Araştırma Makalesi
BibTex RIS Kaynak Göster

Heruistik Parçacık Sürü Optimisazyonu Kullanarak Bulut Sistemlerde Zaman Çizelgeleme

Yıl 2025, Cilt: 16 Sayı: 3, 549 - 558
https://doi.org/10.24012/dumf.1662221

Öz

Bulut sistemlerinde görev çizelgeleme, görevleri mevcut kaynaklar arasında en etkili şekilde dağıtmayı amaçlayan kritik bir optimizasyon problemidir. Bu konu NP-zor problemler kategorisine girer ve kesin ve kesin çözümler üretmek yüksek hesaplama maliyetleri gerektirir. Metasezgisel yaklaşımların bu tür problemleri çözmede başarılı sonuçlar sağladığı kanıtlanmıştır. Bu algoritmalardan biri olan Parçacık Sürüsü Optimizasyonu, hızlı yakınsama, basit uygulanabilirlik ve düşük hesaplama maliyeti gibi avantajları nedeniyle literatürde yaygın olarak kullanılan bir yöntemdir. Bu çalışmada, görev çizelgeleme verimliliğini artırmak için sezgisel tabanlı bir Parçacık Sürüsü Optimizasyonu yaklaşımı önerilmiştir. Önerilen yaklaşım, Parçacık Sürüsü Optimizasyonunun rastgele popülasyon oluşturma sürecine sezgisel bir mekanizma entegre ederek çözüm kalitesini artırır. Deneysel analizler, önerilen yöntemin First Come First Server, Karınca Kolonisi Optimizasyonu ve Parçacık Sürüsü Optimizasyonu ile karşılaştırıldığında daha düşük makespan süresi ve enerji tüketimi sunduğunu göstermektedir. CloudSim simülasyon ortamında yapılan deneyler, Heuristic PSO'nun makespan süresini standart PSO ve ACO algoritmalarına kıyasla ortalama %61,42 ve %62,84 oranında azalttığını ortaya koymaktadır. Ayrıca enerji tüketimi açısından PSO'ya kıyasla %26,18 ve ACO'ya kıyasla %27,33 daha az enerji tükettiği belirlenmiştir. Bulgular, önerilen yaklaşımın bulut bilişim sistemlerinin görev çizelgeleme için daha verimli bir alternatif sağladığını göstermektedir.

