Araştırma Makalesi
BibTex RIS Kaynak Göster

Karbon fiber kaplamalı tpms kafes yapılarının basma testi analizi

Yıl 2025, Cilt: 16 Sayı: 1, 177 - 184
https://doi.org/10.24012/dumf.1616592

Öz

Eklemeli imalat, karmaşık geometrilere sahip hafif ve yüksek performanslı yapılar üretme imkânı sunan yenilikçi bir üretim teknolojisidir. Bu teknolojinin öne çıkan uygulamalarından biri olan Triply Periodic Minimal Surface (TPMS) yapılar, düşük yoğunluk, yüksek yüzey alanı, enerji emilimi ve mekanik dayanım gibi avantajlar sağlamaktadır. Ancak, eklemeli imalatla üretilen TPMS yapılarının mekanik dayanımı, uygulama gereksinimlerini karşılamakta yetersiz kalabilmektedir. Bu bağlamda karbon fiber kaplama, TPMS yapılarının mekanik dayanımını ve sertliğini artırarak yük taşıma kapasitesini iyileştiren etkili bir çözüm olarak öne çıkmaktadır.Bu çalışma, karbon fiber kaplamalı TPMS kafes yapılarının mekanik performansını incelemiş ve farklı geometrik tasarımların enerji emme kapasitesi, yük taşıma dayanımı ve elastik modül üzerindeki etkilerini değerlendirmiştir. Octet geometrisi, 1250 J enerji emme kapasitesi ve 500 N maksimum yük taşıma dayanımı ile en yüksek performansı sergilerken, elastik modül açısından diğer geometrilere kıyasla daha düşük bir değer göstermiştir. HMK (1100 J, 450 N), YMK (950 J, 400 N) ve Elmas (850 J, 350 N) geometrileri ise dengeli performanslarıyla farklı uygulama alanları için uygun seçenekler sunmaktadır.Sonuç olarak, karbon fiber kaplama, TPMS yapılarının mekanik özelliklerini optimize ederek havacılık, otomotiv, biyomedikal ve enerji gibi sektörlerde hafiflik, dayanıklılık ve çok işlevlilik gerektiren uygulamalarda geniş bir kullanım potansiyeli sunmaktadır.

Etik Beyan

Hazırlanan makalede etik kurul izni alınmasına gerek yoktur ve herhangi bir kişi/kurum ile çıkar çatışması bulunmamaktadır.

