Araştırma Makalesi
BibTex RIS Kaynak Göster

Alternatif bağlayıcı ve agrega kullanımının betonun basınç dayanımına etkisi

Yıl 2025, Cilt: 16 Sayı: 3, 789 - 795
https://doi.org/10.24012/dumf.1668362

Öz

Endüstriyel atıkların beton üretiminde kullanımı, çevresel etkilerin azaltılması ve maliyetlerin düşürülmesi açısından büyük önem taşımaktadır. Bu çalışmada, çimento yerine olivin minerali, ince agrega olarak krom tozu ve kaba agrega olarak krom cürufu kullanılarak beton karışımları tasarlanmıştır. Farklı bağlayıcı ve agrega oranlarının, betonun basınç dayanımı üzerindeki etkileri 7 günlük kürleme süresi sonunda incelenmiştir. Deneysel sonuçlar, %5 olivin ikamesi ile yapılan karışımların, özellikle 500 kg/m³ çimento dozajına sahip karışımlarda 22.30 MPa olarak en yüksek basınç dayanımını sağladığını göstermiştir. Bu sonuç, düşük su/çimento oranı ve olivin katkısının erken yaş dayanımını artırdığına işaret etmektedir. Ayrıca su/çimento oranı 0.61 olan karışımlarda krom tozu miktarının %20'ye çıkarılması, basınç dayanımında %11.7' lik bir artışa yol açmıştır, bu da krom tozunun betonun mekanik performansını artırmada olumlu bir etkisi olduğunu göstermektedir. Bu bulgular, çimento ikameleri ve agrega türlerinin betonun mekanik özelliklerini önemli ölçüde etkileyebileceğini, dolayısıyla her iki malzeme bileşiminin dikkatlice seçilmesi gerektiğini ortaya koymaktadır.