Kaynakça

  • [1] C. Barut, G. Yildirim, and Y. Tatar, “An intelligent and interpretable rule-based metaheuristic approach to task scheduling in cloud systems,” Knowledge-Based Syst., vol. 284, no. December 2023, p. 111241, 2024, doi: 10.1016/j.knosys.2023.111241.
  • [2] G. Boss, P. Malladini, D. Quan, L. Legregni, and H. Hall, “Cloud Computing Authors:,” Cloud Comput., vol. 17, no. 1, pp. 111–136, 2012.
  • [3] Y. Pachipala, K. S. Sureddy, A. B. S. Sriya Kaitepalli, N. Pagadala, S. S. Nalabothu, and M. Iniganti, “Optimizing Task Scheduling in Cloud Computing: An Enhanced Shortest Job First Algorithm,” Procedia Comput. Sci., vol. 233, no. 2023, pp. 604–613, 2024, doi: 10.1016/j.procs.2024.03.250.
  • [4] A. Keivani and J. R. Tapamo, “Task scheduling in cloud computing: A review,” icABCD 2019 - 2nd Int. Conf. Adv. Big Data, Comput. Data Commun. Syst., pp. 1–6, 2019, doi: 10.1109/ICABCD.2019.8851045.
  • [5] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature survey,” Futur. Gener. Comput. Syst., vol. 91, pp. 407–415, 2019, doi: 10.1016/j.future.2018.09.014.
  • [6] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Ind. Electron. Handb. - Five Vol. Set, pp. 1942–1948, 2011, doi: 10.1007/978-3-319-46173-1_2.
  • [7] A. S. Abohamama, A. El-Ghamry, and E. Hamouda, Real-Time Task Scheduling Algorithm for IoT-Based Applications in the Cloud–Fog Environment, vol. 30, no. 4. Springer US, 2022. doi: 10.1007/s10922-022-09664-6.
  • [8] P. Y. Zhang and M. C. Zhou, “Dynamic Cloud Task Scheduling Based on a Two-Stage Strategy,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 772–783, 2018, doi: 10.1109/TASE.2017.2693688.
  • [9] C. Barut, G. Yildirim, and Y. Tatar, “An intelligent and interpretable rule-based metaheuristic approach to task scheduling in cloud systems,” KNOWLEDGE-BASED Syst., vol. 284, 2024, doi: 10.1016/j.knosys.2023.111241.
  • [10] H. Jin et al., “A survey of energy efficient methods for UAV communication,” Veh. Commun., vol. 41, p. 100594, 2023, doi: 10.1016/j.vehcom.2023.100594.
  • [11] P. Banerjee, A. Tiwari, B. Kumar, K. Thakur, A. Singh, and M. Kumar Dehury, “Task Scheduling in cloud using Heuristic Technique,” 7th Int. Conf. Trends Electron. Informatics, ICOEI 2023 - Proc., no. Icoei, pp. 709–716, 2023, doi: 10.1109/ICOEI56765.2023.10126030.
  • [12] K. Beghdad Bey, F. Benhammadi, and R. Benaissa, “Balancing heuristic for independent task scheduling in cloud computing,” 12th Int. Symp. Program. Syst. ISPS 2015, pp. 7–12, 2015, doi: 10.1109/ISPS.2015.7244959.
  • [13] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing,” Sensors, vol. 22, no. 3, pp. 1–22, 2022, doi: 10.3390/s22030920.
  • [14] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, M. Tuba, and M. Zivkovic, “Task Scheduling in Cloud Computing Environment by Grey Wolf Optimizer,” 27th Telecommun. Forum, TELFOR 2019, no. June 2020, 2019, doi: 10.1109/TELFOR48224.2019.8971223.
  • [15] S. Mangalampalli, G. R. Karri, and A. A. Elngar, “An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using Firefly Optimization,” Sensors, vol. 23, no. 3, 2023, doi: 10.3390/s23031384.
  • [16] S. Asghari and N. J. Navimipour, “Cloud service composition using an inverted ant colony optimisation algorithm,” Int. J. Bio-Inspired Comput., vol. 13, no. 4, p. 257, 2019, doi: 10.1504/IJBIC.2019.100139.
  • [17] X. Chen et al., “A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems,” IEEE Syst. J., vol. 14, no. 3, pp. 3117–3128, 2020, doi: 10.1109/JSYST.2019.2960088.
  • [18] M. Bürkük and G. Yıldırım, “Cloneable Jellyfish Search Optimizer Based Task Scheduling in Cloud Environments,” Türk Doğa ve Fen Derg., vol. 11, no. 3, pp. 35–43, 2022, doi: 10.46810/tdfd.1123962.
  • [19] S. H. Adil, K. Raza, U. Ahmed, S. S. A. Ali, and M. Hashmani, “Cloud task scheduling using nature inspired meta-heuristic algorithm,” ICOSST 2015 - 2015 Int. Conf. Open Source Syst. Technol. Proc., pp. 158–164, 2016, doi: 10.1109/ICOSST.2015.7396420.
  • [20] N. O. Alkaam, A. B. M. Sultan, M. B. Hussin, and K. Y. Sharif, “Hybrid Henry Gas-Harris Hawks Comprehensive-Opposition Algorithm for Task Scheduling in Cloud Computing,” IEEE Access, vol. 13, no. January, pp. 12956–12965, 2025, doi: 10.1109/ACCESS.2025.3530860.
  • [21] E. GÜNDÜZALP, G. YILDIRIM, and Y. TATAR, “Efficient Task Scheduling in Cloud Systems with Adaptive Discrete Chimp Algorithm,” Balk. J. Electr. Comput. Eng., vol. 10, no. 3, pp. 328–336, 2022, doi: 10.17694/bajece.989467.
  • [22] B. F. Azevedo, A. M. A. C. Rocha, and A. I. Pereira, Hybrid approaches to optimization and machine learning methods: a systematic literature review, vol. 113, no. 7. Springer US, 2024. doi: 10.1007/s10994-023-06467-x.
  • [23] N. Mansouri, B. Mohammad Hasani Zade, and M. M. Javidi, “Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory,” Comput. Ind. Eng., vol. 130, no. July 2018, pp. 597–633, 2019, doi: 10.1016/j.cie.2019.03.006.
  • [24] Sandeep Kumar Patel and Avtar Singh, “Task scheduling in cloud computing using hybrid optimization algorithm,” Soft Comput., vol. 26, no. 23, pp. 13069–13079, 2022, doi: 10.1007/s00500-021-06488-5.
  • [25] A. Kamalinia and A. Ghaffari, “Hybrid Task Scheduling Method for Cloud Computing by Genetic and DE Algorithms,” Wirel. Pers. Commun., vol. 97, no. 4, pp. 6301–6323, 2017, doi: 10.1007/s11277-017-4839-2.
  • [26] M. S. A. Khan and R. Santhosh, “Task scheduling in cloud computing using hybrid optimization algorithm,” Soft Comput., vol. 26, no. 23, pp. 13069–13079, 2022, doi: 10.1007/s00500-021-06488-5.
  • [27] S. Rani and P. K. Suri, “An efficient and scalable hybrid task scheduling approach for cloud environment,” Int. J. Inf. Technol., vol. 12, no. 4, pp. 1451–1457, 2020, doi: 10.1007/s41870-018-0175-3.
  • [28] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. (Ny)., vol. 179, no. 13, pp. 2232–2248, 2009, doi: 10.1016/j.ins.2009.03.004.
  • [29] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, “Heuristic initialization of PSO task scheduling algorithm in cloud computing,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 2370–2382, 2022, doi: 10.1016/j.jksuci.2020.11.002.
  • [30] S. Zhan and H. Huo, “Improved PSO-based task scheduling algorithm in cloud computing,” J. Inf. Comput. Sci., vol. 9, no. 13, pp. 3821–3829, 2012.
  • [31] A. I. Awad, N. A. El-Hefnawy, and H. M. Abdel-Kader, “Enhanced Particle Swarm Optimization for Task Scheduling in Cloud Computing Environments,” Procedia Comput. Sci., vol. 65, no. Iccmit, pp. 920–929, 2015, doi: 10.1016/j.procs.2015.09.064. [32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and Rajkumar Buyya, “CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms Rodrigo,” Softw. - Pract. Exp., vol. 39, no. 7, pp. 701–736, 2009, doi: 10.1002/spe.