Kaynakça

  • [1] Yin, H. T., Lang, M. M., & Zhao, Y. N. (2014). Research on carbon fiber composite materials and F1 racing automobile design. Applied Mechanics and Materials, 454, 263-267.
  • [2] Yaqoob, K., Amjad, I., Munir Awan, M. A., Liaqat, U., Zahoor, M., & Kashif, M. (2023). Novel method for the production of titanium foams to reduce stress shielding in implants. ACS omega, 8(2), 1876-1884.
  • [3] Wang, Y., Zeng, H., Nie, B., Jia, F., & Gao, Q. (2024). Energy absorption characteristics of carbon fiber reinforced plastic/aluminum hybrid materials double arrow-head auxetic structure. Journal of Sandwich Structures & Materials, 26(4), 490-506.
  • [4] Pyl, L., Kalteremidou, K. A., & Van Hemelrijck, D. (2018). Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites. Polymer Testing, 71, 318-328.
  • [5] Vijayanandh, R., Venkatesan, K., Ramesh, M., Raj Kumar, G., & Senthil Kumar, M. (2019). Optimization of orientation of carbon fiber reinforced polymer based on structural analysis. International Journal of Scientific & Technology Research, 8(11), 3020-3029.
  • [6] Di Caprio, F., Acanfora, V., Franchitti, S., Sellitto, A., & Riccio, A. (2019). Hybrid metal/composite lattice structures: Design for additive manufacturing. Aerospace, 6(6), 71.
  • [7] Ermurat, M., & Gebel, M. E. (2021). Kompozit eklemeli imalat için polimer matrisli sürekli fiber takviyeli kompozit parça üretilebilirliğinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 57-68.
  • [8] Sezer, H. K., Eren, O., Börklü, H. R., & Özdemir, V. (2019). Karbon fiber takviyeli polimer kompozitlerin ergiyik biriktirme yöntemi ile eklemeli imalatı: fiber oranı ve yazdırma parametrelerinin mekanik özelliklere etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(2), 663-674.
  • [9] SEZER, H., Eren, O., BÖRKLÜ, H., & Özdemir, V. (2019). Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modelling: effect of fiber content and process parameters on mechanical properties. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(2).
  • [10] Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., ... & Ozcan, S. (2014). Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology, 105, 144-150.
  • [11] Wang, N., Meenashisundaram, G. K., Chang, S., Fuh, J. Y. H., Dheen, S. T., & Kumar, A. S. (2022). A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. Journal of the Mechanical Behavior of Biomedical Materials, 129, 105151.
  • [12] Tang, W., Zhou, H., Zeng, Y., Yan, M., Jiang, C., Yang, P., ... & Zhao, Y. (2023). Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp. International Journal of Heat and Mass Transfer, 201, 123642.
  • [13] Rico-Baeza, G., Pérez-Soto, G. I., Morales-Hernández, L. A., Cuan-Urquizo, E., & Camarillo-Gómez, K. A. (2023). Additively manufactured foot insoles using body-centered cubic (BCC) and triply periodic minimal surface (TPMS) cellular structures. Applied Sciences, 13(23), 12665.
  • [14] Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials & Design, 182, 108021.
  • [15] Saleh, M., Anwar, S., Al-Ahmari, A. M., & Alfaify, A. (2022). Compression performance and failure analysis of 3D-printed carbon fiber/PLA composite TPMS lattice structures. Polymers, 14(21), 4595.
  • [16] Tang, D., Gao, T., Chen, H., Tian, M., He, M., & Xu, S. (2024). Structure optimization and heat dissipation performance of additive-manufactured diamond/SiC and carbon fiber/SiC TPMS structural panel. Journal of Manufacturing Processes, 127, 589-598.
  • [17] Lyu, Y., Gong, T., He, T., Wang, H., Zhuravkov, M., & Xia, Y. (2024). Study on the Energy Absorption Performance of Triply Periodic Minimal Surface (TPMS) Structures at Different Load-Bearing Angles. Biomimetics, 9(7), 392.
  • [18] Alagha, A. N., Sheikh-Ahmad, J. Y., Almesmari, A., Jarrar, F., Almaskari, F., & Abu Al-Rub, R. K. (2024). Mechanical Behavior and Energy Absorption of TPMS Diamond Structures and Hybrid SC-FCC-BCC Plate-Lattices. Journal of Engineering Mechanics, 150(12), 04024088.
  • [19] Disayanan, D., Buntornvorapan, P., Sukprasertchai, T., & Uthaisangsuk, V. (2024). Improving energy absorption and failure characteristic of additively manufactured lattice structures using hollow and curving techniques. Composite Structures, 337, 118067.
  • [20] Mu, Y., Jin, Y., Ji, H., Luo, J., Li, G., Xu, M., ... & Du, J. (2024). Mechanical performance of interpenetrating phase composites with multi-sheet lattice structures. International Journal of Mechanical Sciences, 276, 109369.
  • [21] Peng, C., Tran, P., & Mouritz, A. P. (2022). Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Composite Structures, 300, 116167.
  • [22] Ormiston, S., & Srinivas Sundarram, S. (2024). Fiberglass‐reinforced triply periodic minimal surfaces (TPMS) lattice structures for energy absorption applications. Polymer Composites, 45(1), 523-534.
  • [23] Tang, D., Gao, T., Chen, H., Tian, M., He, M., & Xu, S. (2024). Structure optimization and heat dissipation performance of additive-manufactured diamond/SiC and carbon fiber/SiC TPMS structural panel. Journal of Manufacturing Processes, 127, 589-598.
  • [24] Peng, C., Tran, P., & Mouritz, A. P. (2022). Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Composite Structures, 300, 116167.
  • [25] Poddar, P., Olles, M., & Cormier, D. (2022). Mechanical response of carbon composite octet truss structures produced via axial lattice extrusion. Polymers, 14(17), 3553.
  • [26] Lazar, P. J. L., Subramanian, J., Natarajan, E., Markandan, K., & Ramesh, S. (2023). Anisotropic structure-property relations of FDM printed short glass fiber reinforced polyamide TPMS structures under quasi-static compression. Journal of Materials Research and Technology, 24, 9562-9579.
  • [27] Saleh, M., Anwar, S., Al-Ahmari, A. M., & AlFaify, A. Y. (2023). Prediction of mechanical properties for carbon fiber/PLA composite lattice structures using mathematical and ANFIS models. Polymers, 15(7), 1720.
  • [28] Leiffer, J. J. (2022). Behavior of 3D Printed Polymeric Triply Periodic Minimal Surface (TPMS) Cellular Structures Under Low Velocity Impact Loads.
  • [29] Akbay, Ö. C., Bahce, E., & Ölmez, C. (2022). Investigation of Mechanical Behavior of Scaffolding Structures Produced Using CoCr Alloy by Selective Laser Melting Method. ICONTECH INTERNATIONAL JOURNAL, 6(2), 18-26.
  • [30] Akbay, Ö. C., & Bahçe, E. (2024). Investigation of mechanical performance of hybrid design porous structures manufactured from CoCr Alloy. Progress in Additive Manufacturing, 1-16.
  • [31] Stepinac, L. (2024). Characterisation and modelling of additively manufactured polymeric tpms lattices for structural application (Doctoral dissertation, University of Zagreb. Faculty of Civil Engineering).
  • [32] Sengsri, P., Fu, H., & Kaewunruen, S. (2022). Mechanical properties and energy-absorption capability of a 3D-printed TPMS sandwich lattice model for meta-functional composite bridge bearing applications. Journal of Composites Science, 6(3), 71.

