Electrical Wiring Design and Development Studies of a Communication Satellite
Yıl 2024,
Cilt: 2 Sayı: 1, 1 - 12, 24.06.2024
Emre Keskin
,
Onur Kara
,
Sabri Özbek
,
Samet Emre Aydin
,
Serdar Demirdağ
Öz
In this study, information about a harness subsystem, connects signals and electrical power with 25 km of wiring and 1100 connectors, which is designed and developed for the communication satellite consisting of communication module and service module is given. Harness 3-dimensional layout is developed in NX computer aided design (CAD) software, providing key design features i.e., minimum bend radius, easy installation and stress relief. A variety of design solutions are implemented in order to achieve electromagnetic compatible electrical wiring interconnecting system (EWIS). Possible electromagnetic interference sources such as wire-to-wire coupling, electromagnetic field-to-wire coupling and structural current-to-wire coupling are eliminated. The electrical interfaces are developed in three phases: avionics architecture, pin to pin and connectivity design. As intermediate connectors are implemented to harness to provide physical separation which support system level modular design approach, also safe/arm connectors and umbilical connectors are implemented to satisfy functional and operational needs. “On panel” and “in panel” type connector brackets are developed for plug and receptacle connector mating. Harness components are chosen based on thermal ambient conditions and wires are sized according to current derating requirements.
Kaynakça
- Air Force Space Command. (2009). Space and Missile Systems Center Standard, Technical Requirements for Wiring Harness, Space Vehicle. [Online]. Available: https://apps.dtic.mil/sti/citations/ADA633334.
- Amini, R., Aalbers, G., Hamann, R., Jongkind, W., and Beethuizen, P. G. (2006). New Generations of Spacecraft Data Handling Systems: Less Harness, More Reliability. 57th International Astronautical Congress, Valenica, Spain, 1-8.
- Bradley, A. T., and Hare, R. J. (2009). Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection. IEEE International Symposium on Electromagnetic Compatibility, Austin, USA.
- Dayashankara, K. S., Harıharan, V. K., Ra0, M. N., Rajan, G. V. C., and Bokıl, A. A. (1997). EMC Considerations in Spacecraft Harness Design. Proceedings of International Symposium on Electromagnetic Compatibility, Beijing, China, 239-242.
- ECSS. (2012). ECSS-E-HB-20-07A, Space Engineering: Electromagnetic Compatibility Handbook. [Online]. Available: https://ecss.nl/hbstms/ecss-e-hb-20-07a-electromagnetic-compatibility-handbook-5-september-2012/.
- ECSS. (2017). ECSS-E-ST-33-11C Rev.1–Explosive Subsystems and Devices Standard. [Online]. Available: https://ecss.nl/standard/ecss-e-st-33-11c-rev-1-explosive-subsystems-and-devices/.
- ESCC. (2013). Detailed Specification No. 3901/019, Polyimide Insulated Wires and Cables, Low Frequency, 600V, -200 to +200°C Based on Type SPL. [Online]. Available: http://escies.org/escc-specs/published/3901019.pdf.
- ESCC. (2012). Detailed Specification No. 3901/025, Lightweight, Extra Thin, Fluorthermoplastic / Polyimide Insulated Wires and Cables, Low Frequency, 600V, -200 to +200 °C Based on Type CSC. [Online]. Available: http://escies.org/escc-specs/published/3901025.pdf.
- Gwozdecky, K. (2020). Wiring Harness Design Methodologies and Assembly Integration and Test for a Modular Microsatellite Platform. Master of Applied Science, Graduate Department of Institute for Aerospace Studies, University of Toronto, Italy.
- IPC. (2022). IPC/WHMA-A-620-Revision E-Standard Only: Requirements and Acceptance for Cable and Wire Harness Assemblies. [Online]. Available: https://shop.ipc.org/ipcwhma-a-620/ipcwhma-a-620-standard-only/Revision-e/english.
- Junge, A., Wolf, J., Mora, N., Rachidi, F., and Pelissou, P. (2014). Electromagnetic Interference Control Techniques for Spacecraft Harness. International Symposium on Electromagnetic Compatibility, Tokyo, Japanese, 840-843.
- NASA. (2002). Nasa Workmanship Standards, Picture of preferred discrete wire harnesses, book:4, section:4.01, page:2. [Online]. Available: https://workmanship.nasa.gov/lib/insp/2%20books/links/sections/files/401.pdf.
- NASA. (2022). Technical Standard NASA-STD 8739.4A, Workmanship Standard for Crimping, Interconnecting Cables, Harnesses, and Wiring. [Online]. Available: https://standards.nasa.gov/standard/NASA/NASA-STD-87394.
