Antioksidan Parametrelere Fenolün Etkisinin Pullu Sazan (Cyprinus carpio)’ da Araştırılması
Yıl 2024,
Cilt: 7 Sayı: 2, 144 - 150, 31.12.2024
Serpil Mişe Yonar
,
M. Enis Yonar
Öz
Evsel ve endüstriyel atıklarda yaygın olarak bulunan aromatik bir kimyasal olan fenol, su ekosistemlerine girdiğinde omurgasız ve omurgalıları olumsuz etkilemektedir. Tarımsal kimyasallara olan talebin artmasıyla birlikte, büyük miktarda fenol doğrudan bir yan ürün olarak çevreye salınmaktadır. Fenol ve türevleri çevrede daha uzun süre kalma eğilimindedir ve bu da hem insanlar hem de su ekosistemi için bir tehdit oluşturmaktadır. Bu çalışmada farklı konsantrasyonlardaki fenolün pullu sazanda (Cyprinus carpio) oksidatif stres ve bazı antioksidan parametreler üzerine etkisini araştırmak amaçlandı. Üç farklı konsantrasyonda fenol (0,10, 0,25 ve 0,50 ppm) 48 saat süreyle balıklara uygulandı. Deneme sonunda balıklardan alınan dalak örneklerinde oksidatif stresin bir göstergesi olarak malondialdehit düzeyleri ile antioksidan parametreler (katalaz, glutatyon peroksidaz, glutatyon-S-transferaz aktiviteleri ve redükte glutatyon düzeyi) analiz edildi. Fenol verilen grupların doku malondialdehit düzeylerinin kontrol grubuna göre istatistiksel olarak yükseldiği belirlendi (p < 0,05). Fenol uygulanan gruplarda doku katalaz ve glutatyon peroksidaz aktiviteleri ve redükte glutatyon düzeylerinin kontrol grubuna göre anlamlı olarak azaldığı tespit edilirken, doku glutatyon-S-transferaz aktivitelerinin istatistiksel olarak önemli düzeyde arttığı belirlendi (p < 0,05).
Etik Beyan
Çalışma, Fırat Üniversitesi Deneysel Araştırma Merkezi Müdürlüğü (FÜDAM) Su Ürünleri Araştırma Merkezi’ nde Fırat Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu’ nun 22/03/2023 tarih ve 2023/05-01 sayılı izni ile yürütüldü
Kaynakça
- Aebi, H. (1983). Catalase, (Ed. H.U. Bergmeyer), Methods in Enzymatic Analysis, Academic Press.
- Arda, M., Seçer, S. & Sarıeyyüpoğlu, M. (2017). Balık Hastalıkları. Medisan Yayınevi.
- Avilez, I. M., Hori, T. S. F., de Almeida, L. C., Hackbarth, A., Neto, J. C. B. …, Moraes, G., (2008). Effects of phenol in antioxidant metabolism in matrinxã, Brycon amazonicus (Teleostei; Characidae). Comparative Biochemistry and Physiology C 148, 136-142.
- Beutler, E. (1975). Red cell metabolism. (Ed. E. Beutler), A Manual of Biochemical Methods, Grune Strottan, Inc.
- Das, S., Majumder, S., Gupta, S., Dutta, S., & Mukherjee, D. (2016). Effects of phenol on ovarian P450arom gene expression and aromatase activity in vivo and antioxidant metabolism in common carp Cyprinus carpio. Fish Physiology and Biochemistry, 42, 275-286.
- De Moraes, F. D., de Figueiredo, J. S. L., Rossi, P. A., Venturini, F. P., & Moraes, G. (2015). Acute toxicity and sublethal effects of phenol on hematological parameters of channel catfish Ictalurus punctatus and pacu Piaractus mesopotamicus. Ecotoxicology and Environmental Contamination, 10 (1), 31-36.
- Droge, W. (2002). Free radicals in the physiological control of cell function. Physiolological Reviews, 82, 47-95.
- Ellman, G. L. 1(959). Tissue sulphydryl groups. Archieves of Biochemistry and Biophysics, 82, 70-77
- Faggio, C., Pagano, M., Alampi, R., Vazzana, I., & Felice, M. R. (2016). Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquatic Toxicology, 180, 258-265.
