Araştırma Makalesi
BibTex RIS Kaynak Göster

YARARLI BAKTERİ UYGULAMALARININ BİTKİSEL VERİM VE DAYANIKLILIK MEKANİZMLARINA ETKİLERİ

Yıl 2020, Cilt: 3 Sayı: 1, 37 - 44, 30.03.2020

Öz

Dünyada nüfusun hızlı bir şekilde artması sonucunda her geçen gün besin ihtiyacı artmakta ve buna bağlı olarak tarımsal üretimin arttırılması yönünde farklı uygulamaların kullanılması zorunluluk haline gelmektedir. Verimi arttırmak için kullanılan uygulamaların başında gübre ve ilaç kullanımı gelmektedir. Aşırı gübre ve ilaç kullanımı ise zaman zaman insan ve çevre sağlığını tehdit eder boyutlara ulaşmaktadır. Sürdürülebilir tarım için gübre kullanımını en aza indirmek, bitkisel üretimden maksimum seviyede yararlanmak amacıyla rizosferden elde edilen yararlı mikroorganizmalar kullanılmaktadır. Son yıllarda biyolojik gübrelerin önemi artmış ve kullanım alanları genişlemiştir. Bu kapsamda serbest yaşayan, bitkisel gelişimi teşvik eden, biyolojik savaş ajanı olarak ta adlandırılan veya biyogübre olarak kullanılan rizobakteriler etkin bir şekilde kullanılmaya başlanmıştır. Gelecekte, tarımsal alanda, farklı çevre koşullarına uyum sağlayan, adaptasyon yeteneği yüksek, hastalık ve zararlıların popülasyonlarını baskılayan mikroorganizmalara daha fazla ihtiyaç duyulacağı öngörülmektedir.