Proje Numarası

YLMUB021-17

Kaynakça

  • [1] S. Mehmood, K. Zamani, S. Khan, Z. Ali, and H. U. Rashid Khan, “The role of green industrial transformation in mitigating carbon emissions: Exploring the channels of technological innovation and environmental regulation,” Energy and Built Environment, vol. 5, pp. 464–479, 2024. https://doi.org/10.1016/j.enbenv.2023.03.001.
  • [2] Y. A. Hajam, R. Kumar, and A. Kumar, “Environmental waste management strategies and vermi transformation for sustainable development,” Environmental Challenges, vol. 13, 100747, 2023. https://doi.org/10.1016/j.envc.2023.100747.
  • [3] A. I. Almohana, M. Y. Abdulwahid, I. Galobardes, J. Mushtaq, and S. F. Almojil, "Producing sustainable concrete with plastic waste: A review," Environ. Challenges, vol. 9, p. 100626, 2022. https://doi.org/10.1016/j.envc.2022.100626.
  • [4] T. Esin and N. Cosgun, “A study conducted to reduce construction waste generation in Turkey,” Building and Environment, vol. 42, pp. 1667–1674, 2007. https://doi.org/10.1016/j.buildenv.2006.02.008.
  • [5] İ. Şanal, “Beton üretiminin karbondioksit emisyonları açısından önemi: Toplumsal ve çevresel etkiler,” Politeknik Dergisi, vol. 21, no. 2, pp. 369–378, 2018.
  • [6] J. M. Etcheverry, Y. A. Villagran-Zaccardi, P. Van den Heede, V. Hallet, and N. De Belie, “Effect of sodium sulfate activation on the early age behaviour and microstructure development of hybrid cementitious systems containing Portland cement, and blast furnace slag,” Cement and Concrete Composites, vol. 141, 105101, 2023. https://doi.org/10.1016/j.cemconcomp.2023.105101.
  • [7] M.A.G.P. Perera and P.G. Ranjith, “Eco-friendly cementitious composites for enhanced strength: Emerging trends and innovations,” Journal of Cleaner Production, vol. 468, 142962, 2024. https://doi.org/10.1016/j.jclepro.2024.142962.
  • [8] M. Şahin Yön, B. Yön, M. Karataş, and A. Benli, “Sustainable use of boron waste and volcanic scoria in slag-based self-compacting alkali-activated mortars: Fresh, mechanical and durability properties,” Sustain. Chem. Pharm., vol. 41, 101664, 2024. https://doi.org/10.1016/j.scp.2024.101664.
  • [9] S. Cemalgil, O. Onat, M. K. Tanaydın, and S. Etli, “Effect of waste textile dye adsorbed almond shell on self-compacting mortar,” Construction and Building Materials, vol. 300, 123978, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123978.
  • [10] M. Şahin Yön, “Mechanical, durability and microstructure properties of eco-friendly self-compacting mortars with addition of volcanic scoria, silica fume and boron waste as cement replacement,” Construction and Building Materials, vol. 462, 139894, 2025. https://doi.org/10.1016/j.conbuildmat.2025.139894.
  • [11] A. Benli, O. Y. Bayraktar, M. Karataş, B. Bodur, M. U. Yılmazoğlu, and G. Kaplan, “Dunite powder as a green precursor in one-part alkali-activated composites: Effects on mechanical and durability properties,” Sustainable Chemistry and Pharmacy, vol. 44, 101964, 2025. https://doi.org/10.1016/j.scp.2025.101964.
  • [12] Y. Lan, L. Zhang, X. Li, W. Liu, X. Su, and Z. Lin, “Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe2+(Cr3+X, Fe3+2-x)O4 and its magnetic separation,” Science of the Total Environment, vol. 813, 152637, 2022. http://dx.doi.org/10.1016/j.scitotenv.2021.152637.
  • [13] Z. Bayer Öztürk, S. Dal, Characterization of industrial ceramic glazes containing chromite processing waste: Experimental factorial design effects on color parameters, Mater. Chem. Phys. 282 125928, 2022. https://doi.org/10.1016/j.matchemphys.2022.125928.
  • [14] S.K. Das, A. K. Tripathi, S. K. Kandi, S. M. Mustakim, B. Bhoi, and P. Rajput, “Ferrochrome slag: A critical review of its properties, environmental issues and sustainable utilization,” Journal of Environmental Management, vol. 326, 116674, 2023. https://doi.org/10.1016/j.jenvman.2022.116674.
  • [15] B. Aygün, E. Şakar, O. Agar, M. I. Sayyed, A. Karabulut, and V. P. Singh, “Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications,” Prog. Nucl. Energy, vol. 133, 103645, 2021. https://doi.org/10.1016/j.pnucene.2021.103645.
  • [16] İ. Acar, “Sintering properties of olivine and its utilization potential as a refractory raw material: Mineralogical and microstructural investigations,” Ceram. Int., vol. 46, pp. 28025–28034, 2020. https://doi.org/10.1016/j.ceramint.2020.07.297.
  • [17] ASTM C128, Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, 2015.
  • [18] ASTM C29, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate, ASTM International, West Conshohocken, PA, 2017.
  • [19] TS EN 206-1, Concrete – Part 1: Specification, performance, production and conformity, Turkish Standards Institution, Ankara, 2002.
  • [20] TS 802, Design of concrete mixes, Turkish Standards Institution, Ankara, 2016.
  • [21] TS EN 12390-3, Testing hardened concrete – Part 3: Compressive strength of test specimens, Turkish Standards Institution, Ankara, 2009.
  • [22] K. Kaewmanee and S. Tangtermsirikul, “Properties of binder systems containing cement, fly ash, and limestone powder,” Songklanakarin J. Sci. Technol., vol. 36, no. 5, pp. 569–576, Sep.–Oct. 2014.
  • [23] G.C. Wang, "Slag use in cement manufacture and cementitious applications," The Utilization of Slag in Civil Infrastructure Construction, pp. 305-337, 2016. https://doi.org/10.1016/B978-0-08-100381-7.00013-6.
  • [24] H. Polat and C. Özel, "The effects of water/cement ratio and cement dosage variables on the performance of shotcrete: Compressive strength and drying shrinkage perspective," Turkish Journal of Engineering and Environmental Sciences, vol. 12, no. 2, pp. 82-87, 2023. https://doi.org/10.46810/tdfd.1291146.
