Araştırma Makalesi
BibTex RIS Kaynak Göster

Microbiome and Sports Performance

Yıl 2024, Cilt: 7 Sayı: 2, 117 - 126, 31.12.2024
https://doi.org/10.56728/dustad.1560067

Öz

The human body is home a complex ecosystem of trillions of microorganisms called the microbiome. The gut microbiome constitutes the largest and most effective group of microorganisms and plays a role in several physiological processes including digestion and immunity. Recent research into the human microbiome has shed light on the impact of this complex ecosystem on our bodyiesy. For example, studies have shown that endurance athletes have a higher abundance of microorganisms that are specialized into adapting to prolong-lasting energy demands. In this study, we will explore the overall impact of microbiome on sports performance and examine the possible connections between microbiome diversity and various sports. We will detail the role of microbiome in energy metabolism, endurance, and digestive health, and how these mechanisms can optimize athletic performance. This study investigates the impact of gut microbiome on athlete performance, the relationship between digestive health and energy metabolism and endurance, and the potential connections between microbiome diversity and various sports types.

Proje Numarası

-

Kaynakça

  • Petriz, B. A., Castro, A. P., Almeida, J. A., Gomes, C. P., Fernandes, G. R., Kruger, R. H., ... & Franco, O. L. (2014). Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC genomics, 15, 1-13.
  • Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., ... & O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 67(4), 625-633.
  • Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological reviews, 94(2), 329-354.
  • Choi, J. J., Eum, S. Y., Rampersaud, E., Daunert, S., Abreu, M. T., & Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental health perspectives, 121(6), 725-730.
  • Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., ... & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913-1920.
  • Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: do opposites distract? The Journal of physiology, 595(9), 2883-2896.
  • Dao, M. C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E. O., ... & MICRO-Obes Consortium. (2016). Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 65(3), 426-436.
  • Kar, D. H., Baxter, P., & Gül, R. J. ( 1981 ). Dayanıklılık yarışında yarışan atlarda kas lifi bileşimi ve glikojen tükenmesi. Veteriner Rec., 108, 374 – 378.
  • Evans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S., Dougherty, J., ... & Ciancio, M. J. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS one, 9(3), e92193.
  • Gallè, F., Valeriani, F., Cattaruzza, M. S., Gianfranceschi, G., Liguori, R., Antinozzi, M., ... & Romano Spica, V. (2020). Mediterranean diet, physical activity and gut microbiome composition: a cross-sectional study among healthy young Italian adults. Nutrients, 12(7), 2164.
  • Heinonen, I., Kalliokoski, K. K., Hannukainen, J. C., Duncker, D. J., Nuutila, P., & Knuuti, J. (2014). Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology, 29(6), 421-436.
  • Hsu, Y. J., Chiu, C. C., Li, Y. P., Huang, W. C., Te Huang, Y., Huang, C. C., & Chuang, H. L. (2015). Effect of intestinal microbiota on exercise performance in mice. The Journal of Strength & Conditioning Research, 29(2), 552-558.
  • Jang, L. G., Choi, G., Kim, S. W., Kim, B. Y., Lee, S., & Park, H. (2019). The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. Journal of the International Society of Sports Nutrition, 16(1), 1-10.
  • Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: the physiology of champions. The Journal of physiology, 586(1), 35-44.
  • Kang, S. S., Jeraldo, P. R., Kurti, A., Miller, M. E. B., Cook, M. D., Whitlock, K., ... & Fryer, J. D. (2014). Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Molecular neurodegeneration, 9, 1-12.
  • Lambert, J. E., Myslicki, J. P., Bomhof, M. R., Belke, D. D., Shearer, J., & Reimer, R. A. (2015). Exercise training modifies gut microbiota in normal and diabetic mice. Applied Physiology, Nutrition, and Metabolism, 40(7), 749-752.
  • Lamprecht, M., Bogner, S., Schippinger, G., Steinbauer, K., Fankhauser, F., Hallstroem, S., & Greilberger, J. F. (2012). Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. Journal of the International Society of Sports Nutrition, 9, 1-13.
  • Manor, O., Dai, C. L., Kornilov, S. A., Smith, B., Price, N. D., Lovejoy, J. C., ... & Magis, A. T. (2020). Health and disease markers correlate with gut microbiome composition across thousands of people. Nature communications, 11(1), 5206.
  • Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara, N., & Hara, H. (2008). Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Bioscience, biotechnology, and biochemistry, 72(2), 572-576.
  • McFadzean, R. (2014). Exercise can help modulate human gut microbiota. Honors Thesis: Robert McFadzean Thesis advisor: Dr. Rob Knight 04/07/2014 University of Colorado Department of Evolutionary Biology.
  • Opitz, D., Lenzen, E., Opiolka, A., Redmann, M., Hellmich, M., Bloch, W., ... & Brinkmann, C. (2015). Endurance training alters basal erythrocyte MCT-1 contents and affects the lactate distribution between plasma and red blood cells in T2DM men following maximal exercise. Canadian journal of physiology and pharmacology, 93(6), 413-419.
  • Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen, L., Lek, S. H., ... & Weinstock, G. M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5, 1-13.
  • Queipo-Ortuno, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M., Cardona, F. … Tinahones, F. J. (2013). Gut microbiota composition in male rat models under different nutritional status and 457 physical activity and its association with serum leptin and ghrelin levels. PLoS One, 8(5), e65465.
  • Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K. ... & Gordon, J. I. (2008). Effects of the gut microbiota on host adiposityare modulated by the short-chain fatty-acidbinding G proteincoupled receptor, Gpr41. Proceedings of the National Academy of Sciences, 105(43), 16767-16772.
  • Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L. D. ... & Kostic, A. D. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature medicine, 25(7), 1104-1109.
  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS biology, 14(8), e1002533.
  • Serin, E. (2019). Profesyonel, amatör ve sedanter futbol oynayanların fiziksel, fizyolojik ve motorik özelliklerinin değerlendirilmesi–anaerobik dayanıklılıklarını etkileyen faktörlerin belirlenmesi. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi, 14(2), 344-355.
  • Serin, E. (2020). Aerobik antrenmanlarin vücut kompozisyonu üzerine etkisi. Dünya Sağlık ve Tabiat Bilimleri Dergisi, 3(1), 17-24.
  • Serin, E., & Taşkın, H. (2016). Anaerobik dayaniklilik ile dikey sıçrama arasindaki ilişki. Spor ve Performans Araştırmaları Dergisi, 7(1), 37-43.
  • Wegierska, A. E., Charitos, I. A., Topi, S., Potenza, M. A., Montagnani, M., & Santacroce, L. (2022). Fiziksel egzersiz ve bağırsak mikrobiyotası arasındaki bağlantı: rekabetçi sporcular için etkileri. Spor Hekimliği, 52, 2355–2369.
  • West, N. P., Horn, P. L., Pyne, D. B., Gebski, V. J., Lahtinen, S. J., Fricker, P. A., & Cripps, A. W. (2014). Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clinical Nutrition, 33(4), 581-587.