- Fontagné, S., Bazin, D., Brèque, J., Vachot, C., Bernarde, C., Rouault, T. … Bergot, P. (2006). Effects of dietary oxidized lipid and vitamin A on the early development and antioxidant status of Siberian sturgeon (Acipencer baeri) larvae. Aquaculture, 257, 400-411
- Fornazier, R. F., Ferreira, R. R., Vitoria, A. P., Molina, S. M. G., Lea, P. J., & Azevedo, R. A. (2002). Effects of cadmium on antioxidant enzyme activities in sugar cane. Biologia Plantarum, 45(1), 91-97
- Gaur, V., & Mathur, A. (2017). Evaluation of Antioxidant profile of Labeo rohita in stress condition after exposure to phenolic compounds. International Journal of Scientific and Research Publications, 7(6), 423-434.
- Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, The Journal of Biological Chemistry, 249 (22), 7130-7139.
- Hamed, R. R., Farid, N. M., Elowa, S. H. E., & Abdalla, A. M. (2003). Glutathione related enzyme levels of freshwater fish as bioindicators of pollution, The Environmentalist, 23, 313-322.
- Hori, T. S. F., Avilez, I. M., Inoue, L. K., & Moraes, G. (2006). Metabolical changes induced by chronic phenol exposure in matrinxã Brycon cephalus (teleostei: characidae) juveniles. Comporative Biochemistry and Physiology C, 143, 67-72.
- Lowry, O. H., Rosenberough, N. J., Farr, A. L., & Randal, R. J. (1951). Protein measurement with folinphenol reagent. Journal of Biochemistry, 193, 265-275.
- Malathi, S. T., & Anuradhaf, V. (2020). Lithium induced toxicity profile of oxygen consumption, haematological parameters and biochemical profiles of Channa punctatus and Oreochromis niloticus. Nature Environment and Pollution Technology, 19(2), 677-685.
- McCord, J. (2000). The evolution of free radicals and oxidative stress. The American Journal of Medine, 108(8), 652-659.
- Morales, A. E., Pèrez-Jimènez, A., Hidalgo, M. C., Abellán, E., & Gabriel C. G. (2004). Oxidative stres and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comporative Biochemistry and Physiology C, 139(1-3), 153-161.
- Muthukumaravel, K., Kanagavalli, V., Pradhoshini, K. P., Vasanthi, N., Santhanabharathi, B., Lubna Alam, L. … Faggio, C. (2023a). Potential biomarker of phenol toxicity in freshwater fish C. mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comparative Biochemistry and Physiology C, 263, 109492.
- Muthukumaravel, K., Pradhoshini, K.P., Kanagavalli, V., Vasanthi, N., Ahmed, M.S., Musthafa, M. S. … Rayindran, B. (2023b). Impact of sublethal phenol in freshwater fish Labeo rohita on biochemical and haematological parameters. Environmental Monitoring Assessment, 195, 10.
- Oruc, E. O., Sevgiler, Y., & Uner, N. (2004). Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comparative Biochemistry and Physiology C, 137, 43-51.
- Pinchuk, I., & Lichtenberg, D. (2002). The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments. Progress in Lipid Research, 41, 279-314.
- Placer, Z. A., Cushman, L., & Johnson, B. C. (1966). Estimation of products of lipid peroxidation (Malonyldialdehyde) in biological fluids. Analytical Biochemistry, 16, 359-364.
- Roche, H., & Bogé, G. (2000). In vivo effects of phenolic compounds on blood parameters of marine fish (Dicentrarchus labrax). Comparative Biochemistry and Physiology C, 125, 345-353.
- Roche, H., & Bogé, G. (1996). Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Marine Environmental Research, 41, 27-43.
- Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., & Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology Environmental Safety, 56, 295-301.
- Sies, H. (1991). Oxidative stress: from basic research to clinical application. The American Journal of Medine, 91, 31-38.
- Storey, K. B. (1996). Oxidative stress: animal adaptations in nature. Brazilian Journal of Medical and Biological Reserach, 29, 1715-1733.
- Valvanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178-189.