  • [25] S. Khalid, K. Rashid, K. Mawra, Z. Tariq, H. Kim, and M. Ju, “Multimodal optimization of concrete mix design for sustainable load bearing wall panels: Mean-mix − Artificial Intelligence − experimentation fusion,” Case Stud. Constr. Mater., vol. 21, e03868, 2024. https://doi.org/10.1016/j.cscm.2024.e03868.
  • [26] W. Piasta and B. Zarzycki, "The effect of cement paste volume and w/c ratio on shrinkage strain, water absorption and compressive strength of high performance concrete," Construction and Building Materials, vol. 140, pp. 395-402, 2017. https://doi.org/10.1016/j.conbuildmat.2017.02.033.
  • [27] B. Song, J. Huang, M. Yang, M. Zheng, L. Yang, and F. Wang, “Study on high supplementary cementitious materials content cement: Design and analysis based on response surface method,” Construction and Building Materials, vol. 467, 140398, 2025. https://doi.org/10.1016/j.conbuildmat.2025.140398.
  • [28] M. Oesman and Haryadi, “Production and application of olivine nano-silica in concrete,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 204, 012008, 2017. https://doi.org/10.1088/1757-899X/204/1/012008.
  • [29] M. Achang and M. Radonjic, “Adding olivine micro particles to Portland cement based wellbore cement slurry as a sacrificial material: A quest for the solution in mitigating corrosion of wellbore cement,” Cem. Concr. Compos., 121, 104078, 2021. https://doi.org/10.1016/j.cemconcomp.2021.104078.
  • [30] D. Bernasconi, A. Viani, L. Zárybnická, S. Bordignon, J. R. A. Godinho, A. Maximenko, C. Celikutku, S. F. Jafri, E. Borfecchia, Q. Wehrung, R. Gobetto, and A. Pavese, “Setting reaction of a olivine-based Mg-phosphate cement,” Cem. Concr. Res., 186, 107694, 2024. https://doi.org/10.1016/j.cemconres.2024.107694.
  • [31] D. Alfonso, M. Dugarte, J. Carrillo, and C. A. Arteta, “Effect of aggregate type on the elastic modulus and compressive behavior of concrete: A case study in Colombia,” Constr. Build. Mater., vol. 411, 134131, 2024. https://doi.org/10.1016/j.conbuildmat.2023.134131.
  • [32] A.-I. Ndon and A. E. Ikpe, "Experimental study on the effect of different coarse aggregate sizes on the strength of concrete," Int. J. Eng. Innov. Res., vol. 3, no. 1, pp. 29–38, 2021. https://doi.org/10.47933/ijeir.779307.
  • [33] R. Vandhiyan, T. J. Vijay, and M. K. M., "Effect of fine aggregate properties on cement mortar strength," Mater. Today Proc., vol. 37, pp. 2019–2026, 2021. https://doi.org/10.1016/j.matpr.2020.07.498.
  • [34] G. A. Rao, "Role of water–binder ratio on the strength development in mortars incorporated with silica fume," Cem. Concr. Res., vol. 31, pp. 443–447, 2001. https://doi.org/10.1016/S0008-8846(00)00500-7.
  • [35] C.R. Panda, K.K. Mishra, K.C. Panda, B.D. Nayak, and B.B. Nayak, “Environmental and technical assessment of ferrochrome slag as concrete aggregate material,” Constr. Build. Mater., 49, pp. 611–621, 2013. https://doi.org/10.1016/j.conbuildmat.2013.08.002.
  • [36] C. Panda, A. Pujari, S.S. Biswal, T. Jena, N. Pradhan, and S.K. Mallick, “Environmental appraisal of ferrochromium slag as concrete pavement material,” Mater. Today Proc., 67, pp. 1064–1068, 2022. https://doi.org/10.1016/j.matpr.2022.07.011.
  • [37] P. Wang, L.-Y.-W. Ke, H.-L. Wu, and C. K. Y. Leung, "Effects of water-to-cement ratio on the performance of concrete and embedded GFRP reinforcement," Constr. Build. Mater., vol. 351, p. 128833, 2022. https://doi.org/10.1016/j.conbuildmat.2022.128833.
  • [38] S. A. Ayanlere, S. O. Ajamu, S. O. Odeyemi, O. E. Ajayi, and M. A. Kareem, “Effects of water-cement ratio on bond strength of concrete,” Mater. Today: Proc., vol. 86, pp. 134–139, 2023. https://doi.org/10.1016/j.matpr.2023.04.686.
  • [39] Y.Y. Kim, K.-M. Lee, J.-W. Bang, and S.-J. Kwon, "Effect of W/C ratio on durability and porosity in cement mortar with constant cement amount," Adv. Mater. Sci. Eng., vol. 2014, 273460, 2014. https://doi.org/10.1155/2014/273460.
  • [40] C. Wang and M. Song, "Influence of water-cement ratio and type of mixing water on the early hydration performance of calcium sulphoaluminate (CSA) cement," Adv. Mater. Sci. Eng., vol. 2021, 5557763, 10 pages, 2021. https://doi.org/10.1155/2021/5557763.
  • [41] D.P. Bentz, “Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations,” Cement Concr. Res., vol. 36, pp. 238–244, 2006. https://doi.org/10.1016/j.cemconres.2005.04.014.
  • [42] R. Cortas, E. Rozière, S. Staquet, A. Hamami, A. Loukili, and M.-P. Delplancke-Ogletree, “Effect of the water saturation of aggregates on the shrinkage induced cracking risk of concrete at early age,” Cement Concr. Compos., vol. 50, pp. 1–9, 2014. https://doi.org/10.1016/j.cemconcomp.2014.02.006.
  • [43] A. Ashokan, S. Rajendran, and R. Dhairiyasamy, "A comprehensive study on enhancing the mechanical properties of steel fiber reinforced concrete through nano silica integration," Sci. Rep., vol. 13, p. 20092, 2023, https://doi.org/10.1038/s41598-023-47475-0.
  • [44] H. Mostafaei, B. Badarloo, N.F. Chamasemani, M.A. Rostampour, and P. Lehner, "Investigating the effects of concrete mix design on the environmental impacts of reinforced concrete structures," Buildings, vol. 13, no. 5, 1313, 2023, https://doi.org/10.3390/buildings13051313.
  • [45] B.K. Mussey, L.N.W. Damoah, R.N.A. Akoto, and Y.D. Bensah, "Optimization of concrete mix design for enhanced performance and durability: integrating chemical and physical properties of aggregates," Cogent Eng., vol. 11, no. 1, p. 2347370, 2024, https://doi.org/10.1080/23311916.2024.2347370.
  • [46] H. Dehghanpour, F. Doğan, S. Subaşı, and M. Maraşlı, “Experimental study on engineering properties of recycled olivine aggregate filled CF reinforced electrically conductive mortars,” Sakarya Univ. J. Sci., vol. 28, no. 3, pp. 452–465, 2024. https://doi.org/10.16984/saufenbilder.1156414