Compression test analysis of carbon fiber coated tpms lattice structures

Yıl 2025, Cilt: 16 Sayı: 1, 177 - 184
https://doi.org/10.24012/dumf.1616592

Öz

Additive manufacturing is an innovative production technology that enables the creation of lightweight and high-performance structures with complex geometries. One of the prominent applications of this technology is Triply Periodic Minimal Surface (TPMS) structures, which offer advantages such as low density, high surface area, energy absorption, and mechanical strength. However, the mechanical strength of TPMS structures produced by additive manufacturing may fall short of meeting application requirements. In this context, carbon fiber coating emerges as an effective solution to enhance the mechanical strength and stiffness of TPMS structures, thereby improving their load-bearing capacity. This study examined the mechanical performance of carbon fiber-coated TPMS lattice structures and evaluated the effects of different geometric designs on energy absorption capacity, load-bearing strength, and elastic modulus. The Octet geometry demonstrated the highest performance with an energy absorption capacity of 1250 J and a maximum load-bearing strength of 500 N, while showing a lower value in terms of elastic modulus compared to other geometries. HMK (1100 J, 450 N), YMK (950 J, 400 N), and Diamond (850 J, 350 N) geometries, on the other hand, offered balanced performances, making them suitable options for various application areas. In conclusion, carbon fiber coating optimizes the mechanical properties of TPMS structures, offering significant potential for use in industries such as aerospace, automotive, biomedical, and energy, where lightweight, durability, and multifunctionality are required.

