Araştırma Makalesi
BibTex RIS Kaynak Göster

CTP kompozit plakaların çoklu cıvata bağlantı davranışlarının incelenmesi

Yıl 2025, Cilt: 16 Sayı: 3, 697 - 706
https://doi.org/10.24012/dumf.1662259

Öz

Pultrüzyon ile üretilmiş cam fiber takviyeli polimer (CTP) esaslı kompozit plakaların bağlantı kapasitesi genellikle kompozit yapının tasarımında önemli bir faktör olarak kabul edilir. Bu çalışmada, farklı sıkma momentleri (M = 0–2–4 N.m), farklı delik sayıları (2–4–5) ve farklı E/D (2–3–4) oranları dikkate alınarak 0o ve 90o fiber yönelim açılarına sahip polimer matris esaslı cam fiber takviyeli kompozit plakaların cıvatalı bağlantı davranışları tartışılmıştır. Bağlantı cıvatalarına yeterli sıkma momenti uygulanması, numunelerin yük taşıma kapasitesini artırmaktadır. Ancak delik sayısının artışı, kesit kaybına neden olduğu için malzemenin mukavemetini olumsuz etkileyebilmektedir. Bu yüzden mühendislik uygulamalarında, optimum sıkma momenti ve delik düzenlemesi dikkatlice seçilmelidir. Çekme yükleri altında mekanik olarak sabitlenmiş tabakalı kompozitler genellikle, yatak (bearing) hasar modu, kesme (shear-out) hasar modu ve yırtılma (net-tension) hasar modu olarak üç temel mod şeklinde hasarlanırlar. 0o fiber yönelim açılarına sahip numunelerde bu üç hasar modu oluşurken 90o fiber yönelim açılı numunelerde ise yatak/net-gerilim (bearing/net-tension) hasar modları belirgin şekilde gerçekleşmiştir.