Hybrid Heuristic and Particle Swarm Optimization Approach to Cloud Task Scheduling

Yıl 2025, Cilt: 16 Sayı: 3, 549 - 558
https://doi.org/10.24012/dumf.1662221

Öz

Scheduling tasks on cloud systems is a critical optimization problem that aims to distribute tasks among available resources in the most effective way. This issue falls under the category of NP-hard problems and generating exact and deterministic solutions requires high computational costs. Metaheuristic approaches have proven to provide successful results in solving such problems. Particle Swarm Optimization (PSO), one of these algorithms, is a widely used method in the literature due to its advantages, such as fast convergence, simple applicability, and low computational cost. In this study, a hybrid heuristic-based Particle Swarm Optimization approach is proposed to improve task scheduling efficiency. The proposed approach improves the solution quality by integrating a heuristic mechanism into the random population generation process of PSO. In comparison to First Come First Serve, Ant Colony Optimization (ACO), and conventional PSO, the suggested approach delivers better makespan and reduced energy consumption, according to the simulation analysis carried out in the CloudSim simulation environment. According to simulations, Heuristic PSO outperforms traditional PSO and ACO methods in terms of makespan time, reducing it by an average of 61.42% and 62.84%, respectively. It also uses 26.18% less energy than PSO and 27.33% less than ACO, according to its energy consumption data. The results show that the suggested method offers a more effective substitute for scheduling tasks in cloud computing systems.