Kaynakça

  • [1] Yin, H. T., Lang, M. M., & Zhao, Y. N. (2014). Research on carbon fiber composite materials and F1 racing automobile design. Applied Mechanics and Materials, 454, 263-267.
  • [2] Yaqoob, K., Amjad, I., Munir Awan, M. A., Liaqat, U., Zahoor, M., & Kashif, M. (2023). Novel method for the production of titanium foams to reduce stress shielding in implants. ACS omega, 8(2), 1876-1884.
  • [3] Wang, Y., Zeng, H., Nie, B., Jia, F., & Gao, Q. (2024). Energy absorption characteristics of carbon fiber reinforced plastic/aluminum hybrid materials double arrow-head auxetic structure. Journal of Sandwich Structures & Materials, 26(4), 490-506.
  • [4] Pyl, L., Kalteremidou, K. A., & Van Hemelrijck, D. (2018). Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites. Polymer Testing, 71, 318-328.
  • [5] Vijayanandh, R., Venkatesan, K., Ramesh, M., Raj Kumar, G., & Senthil Kumar, M. (2019). Optimization of orientation of carbon fiber reinforced polymer based on structural analysis. International Journal of Scientific & Technology Research, 8(11), 3020-3029.
  • [6] Di Caprio, F., Acanfora, V., Franchitti, S., Sellitto, A., & Riccio, A. (2019). Hybrid metal/composite lattice structures: Design for additive manufacturing. Aerospace, 6(6), 71.
  • [7] Ermurat, M., & Gebel, M. E. (2021). Kompozit eklemeli imalat için polimer matrisli sürekli fiber takviyeli kompozit parça üretilebilirliğinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 57-68.
  • [8] Sezer, H. K., Eren, O., Börklü, H. R., & Özdemir, V. (2019). Karbon fiber takviyeli polimer kompozitlerin ergiyik biriktirme yöntemi ile eklemeli imalatı: fiber oranı ve yazdırma parametrelerinin mekanik özelliklere etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(2), 663-674.
  • [9] SEZER, H., Eren, O., BÖRKLÜ, H., & Özdemir, V. (2019). Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modelling: effect of fiber content and process parameters on mechanical properties. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(2).
  • [10] Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., ... & Ozcan, S. (2014). Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology, 105, 144-150.
  • [11] Wang, N., Meenashisundaram, G. K., Chang, S., Fuh, J. Y. H., Dheen, S. T., & Kumar, A. S. (2022). A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. Journal of the Mechanical Behavior of Biomedical Materials, 129, 105151.
  • [12] Tang, W., Zhou, H., Zeng, Y., Yan, M., Jiang, C., Yang, P., ... & Zhao, Y. (2023). Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp. International Journal of Heat and Mass Transfer, 201, 123642.
  • [13] Rico-Baeza, G., Pérez-Soto, G. I., Morales-Hernández, L. A., Cuan-Urquizo, E., & Camarillo-Gómez, K. A. (2023). Additively manufactured foot insoles using body-centered cubic (BCC) and triply periodic minimal surface (TPMS) cellular structures. Applied Sciences, 13(23), 12665.
  • [14] Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials & Design, 182, 108021.
  • [15] Saleh, M., Anwar, S., Al-Ahmari, A. M., & Alfaify, A. (2022). Compression performance and failure analysis of 3D-printed carbon fiber/PLA composite TPMS lattice structures. Polymers, 14(21), 4595.
  • [16] Tang, D., Gao, T., Chen, H., Tian, M., He, M., & Xu, S. (2024). Structure optimization and heat dissipation performance of additive-manufactured diamond/SiC and carbon fiber/SiC TPMS structural panel. Journal of Manufacturing Processes, 127, 589-598.
  • [17] Lyu, Y., Gong, T., He, T., Wang, H., Zhuravkov, M., & Xia, Y. (2024). Study on the Energy Absorption Performance of Triply Periodic Minimal Surface (TPMS) Structures at Different Load-Bearing Angles. Biomimetics, 9(7), 392.