Kaynakça

  • Ahemad, M. ve Kibret, M., (2013). Mechanisms andapplications of plant growth promoting rhizobacteria:current perspective. Journal of King Saud University-Science (Article in Press). Anonymous, (1998). https://www.xing.com/communities/posts/bitkisel-ueretimde-ve-tarimsal-savasimda-yeni-bir-yaklasim-olarak-bitki-aktivatoerlerinin-rolue-1005122683 Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S, (2012). Effect of Pseudomonas fluorescent on proline and phytohormonal status ofmaize (Zea mays L.) under water deficit stress. Annals of Biological Research, 3 (2):1054-1062. Ashraf M, Foolad, MR, (2007). Roles of glycine betaine and proline in improving plant abiotic stres resistance. Environmental and Experimental Botany, 59: 206-216. Baysal, Ö., Soylu E. M., and Soylu S. (2003). Induction of defence-related enzymes and resistance by the plant activator acibenzolar-s-methyl in tomato seedlings aganist bacterial canker caused by Clavibactermichiganensis ssp. michiganensis. Plant Pathology, 52.747-753. Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL, 2013. Water stres amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29.789–803. Chen C, Roberson EB, (1996). Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biology & Biochemistry, 28: 877–884. Cowan AK, Cairns ALP, Bartels-Rahm B, (1999). Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. Journal of Experimental Botany, 50: 595–603. Crowe JH, Crowe LM, (1992). Membrane integrity in anhydrobiotic organisms: toward a mechanism for stabilizing dry. In: Somero GN, Osmond CB, Bolis CL (Eds) Water and life, 1st ed.Springer, Berlin, pp. 87–103. Çakmakçı, R., Erat, M., Erdoğan Ü. and Dönmez, M. F., (2007b). The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science, 170, 288-295. Decoteau DR,( 2000). Vegetable Crops. Prentice-Hall Inc. New Jersey, USA. pp.464. Glick B.R, (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41: 109-117. Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL, (2005). Silicon alleviates oxidativedamage of wheat plants in pots under drought. Plant Science, 169:313–321.. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW, (2013). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosumthrough inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal ofPlant GrowthRegulation, 32:245–258. Gutierrez-Manero FJ, Ramos Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M, (2001). The plant growth- promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111(2): 206-211. Gül, A., Kıdoğlu, F., Tüzel, Y. and Tüzel, İ.H., (2008a). Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite, Spanish Journal of Agricultural Research, 6(3):422-429. Heidari M,Golpayegani A,(2012). Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11.57–61. Kohler J, Hernández JA, Fuensanta Caravaca F, Roldán A, (2008). Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in waterstressed plants. Functional Plant Biology: FPB, 35: 141–151. Kotan, R., (2014). Faydalı bakterilerin tarımda kullanımı. Harman Time, 11.44-48. Larcher MI, Bertrand HI, Rapior S, Domerque O, Mantelin S, Cleyet-Marel JC, (2000). Phyllobacterium strain with hormonal capacities enhances growth and nitrate uptake of oil seed rape (Brassica rapus). VthInternational PGPR Workshop, 29 October- 3 November 2000, Cordoba-Argentina. Loper JE, Schroth MN, (1986). Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology, 76: 386-389 Lucy, M., Reed, E. and Glick, B.R., (2004). Aplications of free living plant grovth promoting rhizobacteria. Antonie van Leeuwenhoek, 86: 1–25. Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F., Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA, (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Actaphysiologiae plantarum, 35,451461. Marulanda A, Barea JM, Azco ́n R, (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related tobacterial effectiveness. Journal ofPlant Growth Regulation, 28:115–124. Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G, (1994). Induction of systemic resistance of tobacco necrosis virus by the root-colonizing Pseudomonas flourescensstrain CHAO: Influence of the gacA gene and pyoverdine production. Phytopathology, 84: 139-146. Okon Y, Fallik E, Sarig S, Yahalom E, Tal S, (1988). Plant growth promoting effects of Azospirillum. Nitrogen Fixation: Hundred Years After. Gustav Fisher, Stutttgart, West Germany, 741-746 .p. Ozeretskovskaya, O. L., (1995). Induced resistance in the Solanaceae.: Induced Resistance to Disease in Plants. (Edts. Hammerschmidt, R. and Kuc, J. ) Kluwer Academic Publisers, Dordrecht, Boston, London. 182 p. Pal, K.K., Tilak, K.V.B.R., Saxena, A.K., Dey, R., Singh, C.S., (2000). Antifungal characteristics of a fluorescent Pseudomonasstrains involved in the biological control of Rhizoctonia solani. Microbiol Research 155: 233-242. Patten C, Glick BR, (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42: 207–220. Romerio, R. S. (2000). Preliminary results on PGPR research at the Universidade federal de viçosa, Brazil. Fifth International PGPR Workshop, 29 October - 3 November, 2000, Cordoba-Argentina. Safronova, V.I., Stepanok, V.V., Engqvist, G.L., Alekseyev, Y.V., Belimov, A.A., (2006). Root associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve rowth and nutrient uptake by pea enotypes cultivated in cadmium supplemented soil, Biol. Fertil. Soils, 42.356-362. Salamone IEG, Nelson L, Brown G, (1997). Plant growth promotion by pseudomonas PGPR cytokinin producers. Plant Growth-Promoting Rhizobacteria - Present Status and FutureProspects. Nakanishi Printing, Sapporo, Japan, 316 p. Samancıoğlu,A.,Yıldırım,E.,(2015). Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Arttırmadaki Etkiler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergis.20(1):72-79. Sandhya, V., Ali, S.K.Z., Grover, M., Reddy, G and Venkatswarlu, B., (2010). Effect of plant growth promoting Pseudomonas spp on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation. 62: 21-30. Sarma RK, Saikia R, (2014). Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21 Plant Soil, 377:111–126. Scandalios JG, (1994). Regulation and properties of plant catalases. In: foyer ch, mullineaux pm (eds) causes of photooxidative stress and amelioration ofdefense systems in plants. CRC Press, Boca Raton, Florida, pp. 275–315. Tang WH, (1994). Yield-increasing bacteria (YIB) and biocontrol of sheath blight of rice. Improving Plant Productivity with Rhizosphere Bacteria. Common wealth Scientific and Industrial Research Organization, Adelaide, Australia, 273 p. Turan, M., Ataoğlu, N. ve Sezen, Y., (2004). Fosfor çözücü bakterinin (Bacillus megaterium) domates (Lycopersicon esculentum L.) bitkisinin verimi ve fosfor alımı üzerine etkileri, Türkiye 3. Ulusal Gübre Kongresi, Tarım-Sanayi-Çevre, 11-13 Ekim 2004, Tokat, 1:939-944. Wei G, Kloepper JW, Tuzun S, (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculareby select strains of plant growth-promoting rhizobacteria. Phytopathology, 81: 1508–1512. Yang J, Kloepper JW, Ryu CM, (2008). Rhizosphere bacteria help plants tolerate abiotic stress. Trends In Plant Science, 14,1-4. Yuwono T, Handayani D, Soedarsono J, (2005). The role of osmotolerant rhizobacteria in rice growth different drought conditions. Australian Journal of Agricultural Research, 56: 715-721.
Yıl 2020, Cilt: 3 Sayı: 1, 37 - 44, 30.03.2020

