engineering: A, 766, 138330., (2019).
  • [30] Alkentar, R., Kladovasilakis, N., Tzetzis, D., & Mankovits, T., Effects of pore size parameters of titanium additively manufactured lattice structures on the osseointegration process in orthopedic applications: a comprehensive review. Crystals, 13(1), 113., (2023).
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomekanik
Bölüm Makaleler
Yazarlar

Ömer Faruk Uzunyol 0000-0002-8313-8747

Erkan Bahçe 0000-0001-5389-5571

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 25 Kasım 2024
Kabul Tarihi 10 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 1

Kaynak Göster

IEEE Ö. F. Uzunyol ve E. Bahçe, “KAFES YAPILI FEMUR PLAKLARIN STRES KALKANI ÜZERİNDEKİ ETKİSİNİN SONLU ELEMANLAR İLE İNCELENMESİ”, DÜMF MD, c. 16, sy. 1, ss. 167–176, 2025, doi: 10.24012/dumf.1588755.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456