Kaynakça

  • [1] Technical Information Staff of Industrial. (1963). The Fasteners Book Issue. Machine Design.
  • [2] Turvey, G. J., & Sana, A. (2016). Pultruded GFRP double-lap single-bolt tension joints – Temperature effects on mean and characteristic failure stresses and knock-down factors. Composite Structures, 153, 624–631. https://doi.org/10.1016/j.compstruct.2016.06.016
  • [3] Madenci, E., Shkarayev, S., Sergeev, B., Oplinger, D. W., & Shyprykevich, P. (1998). Analysis of composite laminates with multiple fasteners. International Journal of Solids and Structures, 35(15), 1793–1811. https://doi.org/10.1016/S0020-7683(97)00152-2
  • [4] Ghanbari, E. (2011). Bolt-Hole Tightening Effects in Singlelap Composite Bolted Joints. Dokuz Eylül University Graduate School of Natural and Applied Sciences.
  • [5] Crews, JHJ. (1981). Bolt-bearing fatigue of a graphite/epoxy laminate . American Society for Testing and Materials, 131–144.
  • [6] Wang, H.-S., Hung, C.-L., & Chang, F.-K. (1996). Bearing Failure of Bolted Composite Joints. Part I: Experimental Characterization. Journal of Composite Materials, 30(12), 1284–1313. https://doi.org/10.1177/002199839603001201
  • [7] Aktas, A., & Karakuzu, R. (1999). Failure Analysis of Two-Dimensional Carbon-Epoxy Composite Plate Pinned Joint. Mechanics of Advanced Materials and Structures, 6(4), 347–361. https://doi.org/10.1080/107594199305502
  • [8] Chang, F.-K., Scott, R. A., & Springer, G. S. (1982). Strength of Mechanically Fastened Composite Joints. Journal of Composite Materials, 16(6), 470–494. https://doi.org/10.1177/002199838201600603
  • [9] Collings, T. A. (1977). The strength of bolted joints in multi-directional cfrp laminates. Composites, 8(1), 43–55. https://doi.org/10.1016/0010-4361(77)90027-1
  • [10] Collings, T. A. (1982). On the bearing strengths of cfrp laminates. Composites, 13(3), 241–252. https://doi.org/10.1016/0010-4361(82)90006-4
  • [11] Wei-Xun, F., & Chun-Tu, Q. (1993). Load distribution of multi-fastener laminated composite joints. International Journal of Solids and Structures, 30(21), 3013–3023. https://doi.org/10.1016/0020-7683(93)90209-P
  • [12] Kim, RY. (1987). Fatigue strength. ASM Engineered Materials Handbook, 1.
  • [13] Eriksson, I. (1990). On the Bearing Strength of Bolted Graphite/Epoxy Laminates. Journal of Composite Materials, 24(12), 1246–1269. https://doi.org/10.1177/002199839002401201
  • [14] Wu, P. S., & Sun, C. T. (1998). Bearing Failure in Pin Contact of Composite Laminates. AIAA Journal, 36(11), 2124–2129. https://doi.org/10.2514/2.316
  • [15] Camanho, P. P., Bowron, S., & Matthews, F. L. (1998). Failure Mechanisms in Bolted CFRP. Journal of Reinforced Plastics and Composites, 17(3), 205–233. https://doi.org/10.1177/073168449801700302
  • [16] Meola, C. , S. A. , G. G. and N. L. (2003). Experimental Characterization of an Innovative Glare Fiber Reinforced Metal Laminate in Pin bearing. Journal of Composite Materials, 37, 1543–1553.
  • [17] Tosh, M. W., & Kelly, D. W. (2000). On the design, manufacture and testing of trajectorial fibre steering for carbon fibre composite laminates. Composites Part A: Applied Science and Manufacturing, 31(10), 1047–1060. https://doi.org/10.1016/S1359-835X(00)00063-4
  • [18] Yan, Y., Wen, W.-D., Chang, F.-K., & Shyprykevich, P. (1999). Experimental study on clamping effects on the tensile strength of composite plates with a bolt-filled hole. Composites Part A: Applied Science and Manufacturing, 30(10), 1215–1229. https://doi.org/10.1016/S1359-835X(99)00002-0
  • [19] Abd-El-Naby, S. F. M., & Hollaway, L. (1993). The experimental behaviour of bolted joints in pultruded glass/ polyester material. Part 1: Single-bolt joints. Composites, 24(7), 531–538. https://doi.org/10.1016/0010-4361(93)90266-B
  • [20] Rosner, C. N., & Rizkalla, S. H. (1995). Bolted Connections for Fiber-Reinforced Composite Structural Members: Experimental Program. Journal of Materials in Civil Engineering, 7(4), 223–231. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:4(223)
  • [21] Cooper, C., & Turvey, G. J. (1995). Effects of joint geometry and bolt torque on the structural performance of single bolt tension joints in pultruded GRP sheet material. Composite Structures, 32(1–4), 217–226. https://doi.org/10.1016/0263-8223(95)00071-2
  • [22] Hassan, N. K., Mohamedien, M. A., & Rizkalla, S. H. (1997). Multibolted Joints for GFRP Structural Members. Journal of Composites for Construction, 1(1), 3–9. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:1(3)
  • [23] Girão Coelho, A. M., & Mottram, J. T. (2015a). A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers. Materials & Design, 74, 86–107. https://doi.org/10.1016/j.matdes.2015.02.011
  • [24] Girão Coelho, A. M., & Mottram, J. T. (2015b). A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers. Materials & Design, 74, 86–107. https://doi.org/10.1016/j.matdes.2015.02.011
  • [25] Feo, L., Marra, G., & Mosallam, A. S. (2012). Stress analysis of multi-bolted joints for FRP pultruded composite structures. Composite Structures, 94(12), 3769–3780. https://doi.org/10.1016/j.compstruct.2012.06.017
  • [26] Turvey, G. J. (1998). Single-bolt tension joint tests on pultruded GRP plate — effects of tension direction relative to pultrusion direction. Composite Structures, 42(4), 341–351. https://doi.org/10.1016/S0263-8223(98)00079-8
  • [27] Leblebicier, B. (2022). Pultrüzyon Yöntemi ile Üretimi Yapılan Kompozit Malzemelerin Çevre Koşulları Altındaki Performanslarının İncelenmesi. Uşak Üniversitesi, Fen Bilimleri Enstitüsü.
  • [28] Liang, M., Wang, X., Zhong, L., Jiang, Z., Huang, H., Wu, Z. (2024). Effects of off-axis load direction on tensile properties ofpultruded fiber-reinforced polymer bolted jointswith multi-directional fiber lay-ups. Polym Compos.2024;45(11):10172‐10189. doi:10.1002/pc.28465
  • [29] Liu, L., Wang, X., Wu, Z., Keller, T. (2023). Effect of fiber architecture ontension–tension fatigue behavior of bolted basalt compositejoints. Eng Struct. 286:116089. doi:10.1016/j.engstruct.2023.116089
  • [30] Duc, T., Nhut, P., Matsumoto, Y. (2022). Multi-bolted connection for pultruded glass fiber reinforced polymer’s structure: A Study on Strengthening by Multiaxial Glass Fiber Sheets. Polymers. 14. doi:10.3390/polym14081561.