Mikrobiyom ve Spor Performansı

Yıl 2024, Cilt: 7 Sayı: 2, 117 - 126, 31.12.2024
https://doi.org/10.56728/dustad.1560067

Öz

: İnsan vücudu, mikrobiyom adı verilen trilyonlarca mikroorganizmanın bir arada bulunduğu karmaşık bir ekosistemi barındırır. Bağırsak mikrobiyomu, bu mikroorganizmaların en büyük ve en etkili kısmını oluşturur ve sindirimden bağışıklık sistemine kadar birçok fizyolojik süreçte rol oynar. Son yıllarda, insan mikrobiyomu üzerine yapılan araştırmaların sayısındaki artış, bu karmaşık ekosistemin vücut üzerindeki etkilerini daha iyi anlamamızı sağlamıştır. Örneğin, dayanıklılık sporcularının mikrobiyomlarının, uzun süreli enerji taleplerine uyum sağlamak için spesifik mikroorganizmalar açısından daha zengin olduğu bulunmuştur. Bu araştırmada, mikrobiyomun sporcu performansına etkisini anlamaya yönelik genel bir çerçeve çizilecek ve mikrobiyom çeşitliliği ile spor türleri arasındaki olası ilişkiler incelenecektir. Mikrobiyomun enerji metabolizması, dayanıklılık ve sindirim sağlığı üzerindeki rolü detaylandırılacak, bu mekanizmaların sporcuların performansını nasıl optimize edebileceği ele alınacaktır. Bu araştırma, bağırsak mikrobiyomunun sporcu performansı üzerindeki etkisini, sindirim sağlığının enerji metabolizması ve dayanıklılıkla olan ilişkisini incelemekte ve mikrobiyom çeşitliliğinin farklı spor dalları ile olası bağlantılarını araştırmaktadır.