Kaynakça

  • [1] C. Barut, G. Yildirim, and Y. Tatar, “An intelligent and interpretable rule-based metaheuristic approach to task scheduling in cloud systems,” Knowledge-Based Syst., vol. 284, no. December 2023, p. 111241, 2024, doi: 10.1016/j.knosys.2023.111241.
  • [2] G. Boss, P. Malladini, D. Quan, L. Legregni, and H. Hall, “Cloud Computing Authors:,” Cloud Comput., vol. 17, no. 1, pp. 111–136, 2012.
  • [3] Y. Pachipala, K. S. Sureddy, A. B. S. Sriya Kaitepalli, N. Pagadala, S. S. Nalabothu, and M. Iniganti, “Optimizing Task Scheduling in Cloud Computing: An Enhanced Shortest Job First Algorithm,” Procedia Comput. Sci., vol. 233, no. 2023, pp. 604–613, 2024, doi: 10.1016/j.procs.2024.03.250.
  • [4] A. Keivani and J. R. Tapamo, “Task scheduling in cloud computing: A review,” icABCD 2019 - 2nd Int. Conf. Adv. Big Data, Comput. Data Commun. Syst., pp. 1–6, 2019, doi: 10.1109/ICABCD.2019.8851045.
  • [5] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature survey,” Futur. Gener. Comput. Syst., vol. 91, pp. 407–415, 2019, doi: 10.1016/j.future.2018.09.014.
  • [6] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Ind. Electron. Handb. - Five Vol. Set, pp. 1942–1948, 2011, doi: 10.1007/978-3-319-46173-1_2.
  • [7] A. S. Abohamama, A. El-Ghamry, and E. Hamouda, Real-Time Task Scheduling Algorithm for IoT-Based Applications in the Cloud–Fog Environment, vol. 30, no. 4. Springer US, 2022. doi: 10.1007/s10922-022-09664-6.
  • [8] P. Y. Zhang and M. C. Zhou, “Dynamic Cloud Task Scheduling Based on a Two-Stage Strategy,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 772–783, 2018, doi: 10.1109/TASE.2017.2693688.
  • [9] C. Barut, G. Yildirim, and Y. Tatar, “An intelligent and interpretable rule-based metaheuristic approach to task scheduling in cloud systems,” KNOWLEDGE-BASED Syst., vol. 284, 2024, doi: 10.1016/j.knosys.2023.111241.
  • [10] H. Jin et al., “A survey of energy efficient methods for UAV communication,” Veh. Commun., vol. 41, p. 100594, 2023, doi: 10.1016/j.vehcom.2023.100594.
  • [11] P. Banerjee, A. Tiwari, B. Kumar, K. Thakur, A. Singh, and M. Kumar Dehury, “Task Scheduling in cloud using Heuristic Technique,” 7th Int. Conf. Trends Electron. Informatics, ICOEI 2023 - Proc., no. Icoei, pp. 709–716, 2023, doi: 10.1109/ICOEI56765.2023.10126030.
  • [12] K. Beghdad Bey, F. Benhammadi, and R. Benaissa, “Balancing heuristic for independent task scheduling in cloud computing,” 12th Int. Symp. Program. Syst. ISPS 2015, pp. 7–12, 2015, doi: 10.1109/ISPS.2015.7244959.
  • [13] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing,” Sensors, vol. 22, no. 3, pp. 1–22, 2022, doi: 10.3390/s22030920.
  • [14] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, M. Tuba, and M. Zivkovic, “Task Scheduling in Cloud Computing Environment by Grey Wolf Optimizer,” 27th Telecommun. Forum, TELFOR 2019, no. June 2020, 2019, doi: 10.1109/TELFOR48224.2019.8971223.
  • [15] S. Mangalampalli, G. R. Karri, and A. A. Elngar, “An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using Firefly Optimization,” Sensors, vol. 23, no. 3, 2023, doi: 10.3390/s23031384.
  • [16] S. Asghari and N. J. Navimipour, “Cloud service composition using an inverted ant colony optimisation algorithm,” Int. J. Bio-Inspired Comput., vol. 13, no. 4, p. 257, 2019, doi: 10.1504/IJBIC.2019.100139.
  • [17] X. Chen et al., “A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems,” IEEE Syst. J., vol. 14, no. 3, pp. 3117–3128, 2020, doi: 10.1109/JSYST.2019.2960088.
  • [18] M. Bürkük and G. Yıldırım, “Cloneable Jellyfish Search Optimizer Based Task Scheduling in Cloud Environments,” Türk Doğa ve Fen Derg., vol. 11, no. 3, pp. 35–43, 2022, doi: 10.46810/tdfd.1123962.