Investigation of multi-bolted connection behaviors of GFRP composite plates

Yıl 2025, Cilt: 16 Sayı: 3, 697 - 706
https://doi.org/10.24012/dumf.1662259

Öz

The connection capacity of pultruded glass fiber reinforced polymer based composite plates is generally considered as an important factor in the design of composite structures. In this study, the bolt connection behaviors of polymer matrix based glass fiber reinforced composite plates with 0o and 90o fiber orientation angles were discussed by considering different tightening torques (M = 0–2–4 N.m), different hole numbers (2–4–5) and different E/D (2–3–4) ratios. Applying sufficient tightening torque to the connection bolts increases the load carrying capacity of the samples. However, increasing the number of holes may negatively affect the strength of the material since it causes cross-section loss. Therefore, in engineering applications, the optimum tightening torque and hole arrangement should be carefully selected. Mechanically restrained laminated composites under tensile loads generally fail in three basic modes as bearing, shear-out and net-tension damage modes. While these three damage modes occurred in samples with 0o fiber orientation angles, bearing/net-tension damage modes occurred significantly in samples with 90o fiber orientation angles.

Kaynakça

  • [1] Technical Information Staff of Industrial. (1963). The Fasteners Book Issue. Machine Design.
  • [2] Turvey, G. J., & Sana, A. (2016). Pultruded GFRP double-lap single-bolt tension joints – Temperature effects on mean and characteristic failure stresses and knock-down factors. Composite Structures, 153, 624–631. https://doi.org/10.1016/j.compstruct.2016.06.016
  • [3] Madenci, E., Shkarayev, S., Sergeev, B., Oplinger, D. W., & Shyprykevich, P. (1998). Analysis of composite laminates with multiple fasteners. International Journal of Solids and Structures, 35(15), 1793–1811. https://doi.org/10.1016/S0020-7683(97)00152-2
  • [4] Ghanbari, E. (2011). Bolt-Hole Tightening Effects in Singlelap Composite Bolted Joints. Dokuz Eylül University Graduate School of Natural and Applied Sciences.
  • [5] Crews, JHJ. (1981). Bolt-bearing fatigue of a graphite/epoxy laminate . American Society for Testing and Materials, 131–144.
  • [6] Wang, H.-S., Hung, C.-L., & Chang, F.-K. (1996). Bearing Failure of Bolted Composite Joints. Part I: Experimental Characterization. Journal of Composite Materials, 30(12), 1284–1313. https://doi.org/10.1177/002199839603001201
  • [7] Aktas, A., & Karakuzu, R. (1999). Failure Analysis of Two-Dimensional Carbon-Epoxy Composite Plate Pinned Joint. Mechanics of Advanced Materials and Structures, 6(4), 347–361. https://doi.org/10.1080/107594199305502
  • [8] Chang, F.-K., Scott, R. A., & Springer, G. S. (1982). Strength of Mechanically Fastened Composite Joints. Journal of Composite Materials, 16(6), 470–494. https://doi.org/10.1177/002199838201600603
  • [9] Collings, T. A. (1977). The strength of bolted joints in multi-directional cfrp laminates. Composites, 8(1), 43–55. https://doi.org/10.1016/0010-4361(77)90027-1
  • [10] Collings, T. A. (1982). On the bearing strengths of cfrp laminates. Composites, 13(3), 241–252. https://doi.org/10.1016/0010-4361(82)90006-4
  • [11] Wei-Xun, F., & Chun-Tu, Q. (1993). Load distribution of multi-fastener laminated composite joints. International Journal of Solids and Structures, 30(21), 3013–3023. https://doi.org/10.1016/0020-7683(93)90209-P
  • [12] Kim, RY. (1987). Fatigue strength. ASM Engineered Materials Handbook, 1.
  • [13] Eriksson, I. (1990). On the Bearing Strength of Bolted Graphite/Epoxy Laminates. Journal of Composite Materials, 24(12), 1246–1269. https://doi.org/10.1177/002199839002401201
  • [14] Wu, P. S., & Sun, C. T. (1998). Bearing Failure in Pin Contact of Composite Laminates. AIAA Journal, 36(11), 2124–2129. https://doi.org/10.2514/2.316
  • [15] Camanho, P. P., Bowron, S., & Matthews, F. L. (1998). Failure Mechanisms in Bolted CFRP. Journal of Reinforced Plastics and Composites, 17(3), 205–233. https://doi.org/10.1177/073168449801700302