  • [18] Alagha, A. N., Sheikh-Ahmad, J. Y., Almesmari, A., Jarrar, F., Almaskari, F., & Abu Al-Rub, R. K. (2024). Mechanical Behavior and Energy Absorption of TPMS Diamond Structures and Hybrid SC-FCC-BCC Plate-Lattices. Journal of Engineering Mechanics, 150(12), 04024088.
  • [19] Disayanan, D., Buntornvorapan, P., Sukprasertchai, T., & Uthaisangsuk, V. (2024). Improving energy absorption and failure characteristic of additively manufactured lattice structures using hollow and curving techniques. Composite Structures, 337, 118067.
  • [20] Mu, Y., Jin, Y., Ji, H., Luo, J., Li, G., Xu, M., ... & Du, J. (2024). Mechanical performance of interpenetrating phase composites with multi-sheet lattice structures. International Journal of Mechanical Sciences, 276, 109369.
  • [21] Peng, C., Tran, P., & Mouritz, A. P. (2022). Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Composite Structures, 300, 116167.
  • [22] Ormiston, S., & Srinivas Sundarram, S. (2024). Fiberglass‐reinforced triply periodic minimal surfaces (TPMS) lattice structures for energy absorption applications. Polymer Composites, 45(1), 523-534.
  • [23] Tang, D., Gao, T., Chen, H., Tian, M., He, M., & Xu, S. (2024). Structure optimization and heat dissipation performance of additive-manufactured diamond/SiC and carbon fiber/SiC TPMS structural panel. Journal of Manufacturing Processes, 127, 589-598.
  • [24] Peng, C., Tran, P., & Mouritz, A. P. (2022). Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Composite Structures, 300, 116167.
  • [25] Poddar, P., Olles, M., & Cormier, D. (2022). Mechanical response of carbon composite octet truss structures produced via axial lattice extrusion. Polymers, 14(17), 3553.
  • [26] Lazar, P. J. L., Subramanian, J., Natarajan, E., Markandan, K., & Ramesh, S. (2023). Anisotropic structure-property relations of FDM printed short glass fiber reinforced polyamide TPMS structures under quasi-static compression. Journal of Materials Research and Technology, 24, 9562-9579.
  • [27] Saleh, M., Anwar, S., Al-Ahmari, A. M., & AlFaify, A. Y. (2023). Prediction of mechanical properties for carbon fiber/PLA composite lattice structures using mathematical and ANFIS models. Polymers, 15(7), 1720.
  • [28] Leiffer, J. J. (2022). Behavior of 3D Printed Polymeric Triply Periodic Minimal Surface (TPMS) Cellular Structures Under Low Velocity Impact Loads.
  • [29] Akbay, Ö. C., Bahce, E., & Ölmez, C. (2022). Investigation of Mechanical Behavior of Scaffolding Structures Produced Using CoCr Alloy by Selective Laser Melting Method. ICONTECH INTERNATIONAL JOURNAL, 6(2), 18-26.
  • [30] Akbay, Ö. C., & Bahçe, E. (2024). Investigation of mechanical performance of hybrid design porous structures manufactured from CoCr Alloy. Progress in Additive Manufacturing, 1-16.
  • [31] Stepinac, L. (2024). Characterisation and modelling of additively manufactured polymeric tpms lattices for structural application (Doctoral dissertation, University of Zagreb. Faculty of Civil Engineering).
  • [32] Sengsri, P., Fu, H., & Kaewunruen, S. (2022). Mechanical properties and energy-absorption capability of a 3D-printed TPMS sandwich lattice model for meta-functional composite bridge bearing applications. Journal of Composites Science, 6(3), 71.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları
Bölüm Makaleler
Yazarlar

Özgün Ceren Akbay 0000-0002-7839-2484

Burak Özdemir 0000-0002-5870-0398

Erkan Bahçe 0000-0001-5389-5571

Mehmet Akif Oymak 0000-0001-8251-3106

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 9 Ocak 2025
Kabul Tarihi 3 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 1

Kaynak Göster

IEEE Ö. C. Akbay, B. Özdemir, E. Bahçe, ve M. A. Oymak, “Karbon fiber kaplamalı tpms kafes yapılarının basma testi analizi”, DÜMF MD, c. 16, sy. 1, ss. 177–184, 2025, doi: 10.24012/dumf.1616592.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456