Öz

Kaynakça

  • Ahemad, M. ve Kibret, M., (2013). Mechanisms andapplications of plant growth promoting rhizobacteria:current perspective. Journal of King Saud University-Science (Article in Press). Anonymous, (1998). https://www.xing.com/communities/posts/bitkisel-ueretimde-ve-tarimsal-savasimda-yeni-bir-yaklasim-olarak-bitki-aktivatoerlerinin-rolue-1005122683 Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S, (2012). Effect of Pseudomonas fluorescent on proline and phytohormonal status ofmaize (Zea mays L.) under water deficit stress. Annals of Biological Research, 3 (2):1054-1062. Ashraf M, Foolad, MR, (2007). Roles of glycine betaine and proline in improving plant abiotic stres resistance. Environmental and Experimental Botany, 59: 206-216. Baysal, Ö., Soylu E. M., and Soylu S. (2003). Induction of defence-related enzymes and resistance by the plant activator acibenzolar-s-methyl in tomato seedlings aganist bacterial canker caused by Clavibactermichiganensis ssp. michiganensis. Plant Pathology, 52.747-753. Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL, 2013. Water stres amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29.789–803. Chen C, Roberson EB, (1996). Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biology & Biochemistry, 28: 877–884. Cowan AK, Cairns ALP, Bartels-Rahm B, (1999). Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. Journal of Experimental Botany, 50: 595–603. Crowe JH, Crowe LM, (1992). Membrane integrity in anhydrobiotic organisms: toward a mechanism for stabilizing dry. In: Somero GN, Osmond CB, Bolis CL (Eds) Water and life, 1st ed.Springer, Berlin, pp. 87–103. Çakmakçı, R., Erat, M., Erdoğan Ü. and Dönmez, M. F., (2007b). The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science, 170, 288-295. Decoteau DR,( 2000). Vegetable Crops. Prentice-Hall Inc. New Jersey, USA. pp.464. Glick B.R, (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41: 109-117. Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL, (2005). Silicon alleviates oxidativedamage of wheat plants in pots under drought. Plant Science, 169:313–321.. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW, (2013). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosumthrough inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal ofPlant GrowthRegulation, 32:245–258. Gutierrez-Manero FJ, Ramos Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M, (2001). The plant growth- promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111(2): 206-211. Gül, A., Kıdoğlu, F., Tüzel, Y. and Tüzel, İ.H., (2008a). Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite, Spanish Journal of Agricultural Research, 6(3):422-429. Heidari M,Golpayegani A,(2012). Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11.57–61. Kohler J, Hernández JA, Fuensanta Caravaca F, Roldán A, (2008). Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in waterstressed plants. Functional Plant Biology: FPB, 35: 141–151. Kotan, R., (2014). Faydalı bakterilerin tarımda kullanımı. Harman Time, 11.44-48. Larcher MI, Bertrand HI, Rapior S, Domerque O, Mantelin S, Cleyet-Marel JC, (2000). Phyllobacterium strain with hormonal capacities enhances growth and nitrate uptake of oil seed rape (Brassica rapus). VthInternational PGPR Workshop, 29 October- 3 November 2000, Cordoba-Argentina. Loper JE, Schroth MN, (1986). Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology, 76: 386-389 Lucy, M., Reed, E. and Glick, B.R., (2004). Aplications of free living plant grovth promoting rhizobacteria. Antonie van Leeuwenhoek, 86: 1–25. Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F., Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA, (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Actaphysiologiae plantarum, 35,451461. Marulanda A, Barea JM, Azco ́n R, (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related tobacterial effectiveness. Journal ofPlant Growth Regulation, 28:115–124. Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G, (1994). Induction of systemic resistance of tobacco necrosis virus by the root-colonizing Pseudomonas flourescensstrain CHAO: Influence of the gacA gene and pyoverdine production. Phytopathology, 84: 139-146. Okon Y, Fallik E, Sarig S, Yahalom E, Tal S, (1988). Plant growth promoting effects of Azospirillum. Nitrogen Fixation: Hundred Years After. Gustav Fisher, Stutttgart, West Germany, 741-746 .p. Ozeretskovskaya, O. L., (1995). Induced resistance in the Solanaceae.: Induced Resistance to Disease in Plants. (Edts. Hammerschmidt, R. and Kuc, J. ) Kluwer Academic Publisers, Dordrecht, Boston, London. 182 p. Pal, K.K., Tilak, K.V.B.R., Saxena, A.K., Dey, R., Singh, C.S., (2000). Antifungal characteristics of a fluorescent Pseudomonasstrains involved in the biological control of Rhizoctonia solani. Microbiol Research 155: 233-242. Patten C, Glick BR, (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42: 207–220. Romerio, R. S. (2000). Preliminary results on PGPR research at the Universidade federal de viçosa, Brazil. Fifth International PGPR Workshop, 29 October - 3 November, 2000, Cordoba-Argentina. Safronova, V.I., Stepanok, V.V., Engqvist, G.L., Alekseyev, Y.V., Belimov, A.A., (2006). Root associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve rowth and nutrient uptake by pea enotypes cultivated in cadmium supplemented soil, Biol. Fertil. Soils, 42.356-362. Salamone IEG, Nelson L, Brown G, (1997). Plant growth promotion by pseudomonas PGPR cytokinin producers. Plant Growth-Promoting Rhizobacteria - Present Status and FutureProspects. Nakanishi Printing, Sapporo, Japan, 316 p. Samancıoğlu,A.,Yıldırım,E.,(2015). Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Arttırmadaki Etkiler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergis.20(1):72-79. Sandhya, V., Ali, S.K.Z., Grover, M., Reddy, G and Venkatswarlu, B., (2010). Effect of plant growth promoting Pseudomonas spp on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation. 62: 21-30. Sarma RK, Saikia R, (2014). Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21 Plant Soil, 377:111–126. Scandalios JG, (1994). Regulation and properties of plant catalases. In: foyer ch, mullineaux pm (eds) causes of photooxidative stress and amelioration ofdefense systems in plants. CRC Press, Boca Raton, Florida, pp. 275–315. Tang WH, (1994). Yield-increasing bacteria (YIB) and biocontrol of sheath blight of rice. Improving Plant Productivity with Rhizosphere Bacteria. Common wealth Scientific and Industrial Research Organization, Adelaide, Australia, 273 p. Turan, M., Ataoğlu, N. ve Sezen, Y., (2004). Fosfor çözücü bakterinin (Bacillus megaterium) domates (Lycopersicon esculentum L.) bitkisinin verimi ve fosfor alımı üzerine etkileri, Türkiye 3. Ulusal Gübre Kongresi, Tarım-Sanayi-Çevre, 11-13 Ekim 2004, Tokat, 1:939-944. Wei G, Kloepper JW, Tuzun S, (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculareby select strains of plant growth-promoting rhizobacteria. Phytopathology, 81: 1508–1512. Yang J, Kloepper JW, Ryu CM, (2008). Rhizosphere bacteria help plants tolerate abiotic stress. Trends In Plant Science, 14,1-4. Yuwono T, Handayani D, Soedarsono J, (2005). The role of osmotolerant rhizobacteria in rice growth different drought conditions. Australian Journal of Agricultural Research, 56: 715-721.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Yusuf Çelik

Garip Yarşi

Adem Özarslandan

Yayımlanma Tarihi 30 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Çelik, Y., Yarşi, G., & Özarslandan, A. (2020). YARARLI BAKTERİ UYGULAMALARININ BİTKİSEL VERİM VE DAYANIKLILIK MEKANİZMLARINA ETKİLERİ. Dünya Sağlık Ve Tabiat Bilimleri Dergisi, 3(1), 37-44.