Effects of Alternative Binder and Aggregate Use on the Compressive Strength of Concrete

Yıl 2025, Cilt: 16 Sayı: 3, 789 - 795
https://doi.org/10.24012/dumf.1668362

Öz

The use of industrial wastes in concrete production is of significant importance in reducing environmental impacts and lowering costs. In this study, concrete mixtures were designed by using olivine minerals as a substitute for Portland cement (PC), chromite powder as fine aggregate, and ferrochromium slag as coarse aggregate. The effects of different binder and aggregate ratios on the compressive strength of the concrete were examined after a 7-day curing period. Experimental results showed that mixtures with 5% olivine substitution achieved the highest compressive strength of 22.30 MPa, particularly in mixtures with a cement dosage of 500 kg/m³. This result indicates that the low water/cement ratio and the addition of olivine contribute to increased early-age strength. Furthermore, increasing the chromite powder content to 20% in mixtures with a water/cement ratio of 0.61 led to an 11.7% increase in compressive strength, demonstrating the positive impact of chromite powder on the mechanical performance of the concrete. These findings highlight that cement replacements and aggregate types can significantly affect the mechanical properties of concrete, emphasizing the need for careful selection of both material compositions.

Destekleyen Kurum

Munzur University

Proje Numarası

YLMUB021-17

Teşekkür

This study was supported by the Scientific Research Coordination Unit of Munzur University under project number YLMUB021-17.