  • [19] S. H. Adil, K. Raza, U. Ahmed, S. S. A. Ali, and M. Hashmani, “Cloud task scheduling using nature inspired meta-heuristic algorithm,” ICOSST 2015 - 2015 Int. Conf. Open Source Syst. Technol. Proc., pp. 158–164, 2016, doi: 10.1109/ICOSST.2015.7396420.
  • [20] N. O. Alkaam, A. B. M. Sultan, M. B. Hussin, and K. Y. Sharif, “Hybrid Henry Gas-Harris Hawks Comprehensive-Opposition Algorithm for Task Scheduling in Cloud Computing,” IEEE Access, vol. 13, no. January, pp. 12956–12965, 2025, doi: 10.1109/ACCESS.2025.3530860.
  • [21] E. GÜNDÜZALP, G. YILDIRIM, and Y. TATAR, “Efficient Task Scheduling in Cloud Systems with Adaptive Discrete Chimp Algorithm,” Balk. J. Electr. Comput. Eng., vol. 10, no. 3, pp. 328–336, 2022, doi: 10.17694/bajece.989467.
  • [22] B. F. Azevedo, A. M. A. C. Rocha, and A. I. Pereira, Hybrid approaches to optimization and machine learning methods: a systematic literature review, vol. 113, no. 7. Springer US, 2024. doi: 10.1007/s10994-023-06467-x.
  • [23] N. Mansouri, B. Mohammad Hasani Zade, and M. M. Javidi, “Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory,” Comput. Ind. Eng., vol. 130, no. July 2018, pp. 597–633, 2019, doi: 10.1016/j.cie.2019.03.006.
  • [24] Sandeep Kumar Patel and Avtar Singh, “Task scheduling in cloud computing using hybrid optimization algorithm,” Soft Comput., vol. 26, no. 23, pp. 13069–13079, 2022, doi: 10.1007/s00500-021-06488-5.
  • [25] A. Kamalinia and A. Ghaffari, “Hybrid Task Scheduling Method for Cloud Computing by Genetic and DE Algorithms,” Wirel. Pers. Commun., vol. 97, no. 4, pp. 6301–6323, 2017, doi: 10.1007/s11277-017-4839-2.
  • [26] M. S. A. Khan and R. Santhosh, “Task scheduling in cloud computing using hybrid optimization algorithm,” Soft Comput., vol. 26, no. 23, pp. 13069–13079, 2022, doi: 10.1007/s00500-021-06488-5.
  • [27] S. Rani and P. K. Suri, “An efficient and scalable hybrid task scheduling approach for cloud environment,” Int. J. Inf. Technol., vol. 12, no. 4, pp. 1451–1457, 2020, doi: 10.1007/s41870-018-0175-3.
  • [28] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. (Ny)., vol. 179, no. 13, pp. 2232–2248, 2009, doi: 10.1016/j.ins.2009.03.004.
  • [29] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, “Heuristic initialization of PSO task scheduling algorithm in cloud computing,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 2370–2382, 2022, doi: 10.1016/j.jksuci.2020.11.002.
  • [30] S. Zhan and H. Huo, “Improved PSO-based task scheduling algorithm in cloud computing,” J. Inf. Comput. Sci., vol. 9, no. 13, pp. 3821–3829, 2012.
  • [31] A. I. Awad, N. A. El-Hefnawy, and H. M. Abdel-Kader, “Enhanced Particle Swarm Optimization for Task Scheduling in Cloud Computing Environments,” Procedia Comput. Sci., vol. 65, no. Iccmit, pp. 920–929, 2015, doi: 10.1016/j.procs.2015.09.064. [32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and Rajkumar Buyya, “CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms Rodrigo,” Softw. - Pract. Exp., vol. 39, no. 7, pp. 701–736, 2009, doi: 10.1002/spe.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Bilgi İşleme (Diğer)
Bölüm Makaleler
Yazarlar

Cebrail Barut 0000-0003-2756-5434

Kazım Fırıldak 0000-0002-1958-3627

Erken Görünüm Tarihi 30 Eylül 2025
Yayımlanma Tarihi 10 Ekim 2025
Gönderilme Tarihi 20 Mart 2025
Kabul Tarihi 31 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

IEEE C. Barut ve K. Fırıldak, “Hybrid Heuristic and Particle Swarm Optimization Approach to Cloud Task Scheduling”, DÜMF MD, c. 16, sy. 3, ss. 549–558, 2025, doi: 10.24012/dumf.1662221.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456