- Yu, T. W., & Anderson, D. (1997). Reactive oxygen species-induced DNA damage and its modification: a chemical investigation. Mutation Research, 379, 201-210.
- Zhang, X., Yang, F., Ya, C. Q., & Ying, X. (2008). Oxidative damage in unfertilized eggs of Chinese rare minnow (Gobiocypris rarus) exposed to nonylphenol. Environmental Toxicology and Chemistry, 27(1), 213-219.
Investigation of Effect of Phenol on Antioxidant Parameters in Scaly Carp (Cyprinus Carpio)
Yıl 2024,
Cilt: 7 Sayı: 2, 144 - 150, 31.12.2024
Serpil Mişe Yonar
,
M. Enis Yonar
Öz
Phenol, an aromatic chemical commonly found in domestic and industrial waste, adversely affects invertebrates and vertebrates when it enters aquatic ecosystems. With the increasing demand for agricultural chemicals, large amounts of phenol are released directly into the environment as a by-product. Phenol and its derivatives tend to persist in the environment for longer periods of time, posing a threat to both humans and the aquatic ecosystems. The aim of this study was to investigate the effects of different concentrations of phenol on oxidative stress and some antioxidant parameters in scaly carp (Cyprinus carpio). Three different concentrations of phenol (0.10, 0.25 and 0.50 ppm) were applied to the fish for 48 hours. At the end of the experiment, malondialdehyde levels as an indicator of oxidative stress and antioxidant parameters (catalase, glutathione peroxidase and glutathione-S-transferase activities and reduced glutathione levels) were analyzed in spleen samples taken from fish. It was found that tissue malondialdehyde levels of the phenol-administered groups were statistically increased compared to the control group (p < 0.05). While tissue catalase and glutathione peroxidase activities and reduced glutathione levels were found to be significantly decreased in the phenol-treated groups compared with the control group, tissue glutathione-S-transferase activities were found to be statistically significantly increased (p < 0.05).
Kaynakça
- Aebi, H. (1983). Catalase, (Ed. H.U. Bergmeyer), Methods in Enzymatic Analysis, Academic Press.
- Arda, M., Seçer, S. & Sarıeyyüpoğlu, M. (2017). Balık Hastalıkları. Medisan Yayınevi.
- Avilez, I. M., Hori, T. S. F., de Almeida, L. C., Hackbarth, A., Neto, J. C. B. …, Moraes, G., (2008). Effects of phenol in antioxidant metabolism in matrinxã, Brycon amazonicus (Teleostei; Characidae). Comparative Biochemistry and Physiology C 148, 136-142.
- Beutler, E. (1975). Red cell metabolism. (Ed. E. Beutler), A Manual of Biochemical Methods, Grune Strottan, Inc.
- Das, S., Majumder, S., Gupta, S., Dutta, S., & Mukherjee, D. (2016). Effects of phenol on ovarian P450arom gene expression and aromatase activity in vivo and antioxidant metabolism in common carp Cyprinus carpio. Fish Physiology and Biochemistry, 42, 275-286.
- De Moraes, F. D., de Figueiredo, J. S. L., Rossi, P. A., Venturini, F. P., & Moraes, G. (2015). Acute toxicity and sublethal effects of phenol on hematological parameters of channel catfish Ictalurus punctatus and pacu Piaractus mesopotamicus. Ecotoxicology and Environmental Contamination, 10 (1), 31-36.
- Droge, W. (2002). Free radicals in the physiological control of cell function. Physiolological Reviews, 82, 47-95.
- Ellman, G. L. 1(959). Tissue sulphydryl groups. Archieves of Biochemistry and Biophysics, 82, 70-77
- Faggio, C., Pagano, M., Alampi, R., Vazzana, I., & Felice, M. R. (2016). Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquatic Toxicology, 180, 258-265.