Kaynakça

  • [1] S. Mehmood, K. Zamani, S. Khan, Z. Ali, and H. U. Rashid Khan, “The role of green industrial transformation in mitigating carbon emissions: Exploring the channels of technological innovation and environmental regulation,” Energy and Built Environment, vol. 5, pp. 464–479, 2024. https://doi.org/10.1016/j.enbenv.2023.03.001.
  • [2] Y. A. Hajam, R. Kumar, and A. Kumar, “Environmental waste management strategies and vermi transformation for sustainable development,” Environmental Challenges, vol. 13, 100747, 2023. https://doi.org/10.1016/j.envc.2023.100747.
  • [3] A. I. Almohana, M. Y. Abdulwahid, I. Galobardes, J. Mushtaq, and S. F. Almojil, "Producing sustainable concrete with plastic waste: A review," Environ. Challenges, vol. 9, p. 100626, 2022. https://doi.org/10.1016/j.envc.2022.100626.
  • [4] T. Esin and N. Cosgun, “A study conducted to reduce construction waste generation in Turkey,” Building and Environment, vol. 42, pp. 1667–1674, 2007. https://doi.org/10.1016/j.buildenv.2006.02.008.
  • [5] İ. Şanal, “Beton üretiminin karbondioksit emisyonları açısından önemi: Toplumsal ve çevresel etkiler,” Politeknik Dergisi, vol. 21, no. 2, pp. 369–378, 2018.
  • [6] J. M. Etcheverry, Y. A. Villagran-Zaccardi, P. Van den Heede, V. Hallet, and N. De Belie, “Effect of sodium sulfate activation on the early age behaviour and microstructure development of hybrid cementitious systems containing Portland cement, and blast furnace slag,” Cement and Concrete Composites, vol. 141, 105101, 2023. https://doi.org/10.1016/j.cemconcomp.2023.105101.
  • [7] M.A.G.P. Perera and P.G. Ranjith, “Eco-friendly cementitious composites for enhanced strength: Emerging trends and innovations,” Journal of Cleaner Production, vol. 468, 142962, 2024. https://doi.org/10.1016/j.jclepro.2024.142962.
  • [8] M. Şahin Yön, B. Yön, M. Karataş, and A. Benli, “Sustainable use of boron waste and volcanic scoria in slag-based self-compacting alkali-activated mortars: Fresh, mechanical and durability properties,” Sustain. Chem. Pharm., vol. 41, 101664, 2024. https://doi.org/10.1016/j.scp.2024.101664.
  • [9] S. Cemalgil, O. Onat, M. K. Tanaydın, and S. Etli, “Effect of waste textile dye adsorbed almond shell on self-compacting mortar,” Construction and Building Materials, vol. 300, 123978, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123978.
  • [10] M. Şahin Yön, “Mechanical, durability and microstructure properties of eco-friendly self-compacting mortars with addition of volcanic scoria, silica fume and boron waste as cement replacement,” Construction and Building Materials, vol. 462, 139894, 2025. https://doi.org/10.1016/j.conbuildmat.2025.139894.
  • [11] A. Benli, O. Y. Bayraktar, M. Karataş, B. Bodur, M. U. Yılmazoğlu, and G. Kaplan, “Dunite powder as a green precursor in one-part alkali-activated composites: Effects on mechanical and durability properties,” Sustainable Chemistry and Pharmacy, vol. 44, 101964, 2025. https://doi.org/10.1016/j.scp.2025.101964.
  • [12] Y. Lan, L. Zhang, X. Li, W. Liu, X. Su, and Z. Lin, “Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe2+(Cr3+X, Fe3+2-x)O4 and its magnetic separation,” Science of the Total Environment, vol. 813, 152637, 2022. http://dx.doi.org/10.1016/j.scitotenv.2021.152637.
  • [13] Z. Bayer Öztürk, S. Dal, Characterization of industrial ceramic glazes containing chromite processing waste: Experimental factorial design effects on color parameters, Mater. Chem. Phys. 282 125928, 2022. https://doi.org/10.1016/j.matchemphys.2022.125928.
  • [14] S.K. Das, A. K. Tripathi, S. K. Kandi, S. M. Mustakim, B. Bhoi, and P. Rajput, “Ferrochrome slag: A critical review of its properties, environmental issues and sustainable utilization,” Journal of Environmental Management, vol. 326, 116674, 2023. https://doi.org/10.1016/j.jenvman.2022.116674.
  • [15] B. Aygün, E. Şakar, O. Agar, M. I. Sayyed, A. Karabulut, and V. P. Singh, “Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications,” Prog. Nucl. Energy, vol. 133, 103645, 2021. https://doi.org/10.1016/j.pnucene.2021.103645.