Proje Numarası

-

Kaynakça

  • Petriz, B. A., Castro, A. P., Almeida, J. A., Gomes, C. P., Fernandes, G. R., Kruger, R. H., ... & Franco, O. L. (2014). Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC genomics, 15, 1-13.
  • Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., ... & O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 67(4), 625-633.
  • Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological reviews, 94(2), 329-354.
  • Choi, J. J., Eum, S. Y., Rampersaud, E., Daunert, S., Abreu, M. T., & Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental health perspectives, 121(6), 725-730.
  • Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., ... & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913-1920.
  • Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: do opposites distract? The Journal of physiology, 595(9), 2883-2896.
  • Dao, M. C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E. O., ... & MICRO-Obes Consortium. (2016). Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 65(3), 426-436.
  • Kar, D. H., Baxter, P., & Gül, R. J. ( 1981 ). Dayanıklılık yarışında yarışan atlarda kas lifi bileşimi ve glikojen tükenmesi. Veteriner Rec., 108, 374 – 378.
  • Evans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S., Dougherty, J., ... & Ciancio, M. J. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS one, 9(3), e92193.
  • Gallè, F., Valeriani, F., Cattaruzza, M. S., Gianfranceschi, G., Liguori, R., Antinozzi, M., ... & Romano Spica, V. (2020). Mediterranean diet, physical activity and gut microbiome composition: a cross-sectional study among healthy young Italian adults. Nutrients, 12(7), 2164.
  • Heinonen, I., Kalliokoski, K. K., Hannukainen, J. C., Duncker, D. J., Nuutila, P., & Knuuti, J. (2014). Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology, 29(6), 421-436.
  • Hsu, Y. J., Chiu, C. C., Li, Y. P., Huang, W. C., Te Huang, Y., Huang, C. C., & Chuang, H. L. (2015). Effect of intestinal microbiota on exercise performance in mice. The Journal of Strength & Conditioning Research, 29(2), 552-558.
  • Jang, L. G., Choi, G., Kim, S. W., Kim, B. Y., Lee, S., & Park, H. (2019). The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. Journal of the International Society of Sports Nutrition, 16(1), 1-10.
  • Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: the physiology of champions. The Journal of physiology, 586(1), 35-44.
  • Kang, S. S., Jeraldo, P. R., Kurti, A., Miller, M. E. B., Cook, M. D., Whitlock, K., ... & Fryer, J. D. (2014). Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Molecular neurodegeneration, 9, 1-12.
  • Lambert, J. E., Myslicki, J. P., Bomhof, M. R., Belke, D. D., Shearer, J., & Reimer, R. A. (2015). Exercise training modifies gut microbiota in normal and diabetic mice. Applied Physiology, Nutrition, and Metabolism, 40(7), 749-752.
  • Lamprecht, M., Bogner, S., Schippinger, G., Steinbauer, K., Fankhauser, F., Hallstroem, S., & Greilberger, J. F. (2012). Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. Journal of the International Society of Sports Nutrition, 9, 1-13.
  • Manor, O., Dai, C. L., Kornilov, S. A., Smith, B., Price, N. D., Lovejoy, J. C., ... & Magis, A. T. (2020). Health and disease markers correlate with gut microbiome composition across thousands of people. Nature communications, 11(1), 5206.
  • Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara, N., & Hara, H. (2008). Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Bioscience, biotechnology, and biochemistry, 72(2), 572-576.
  • McFadzean, R. (2014). Exercise can help modulate human gut microbiota. Honors Thesis: Robert McFadzean Thesis advisor: Dr. Rob Knight 04/07/2014 University of Colorado Department of Evolutionary Biology.
  • Opitz, D., Lenzen, E., Opiolka, A., Redmann, M., Hellmich, M., Bloch, W., ... & Brinkmann, C. (2015). Endurance training alters basal erythrocyte MCT-1 contents and affects the lactate distribution between plasma and red blood cells in T2DM men following maximal exercise. Canadian journal of physiology and pharmacology, 93(6), 413-419.
  • Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen, L., Lek, S. H., ... & Weinstock, G. M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5, 1-13.
  • Queipo-Ortuno, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M., Cardona, F. … Tinahones, F. J. (2013). Gut microbiota composition in male rat models under different nutritional status and 457 physical activity and its association with serum leptin and ghrelin levels. PLoS One, 8(5), e65465.
  • Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K. ... & Gordon, J. I. (2008). Effects of the gut microbiota on host adiposityare modulated by the short-chain fatty-acidbinding G proteincoupled receptor, Gpr41. Proceedings of the National Academy of Sciences, 105(43), 16767-16772.
  • Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L. D. ... & Kostic, A. D. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature medicine, 25(7), 1104-1109.
  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS biology, 14(8), e1002533.
  • Serin, E. (2019). Profesyonel, amatör ve sedanter futbol oynayanların fiziksel, fizyolojik ve motorik özelliklerinin değerlendirilmesi–anaerobik dayanıklılıklarını etkileyen faktörlerin belirlenmesi. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi, 14(2), 344-355.
  • Serin, E. (2020). Aerobik antrenmanlarin vücut kompozisyonu üzerine etkisi. Dünya Sağlık ve Tabiat Bilimleri Dergisi, 3(1), 17-24.
  • Serin, E., & Taşkın, H. (2016). Anaerobik dayaniklilik ile dikey sıçrama arasindaki ilişki. Spor ve Performans Araştırmaları Dergisi, 7(1), 37-43.
  • Wegierska, A. E., Charitos, I. A., Topi, S., Potenza, M. A., Montagnani, M., & Santacroce, L. (2022). Fiziksel egzersiz ve bağırsak mikrobiyotası arasındaki bağlantı: rekabetçi sporcular için etkileri. Spor Hekimliği, 52, 2355–2369.
  • West, N. P., Horn, P. L., Pyne, D. B., Gebski, V. J., Lahtinen, S. J., Fricker, P. A., & Cripps, A. W. (2014). Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clinical Nutrition, 33(4), 581-587.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Mikrobiyoloji, Spor Hekimliği
Bölüm Makaleler
Yazarlar

Doç. Dr. Emre Serin 0000-0001-9596-2912

Proje Numarası -
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 2 Ekim 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Emre Serin, D. D. (2024). Mikrobiyom ve Spor Performansı. Dünya Sağlık Ve Tabiat Bilimleri Dergisi, 7(2), 117-126. https://doi.org/10.56728/dustad.1560067