Araştırma Makalesi
BibTex RIS Kaynak Göster

Santrifüj Pompa Sistemlerinde Yapısal Tasarım Parametrelerinin Dinamik Özellikler Üzerindeki Etkilerinin Belirlenmesi

Yıl 2025, Cilt: 16 Sayı: 3, 739 - 747
https://doi.org/10.24012/dumf.1721157

Öz

Pompa sistemleri mühendislik uygulamalarında yaygın olarak kullanılmakta olup, çok sayıda mühendislik hesaplamasıyla titizlikle tasarlanır. Mühendisler daha güvenli ve verimli pompalar üretmek için çaba gösterirler. Bu sistemler, şaftlar, çarklar ve yataklar gibi hareketli bileşenleri içeren ve çeşitli dinamik etkilere maruz kalan dinamik yapılardır. Bu tür sistemlerin tasarım aşamasında, dinamik özelliklerinin tasarımla nasıl gelişeceğini anlamak, güvenli ve yüksek performanslı bir çalışma sağlamak için çok önemlidir. Bu çalışmada, santrifüj bir pompa sisteminin şaft, çark ve yataklardan oluşan bir rotor sistemi üzerinde modal analiz ve rotordinamik analiz yapılmıştır. Bu sistemin sayısal bir modeli MATLAB kullanılarak oluşturulmuştur. Santrifüj pompanın hareketli rotoru Euler-Bernoulli kiriş teorisi kullanılarak modellenmiştir. Çark, polar ve çap momentleri ataletleri dikkate alınarak 3 boyutlu katı modeli oluşturulduktan sonra eşdeğer bir disk olarak temsil edilmiştir. Rotora destek sağlayan bilyalı yataklar ise lineer yay ve sönümleme elemanları kullanılarak modellenmiştir. Rotor sisteminin doğal frekanslarının ve kritik hızlarının, şaft desteği için kullanılan iki bilyalı yatak arasındaki farklı mesafeler ve çeşitli yatak sertlik değerleri için nasıl değiştiği araştırılmıştır. Ek olarak, çark ile yataklar arasındaki transfer frekans tepki fonksiyonlarında anti-rezonans frekanslarının varlığı tespit edilmiş ve bunların parametre değişiklikleriyle nasıl farklılık gösterdiği analiz edilmiştir. Yapılan parametre varyasyonları, doğal frekansların ve kritik hızların önemli ölçüde değiştiğini ve bu değişikliklerin mod şekillerine bağlı olarak farklı eğilimler gösterdiğini ortaya koymuştur. Sonuçlar, pompa sistemi rotorlarındaki yapısal tasarım parametrelerinin sistemin dinamik özelliklerini önemli ölçüde etkilediğini göstermektedir.