  • [16] İ. Acar, “Sintering properties of olivine and its utilization potential as a refractory raw material: Mineralogical and microstructural investigations,” Ceram. Int., vol. 46, pp. 28025–28034, 2020. https://doi.org/10.1016/j.ceramint.2020.07.297.
  • [17] ASTM C128, Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, 2015.
  • [18] ASTM C29, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate, ASTM International, West Conshohocken, PA, 2017.
  • [19] TS EN 206-1, Concrete – Part 1: Specification, performance, production and conformity, Turkish Standards Institution, Ankara, 2002.
  • [20] TS 802, Design of concrete mixes, Turkish Standards Institution, Ankara, 2016.
  • [21] TS EN 12390-3, Testing hardened concrete – Part 3: Compressive strength of test specimens, Turkish Standards Institution, Ankara, 2009.
  • [22] K. Kaewmanee and S. Tangtermsirikul, “Properties of binder systems containing cement, fly ash, and limestone powder,” Songklanakarin J. Sci. Technol., vol. 36, no. 5, pp. 569–576, Sep.–Oct. 2014.
  • [23] G.C. Wang, "Slag use in cement manufacture and cementitious applications," The Utilization of Slag in Civil Infrastructure Construction, pp. 305-337, 2016. https://doi.org/10.1016/B978-0-08-100381-7.00013-6.
  • [24] H. Polat and C. Özel, "The effects of water/cement ratio and cement dosage variables on the performance of shotcrete: Compressive strength and drying shrinkage perspective," Turkish Journal of Engineering and Environmental Sciences, vol. 12, no. 2, pp. 82-87, 2023. https://doi.org/10.46810/tdfd.1291146.
  • [25] S. Khalid, K. Rashid, K. Mawra, Z. Tariq, H. Kim, and M. Ju, “Multimodal optimization of concrete mix design for sustainable load bearing wall panels: Mean-mix − Artificial Intelligence − experimentation fusion,” Case Stud. Constr. Mater., vol. 21, e03868, 2024. https://doi.org/10.1016/j.cscm.2024.e03868.
  • [26] W. Piasta and B. Zarzycki, "The effect of cement paste volume and w/c ratio on shrinkage strain, water absorption and compressive strength of high performance concrete," Construction and Building Materials, vol. 140, pp. 395-402, 2017. https://doi.org/10.1016/j.conbuildmat.2017.02.033.
  • [27] B. Song, J. Huang, M. Yang, M. Zheng, L. Yang, and F. Wang, “Study on high supplementary cementitious materials content cement: Design and analysis based on response surface method,” Construction and Building Materials, vol. 467, 140398, 2025. https://doi.org/10.1016/j.conbuildmat.2025.140398.
  • [28] M. Oesman and Haryadi, “Production and application of olivine nano-silica in concrete,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 204, 012008, 2017. https://doi.org/10.1088/1757-899X/204/1/012008.
  • [29] M. Achang and M. Radonjic, “Adding olivine micro particles to Portland cement based wellbore cement slurry as a sacrificial material: A quest for the solution in mitigating corrosion of wellbore cement,” Cem. Concr. Compos., 121, 104078, 2021. https://doi.org/10.1016/j.cemconcomp.2021.104078.
  • [30] D. Bernasconi, A. Viani, L. Zárybnická, S. Bordignon, J. R. A. Godinho, A. Maximenko, C. Celikutku, S. F. Jafri, E. Borfecchia, Q. Wehrung, R. Gobetto, and A. Pavese, “Setting reaction of a olivine-based Mg-phosphate cement,” Cem. Concr. Res., 186, 107694, 2024. https://doi.org/10.1016/j.cemconres.2024.107694.
  • [31] D. Alfonso, M. Dugarte, J. Carrillo, and C. A. Arteta, “Effect of aggregate type on the elastic modulus and compressive behavior of concrete: A case study in Colombia,” Constr. Build. Mater., vol. 411, 134131, 2024. https://doi.org/10.1016/j.conbuildmat.2023.134131.
  • [32] A.-I. Ndon and A. E. Ikpe, "Experimental study on the effect of different coarse aggregate sizes on the strength of concrete," Int. J. Eng. Innov. Res., vol. 3, no. 1, pp. 29–38, 2021. https://doi.org/10.47933/ijeir.779307.
  • [33] R. Vandhiyan, T. J. Vijay, and M. K. M., "Effect of fine aggregate properties on cement mortar strength," Mater. Today Proc., vol. 37, pp. 2019–2026, 2021. https://doi.org/10.1016/j.matpr.2020.07.498.