- Fontagné, S., Bazin, D., Brèque, J., Vachot, C., Bernarde, C., Rouault, T. … Bergot, P. (2006). Effects of dietary oxidized lipid and vitamin A on the early development and antioxidant status of Siberian sturgeon (Acipencer baeri) larvae. Aquaculture, 257, 400-411
- Fornazier, R. F., Ferreira, R. R., Vitoria, A. P., Molina, S. M. G., Lea, P. J., & Azevedo, R. A. (2002). Effects of cadmium on antioxidant enzyme activities in sugar cane. Biologia Plantarum, 45(1), 91-97
- Gaur, V., & Mathur, A. (2017). Evaluation of Antioxidant profile of Labeo rohita in stress condition after exposure to phenolic compounds. International Journal of Scientific and Research Publications, 7(6), 423-434.
- Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, The Journal of Biological Chemistry, 249 (22), 7130-7139.
- Hamed, R. R., Farid, N. M., Elowa, S. H. E., & Abdalla, A. M. (2003). Glutathione related enzyme levels of freshwater fish as bioindicators of pollution, The Environmentalist, 23, 313-322.
- Hori, T. S. F., Avilez, I. M., Inoue, L. K., & Moraes, G. (2006). Metabolical changes induced by chronic phenol exposure in matrinxã Brycon cephalus (teleostei: characidae) juveniles. Comporative Biochemistry and Physiology C, 143, 67-72.
- Lowry, O. H., Rosenberough, N. J., Farr, A. L., & Randal, R. J. (1951). Protein measurement with folinphenol reagent. Journal of Biochemistry, 193, 265-275.
- Malathi, S. T., & Anuradhaf, V. (2020). Lithium induced toxicity profile of oxygen consumption, haematological parameters and biochemical profiles of Channa punctatus and Oreochromis niloticus. Nature Environment and Pollution Technology, 19(2), 677-685.
- McCord, J. (2000). The evolution of free radicals and oxidative stress. The American Journal of Medine, 108(8), 652-659.
- Morales, A. E., Pèrez-Jimènez, A., Hidalgo, M. C., Abellán, E., & Gabriel C. G. (2004). Oxidative stres and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comporative Biochemistry and Physiology C, 139(1-3), 153-161.
- Muthukumaravel, K., Kanagavalli, V., Pradhoshini, K. P., Vasanthi, N., Santhanabharathi, B., Lubna Alam, L. … Faggio, C. (2023a). Potential biomarker of phenol toxicity in freshwater fish C. mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comparative Biochemistry and Physiology C, 263, 109492.
- Muthukumaravel, K., Pradhoshini, K.P., Kanagavalli, V., Vasanthi, N., Ahmed, M.S., Musthafa, M. S. … Rayindran, B. (2023b). Impact of sublethal phenol in freshwater fish Labeo rohita on biochemical and haematological parameters. Environmental Monitoring Assessment, 195, 10.
- Oruc, E. O., Sevgiler, Y., & Uner, N. (2004). Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comparative Biochemistry and Physiology C, 137, 43-51.
- Pinchuk, I., & Lichtenberg, D. (2002). The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments. Progress in Lipid Research, 41, 279-314.
- Placer, Z. A., Cushman, L., & Johnson, B. C. (1966). Estimation of products of lipid peroxidation (Malonyldialdehyde) in biological fluids. Analytical Biochemistry, 16, 359-364.
- Roche, H., & Bogé, G. (2000). In vivo effects of phenolic compounds on blood parameters of marine fish (Dicentrarchus labrax). Comparative Biochemistry and Physiology C, 125, 345-353.
- Roche, H., & Bogé, G. (1996). Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Marine Environmental Research, 41, 27-43.
- Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., & Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology Environmental Safety, 56, 295-301.
- Sies, H. (1991). Oxidative stress: from basic research to clinical application. The American Journal of Medine, 91, 31-38.
- Storey, K. B. (1996). Oxidative stress: animal adaptations in nature. Brazilian Journal of Medical and Biological Reserach, 29, 1715-1733.
- Valvanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178-189.
- Yu, T. W., & Anderson, D. (1997). Reactive oxygen species-induced DNA damage and its modification: a chemical investigation. Mutation Research, 379, 201-210.
- Zhang, X., Yang, F., Ya, C. Q., & Ying, X. (2008). Oxidative damage in unfertilized eggs of Chinese rare minnow (Gobiocypris rarus) exposed to nonylphenol. Environmental Toxicology and Chemistry, 27(1), 213-219.