Kaynakça

  • [1] Z. Huang, B. Han, and Y. Le, “Modeling method of the modal analysis for turbomolecular pump rotor blades”, Vacuum, vol. 144, pp. 145-151, 2017.
  • [2] R.S. Minette, S.F. SilvaNeto, L.A. Vaz, and U.A. Monteiro, “Experimental modal analysis of electrical submersible pumps”, Ocean Engineering, vol. 124, pp. 168–179, 2016.
  • [3] M. Ashri, S. Karuppanan, S. Patil, and I. Ibrahim, “Modal Analysis of a Centrifugal Pump Impeller Using Finite Element Method”, MATEC Web of Conferences, 13, 0403 0 (2014).
  • [4] M.F.B. Fasal Mohamed, and N.A.B. Azmir, “Study on behavior of water treatment pump before and after modification using finite element modal analysis”, IOP Conf. Series: Materials Science and Engineering824 (2020) 012004.
  • [5] P. Bagiński, A. Andrearczyk, P. Ziółkowski, “Investigation of the dynamic behaviour of the vertical rotor of a refrigeration compressor supported by foil bearings”, Renewable Energy 253 (2025) 123505.
  • [6] V. D’Addio, P. Forte, F. Frendo, and R. Squarcini, “Rotordynamic analysis of a centrifugal pump for automotive applications”, Procedia Structural Integrity 24 (2019) 510–525.
  • [7] S. Yong, W. Donglei, J. Tao1, and L. Yanwei, “Modal Analysis on Impeller Rotor of the Axial Flow Pump based on Fluid-structure Interaction”, IOP Conf. Series: Earth and Environmental Science 376 (2019) 012023.
  • [8] M.N. Oza, D.S. Shah, “Theoretical and experimental modal analysis of centrifugal pump radial flow impeller”, IOP Conf. Series: Materials Science and Engineering 992 (2020) 012003 IOP Publishing, doi:10.1088/1757-899X/992/1/012003.
  • [9] S.Q. Yuan, T. Li, J.P. Yuan, and J.J. Zhou, “Static stress and modal analysis on the impeller of screw centrifugal pump”, IOP Conf. Series: Earth and Environmental Science, 15 (2012), 052013doi:10.1088/1755-1315/15/5/052013.
  • [10] Y. Briend, M. Dakel, E. Chatelet, M. Andrianoely, R. Dufour, and S. Baudin, “Effect of multi-frequency parametric excitations on the dynamics of on-board rotor-bearing systems” Mechanism and Machine Theory 145 (2020) 103660.
  • [11] S.Z. Rad, “Finite element, modal testing and modal analysis of a radial flow impeller”, Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 29, No. B2.
  • [12] L. Xin, Q. Li, and Y. Liu, “Dynamic analysis of the impeller under optimized blade design for a pump-turbine”, Journal of Energy Storage 107 (2025) 114900.
  • [13] F. Guo and H. Du, “Modal Analysis of Components and Whole of Gear Pump”, IOP Conf. Series: Earth and Environmental Science 632 (2021) 032005, doi:10.1088/1755-1315/632/3/032005.
  • [14] M.F. White, E. Torbergsen, and V.A. Lumpkin, “Rotordynamic analysis of a vertical pump with tilting-pad journal bearings”, Wear 207 (1997) 128–136.
  • [15] E. Egusquiza, C. Valero, A. Presas, X. Huang, A. Guardo, and U. Seidel, “Analysis of the dynamic response of pump-turbine impellers. Influence of the rotor”, Mechanical Systems and Signal Processing, 68-69, (2016), 330–341.
  • [16] A.R. Al-Obaidi and J. Alhamid, “Analyses of the transient turbulence flow in a 3D impeller axial pump using Novel vibration signals and Inner dynamic simulation techniques”, Flow Measurement and Instrumentation 102 (2025) 102779.
  • [17] K. Wang, G. Luo, Y. Li, R. Xia, and H. Liu, “Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump”, International Journal of Naval Architecture and Ocean Engineering 12 (2020) 71e84.
  • [18] Şen M., Çakar O., and Yiğid O., “Model reduction and dynamic analysis of a rotor system”, VI-International European Conference on Interdisciplinary Scientific Research, August 26-27, 2022 / Bucharest, Romania, pp: 317-329.

Determination of the Effects of Structural Design Parameters on Dynamic Characteristics of Centrifugal Pump Systems

Yıl 2025, Cilt: 16 Sayı: 3, 739 - 747
https://doi.org/10.24012/dumf.1721157

Öz

Pump systems are widely used in engineering applications and are meticulously designed using numerous engineering calculations. Engineers strive to produce safer and more efficient pumps. These systems are dynamic, incorporating moving components such as shafts, impellers, and bearings, all subject to various dynamic effects. During the design phase of such systems, understanding how their dynamic characteristics will evolve with the design is crucial for ensuring safe and high-performance operation. In this study, modal analysis and rotordynamic analysis were performed on a rotor system, consisting of the shaft, impeller, and bearings, of a centrifugal pump system. A numerical model of this system was created using MATLAB. The moving rotor of the centrifugal pump was modeled using the Euler-Bernoulli beam theory. The impeller was represented as an equivalent disk after creating its 3D solid model, taking into account its polar and diametric moments of inertia. The ball bearings supporting the rotor were modeled using linear spring and damping elements. It is investigated how the natural frequencies and critical speeds of the rotor system changed for different distances between the two ball bearings used for shaft support and for various bearing stiffness values. Additionally, the presence of anti-resonance frequencies in the transfer frequency response functions between the impeller and the bearings was identified, and their variations with parameter changes were analyzed. The conducted parameter variations revealed that the natural frequencies and critical speeds changed significantly, and these changes exhibited different tendencies depending on the mode shapes. The results demonstrate that constructional design parameters in pump system rotors significantly impact the system's dynamic characteristics.