  • [34] G. A. Rao, "Role of water–binder ratio on the strength development in mortars incorporated with silica fume," Cem. Concr. Res., vol. 31, pp. 443–447, 2001. https://doi.org/10.1016/S0008-8846(00)00500-7.
  • [35] C.R. Panda, K.K. Mishra, K.C. Panda, B.D. Nayak, and B.B. Nayak, “Environmental and technical assessment of ferrochrome slag as concrete aggregate material,” Constr. Build. Mater., 49, pp. 611–621, 2013. https://doi.org/10.1016/j.conbuildmat.2013.08.002.
  • [36] C. Panda, A. Pujari, S.S. Biswal, T. Jena, N. Pradhan, and S.K. Mallick, “Environmental appraisal of ferrochromium slag as concrete pavement material,” Mater. Today Proc., 67, pp. 1064–1068, 2022. https://doi.org/10.1016/j.matpr.2022.07.011.
  • [37] P. Wang, L.-Y.-W. Ke, H.-L. Wu, and C. K. Y. Leung, "Effects of water-to-cement ratio on the performance of concrete and embedded GFRP reinforcement," Constr. Build. Mater., vol. 351, p. 128833, 2022. https://doi.org/10.1016/j.conbuildmat.2022.128833.
  • [38] S. A. Ayanlere, S. O. Ajamu, S. O. Odeyemi, O. E. Ajayi, and M. A. Kareem, “Effects of water-cement ratio on bond strength of concrete,” Mater. Today: Proc., vol. 86, pp. 134–139, 2023. https://doi.org/10.1016/j.matpr.2023.04.686.
  • [39] Y.Y. Kim, K.-M. Lee, J.-W. Bang, and S.-J. Kwon, "Effect of W/C ratio on durability and porosity in cement mortar with constant cement amount," Adv. Mater. Sci. Eng., vol. 2014, 273460, 2014. https://doi.org/10.1155/2014/273460.
  • [40] C. Wang and M. Song, "Influence of water-cement ratio and type of mixing water on the early hydration performance of calcium sulphoaluminate (CSA) cement," Adv. Mater. Sci. Eng., vol. 2021, 5557763, 10 pages, 2021. https://doi.org/10.1155/2021/5557763.
  • [41] D.P. Bentz, “Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations,” Cement Concr. Res., vol. 36, pp. 238–244, 2006. https://doi.org/10.1016/j.cemconres.2005.04.014.
  • [42] R. Cortas, E. Rozière, S. Staquet, A. Hamami, A. Loukili, and M.-P. Delplancke-Ogletree, “Effect of the water saturation of aggregates on the shrinkage induced cracking risk of concrete at early age,” Cement Concr. Compos., vol. 50, pp. 1–9, 2014. https://doi.org/10.1016/j.cemconcomp.2014.02.006.
  • [43] A. Ashokan, S. Rajendran, and R. Dhairiyasamy, "A comprehensive study on enhancing the mechanical properties of steel fiber reinforced concrete through nano silica integration," Sci. Rep., vol. 13, p. 20092, 2023, https://doi.org/10.1038/s41598-023-47475-0.
  • [44] H. Mostafaei, B. Badarloo, N.F. Chamasemani, M.A. Rostampour, and P. Lehner, "Investigating the effects of concrete mix design on the environmental impacts of reinforced concrete structures," Buildings, vol. 13, no. 5, 1313, 2023, https://doi.org/10.3390/buildings13051313.
  • [45] B.K. Mussey, L.N.W. Damoah, R.N.A. Akoto, and Y.D. Bensah, "Optimization of concrete mix design for enhanced performance and durability: integrating chemical and physical properties of aggregates," Cogent Eng., vol. 11, no. 1, p. 2347370, 2024, https://doi.org/10.1080/23311916.2024.2347370.
  • [46] H. Dehghanpour, F. Doğan, S. Subaşı, and M. Maraşlı, “Experimental study on engineering properties of recycled olivine aggregate filled CF reinforced electrically conductive mortars,” Sakarya Univ. J. Sci., vol. 28, no. 3, pp. 452–465, 2024. https://doi.org/10.16984/saufenbilder.1156414
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Mustafa Pala 0000-0002-1623-9978

Nihan Gülmez 0000-0002-8650-9670

Proje Numarası YLMUB021-17
Erken Görünüm Tarihi 30 Eylül 2025
Yayımlanma Tarihi 8 Ekim 2025
Gönderilme Tarihi 31 Mart 2025
Kabul Tarihi 29 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

IEEE M. Pala ve N. Gülmez, “Effects of Alternative Binder and Aggregate Use on the Compressive Strength of Concrete”, DÜMF MD, c. 16, sy. 3, ss. 789–795, 2025, doi: 10.24012/dumf.1668362.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456