  • [16] Meola, C. , S. A. , G. G. and N. L. (2003). Experimental Characterization of an Innovative Glare Fiber Reinforced Metal Laminate in Pin bearing. Journal of Composite Materials, 37, 1543–1553.
  • [17] Tosh, M. W., & Kelly, D. W. (2000). On the design, manufacture and testing of trajectorial fibre steering for carbon fibre composite laminates. Composites Part A: Applied Science and Manufacturing, 31(10), 1047–1060. https://doi.org/10.1016/S1359-835X(00)00063-4
  • [18] Yan, Y., Wen, W.-D., Chang, F.-K., & Shyprykevich, P. (1999). Experimental study on clamping effects on the tensile strength of composite plates with a bolt-filled hole. Composites Part A: Applied Science and Manufacturing, 30(10), 1215–1229. https://doi.org/10.1016/S1359-835X(99)00002-0
  • [19] Abd-El-Naby, S. F. M., & Hollaway, L. (1993). The experimental behaviour of bolted joints in pultruded glass/ polyester material. Part 1: Single-bolt joints. Composites, 24(7), 531–538. https://doi.org/10.1016/0010-4361(93)90266-B
  • [20] Rosner, C. N., & Rizkalla, S. H. (1995). Bolted Connections for Fiber-Reinforced Composite Structural Members: Experimental Program. Journal of Materials in Civil Engineering, 7(4), 223–231. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:4(223)
  • [21] Cooper, C., & Turvey, G. J. (1995). Effects of joint geometry and bolt torque on the structural performance of single bolt tension joints in pultruded GRP sheet material. Composite Structures, 32(1–4), 217–226. https://doi.org/10.1016/0263-8223(95)00071-2
  • [22] Hassan, N. K., Mohamedien, M. A., & Rizkalla, S. H. (1997). Multibolted Joints for GFRP Structural Members. Journal of Composites for Construction, 1(1), 3–9. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:1(3)
  • [23] Girão Coelho, A. M., & Mottram, J. T. (2015a). A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers. Materials & Design, 74, 86–107. https://doi.org/10.1016/j.matdes.2015.02.011
  • [24] Girão Coelho, A. M., & Mottram, J. T. (2015b). A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers. Materials & Design, 74, 86–107. https://doi.org/10.1016/j.matdes.2015.02.011
  • [25] Feo, L., Marra, G., & Mosallam, A. S. (2012). Stress analysis of multi-bolted joints for FRP pultruded composite structures. Composite Structures, 94(12), 3769–3780. https://doi.org/10.1016/j.compstruct.2012.06.017
  • [26] Turvey, G. J. (1998). Single-bolt tension joint tests on pultruded GRP plate — effects of tension direction relative to pultrusion direction. Composite Structures, 42(4), 341–351. https://doi.org/10.1016/S0263-8223(98)00079-8
  • [27] Leblebicier, B. (2022). Pultrüzyon Yöntemi ile Üretimi Yapılan Kompozit Malzemelerin Çevre Koşulları Altındaki Performanslarının İncelenmesi. Uşak Üniversitesi, Fen Bilimleri Enstitüsü.
  • [28] Liang, M., Wang, X., Zhong, L., Jiang, Z., Huang, H., Wu, Z. (2024). Effects of off-axis load direction on tensile properties ofpultruded fiber-reinforced polymer bolted jointswith multi-directional fiber lay-ups. Polym Compos.2024;45(11):10172‐10189. doi:10.1002/pc.28465
  • [29] Liu, L., Wang, X., Wu, Z., Keller, T. (2023). Effect of fiber architecture ontension–tension fatigue behavior of bolted basalt compositejoints. Eng Struct. 286:116089. doi:10.1016/j.engstruct.2023.116089
  • [30] Duc, T., Nhut, P., Matsumoto, Y. (2022). Multi-bolted connection for pultruded glass fiber reinforced polymer’s structure: A Study on Strengthening by Multiaxial Glass Fiber Sheets. Polymers. 14. doi:10.3390/polym14081561.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları
Bölüm Makaleler
Yazarlar

Çağdaş Şen 0009-0003-4604-2521

Firat Aydın 0000-0002-0211-9756

Mehmet Emin Deniz 0000-0003-1898-1161

Erken Görünüm Tarihi 30 Eylül 2025
Yayımlanma Tarihi 9 Ekim 2025
Gönderilme Tarihi 21 Mart 2025
Kabul Tarihi 7 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

IEEE Ç. Şen, F. Aydın, ve M. E. Deniz, “CTP kompozit plakaların çoklu cıvata bağlantı davranışlarının incelenmesi”, DÜMF MD, c. 16, sy. 3, ss. 697–706, 2025, doi: 10.24012/dumf.1662259.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456