Kaynakça

  • [1] Z. Huang, B. Han, and Y. Le, “Modeling method of the modal analysis for turbomolecular pump rotor blades”, Vacuum, vol. 144, pp. 145-151, 2017.
  • [2] R.S. Minette, S.F. SilvaNeto, L.A. Vaz, and U.A. Monteiro, “Experimental modal analysis of electrical submersible pumps”, Ocean Engineering, vol. 124, pp. 168–179, 2016.
  • [3] M. Ashri, S. Karuppanan, S. Patil, and I. Ibrahim, “Modal Analysis of a Centrifugal Pump Impeller Using Finite Element Method”, MATEC Web of Conferences, 13, 0403 0 (2014).
  • [4] M.F.B. Fasal Mohamed, and N.A.B. Azmir, “Study on behavior of water treatment pump before and after modification using finite element modal analysis”, IOP Conf. Series: Materials Science and Engineering824 (2020) 012004.
  • [5] P. Bagiński, A. Andrearczyk, P. Ziółkowski, “Investigation of the dynamic behaviour of the vertical rotor of a refrigeration compressor supported by foil bearings”, Renewable Energy 253 (2025) 123505.
  • [6] V. D’Addio, P. Forte, F. Frendo, and R. Squarcini, “Rotordynamic analysis of a centrifugal pump for automotive applications”, Procedia Structural Integrity 24 (2019) 510–525.
  • [7] S. Yong, W. Donglei, J. Tao1, and L. Yanwei, “Modal Analysis on Impeller Rotor of the Axial Flow Pump based on Fluid-structure Interaction”, IOP Conf. Series: Earth and Environmental Science 376 (2019) 012023.
  • [8] M.N. Oza, D.S. Shah, “Theoretical and experimental modal analysis of centrifugal pump radial flow impeller”, IOP Conf. Series: Materials Science and Engineering 992 (2020) 012003 IOP Publishing, doi:10.1088/1757-899X/992/1/012003.
  • [9] S.Q. Yuan, T. Li, J.P. Yuan, and J.J. Zhou, “Static stress and modal analysis on the impeller of screw centrifugal pump”, IOP Conf. Series: Earth and Environmental Science, 15 (2012), 052013doi:10.1088/1755-1315/15/5/052013.
  • [10] Y. Briend, M. Dakel, E. Chatelet, M. Andrianoely, R. Dufour, and S. Baudin, “Effect of multi-frequency parametric excitations on the dynamics of on-board rotor-bearing systems” Mechanism and Machine Theory 145 (2020) 103660.
  • [11] S.Z. Rad, “Finite element, modal testing and modal analysis of a radial flow impeller”, Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 29, No. B2.
  • [12] L. Xin, Q. Li, and Y. Liu, “Dynamic analysis of the impeller under optimized blade design for a pump-turbine”, Journal of Energy Storage 107 (2025) 114900.
  • [13] F. Guo and H. Du, “Modal Analysis of Components and Whole of Gear Pump”, IOP Conf. Series: Earth and Environmental Science 632 (2021) 032005, doi:10.1088/1755-1315/632/3/032005.
  • [14] M.F. White, E. Torbergsen, and V.A. Lumpkin, “Rotordynamic analysis of a vertical pump with tilting-pad journal bearings”, Wear 207 (1997) 128–136.
  • [15] E. Egusquiza, C. Valero, A. Presas, X. Huang, A. Guardo, and U. Seidel, “Analysis of the dynamic response of pump-turbine impellers. Influence of the rotor”, Mechanical Systems and Signal Processing, 68-69, (2016), 330–341.
  • [16] A.R. Al-Obaidi and J. Alhamid, “Analyses of the transient turbulence flow in a 3D impeller axial pump using Novel vibration signals and Inner dynamic simulation techniques”, Flow Measurement and Instrumentation 102 (2025) 102779.
  • [17] K. Wang, G. Luo, Y. Li, R. Xia, and H. Liu, “Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump”, International Journal of Naval Architecture and Ocean Engineering 12 (2020) 71e84.
  • [18] Şen M., Çakar O., and Yiğid O., “Model reduction and dynamic analysis of a rotor system”, VI-International European Conference on Interdisciplinary Scientific Research, August 26-27, 2022 / Bucharest, Romania, pp: 317-329.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dinamikler, Titreşim ve Titreşim Kontrolü, Makine Teorisi ve Dinamiği
Bölüm Makaleler
Yazarlar

Murat Şen 0000-0002-3063-5635

Erken Görünüm Tarihi 30 Eylül 2025
Yayımlanma Tarihi 6 Ekim 2025
Gönderilme Tarihi 17 Haziran 2025
Kabul Tarihi 7 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

IEEE M. Şen, “Determination of the Effects of Structural Design Parameters on Dynamic Characteristics of Centrifugal Pump Systems”, DÜMF MD, c. 16, sy. 3, ss. 739–747, 2025, doi: 10.24012/dumf.1721157.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456