- Reda, R., Ahmed, Y., Magdy, I., Nabil, H., Khamis, M., Refaey, A., Eldabaa, N., Elmagd, M. A., Lila, M. A., Ergawy, H., Elgarf, H., and Abed, G. (2023). Basic Principles and Mechanical Considerations of Satellites: A Short Review. Transactions on Aerospace Research, 272(3), 32-54.
- Rickman, S. L., Iannello, C. J. (2016). Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles. 14th International Conference on Simulation and Experiments in Heat Transfer and its Applications, Ancona, IT.
- Sozbir, N., Bulut, M., Oktem, M. F., Kahriman, A., and Chaix, A. (2008). Design of Thermal Control Subsystem for TUSAT Telecommunication Satellite. World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering, 2(7), 1370-1373.
- Trommnau, J., Kühnle, J., Siegert, J., Inderka, R., and Bauernhansl, T. (2019). Overview of the State of the Art in the Production Process of Automotive Wire Harnesses, Current Research and Future Trends. 52nd CIRP Conference on Manufacturing Systems, Ljubljana, Slovenia, 387-392.
- Van Benthem, R. C., Doctor, F., Malagoli, M., and Bonnafous, B. (2015). Derating Standards and Thermal Modelling Tools for Space Harness Designs. 45th International Conference on Environmental Systems, Bellevue, Washington, 1-8.
- Zhao, Y., Liu, J., Ma, J., and Wu, L. (2021). Multi.Branch Cable Harness Layout Design Based on Genetic Algorithm with Probabilistic Roadmap Method. Chinese Journal of Mechanical Engineering, 33(34), 1-11.
- Zhu1, Z., La Rocca1, G., and Van Tooren, M. J. L. (2017). A Methodology to Enable Automatic 3D Routing of Aircraft Electrical Wiring Interconnection System. CEAS Air & Space Conference, Delft, Netherlands, 287-302.
Bir Haberleşme Uydusunun Elektriksel Kablolama Tasarım ve Geliştirme Çalışmaları
Yıl 2024,
Cilt: 2 Sayı: 1, 1 - 12, 24.06.2024
Emre Keskin
,
Onur Kara
,
Sabri Özbek
,
Samet Emre Aydin
,
Serdar Demirdağ
Öz
Bu çalışmada, haberleşme ve servis modülünden oluşan haberleşme uydusu için tasarlanıp geliştirilen, sinyal ve güç hatlarının bağlantısını sağlayan, 25 km uzunluğunda ve 1100 adet konektöre sahip kablolama alt-sistemi ile ilgili bilgiler verilmiştir. 3-boyutlu kablolama rota tasarımı, minimum büküm yarı çapı, montaj kolaylığı ve konektör çıkışlarında stressiz büküm gibi kritik tasarım çözümlerini sağlamak üzere NX CAD yazılımda gerçekleştirilmiştir. Elektromanyetik uyuma sahip bir elektriksel kablo bağlantı sistemi elde edebilmek için çeşitli tasarım çözümleri uygulanmıştır. Kablolar arası etkileşim, elektromanyetik alan-kablo etkileşimi ve yapı üzerindeki akım-kablo etkileşimi gibi elektromanyetik etkileşim sorunlarına karşı önlemler alınmıştır. Elektriksel arayüz tasarımı üç aşamada çekleştirilmiştir: aviyonik mimari, uçtan uca bağlantı ve bağlanabilirlik tasarımı. Sistem seviyesi modüler tasarımı desteklemek amacıyla kablolamayı fiziksel olarak ayıran arayüz konektörleri kullanılmış olup, fonksiyonel ve operasyonel ihtiyaçları karşılamak üzere güvenli/ateşle konektörü ve göbek-bağı konektörü kullanılmıştır. Sabit ve hareketli konektörlerin montajı için “panel üstü” ve “panel içi” tipte konektör braketleri geliştirilmiştir. Kablolama malzemelerinin seçimi çevresel sıcaklık koşullarına göre gerçekleştirilmiş ve kablolar akım azaltım isterlerine göre boyutlandırılmıştır.
Kaynakça
- Air Force Space Command. (2009). Space and Missile Systems Center Standard, Technical Requirements for Wiring Harness, Space Vehicle. [Online]. Available: https://apps.dtic.mil/sti/citations/ADA633334.
- Amini, R., Aalbers, G., Hamann, R., Jongkind, W., and Beethuizen, P. G. (2006). New Generations of Spacecraft Data Handling Systems: Less Harness, More Reliability. 57th International Astronautical Congress, Valenica, Spain, 1-8.
- Bradley, A. T., and Hare, R. J. (2009). Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection. IEEE International Symposium on Electromagnetic Compatibility, Austin, USA.
- Dayashankara, K. S., Harıharan, V. K., Ra0, M. N., Rajan, G. V. C., and Bokıl, A. A. (1997). EMC Considerations in Spacecraft Harness Design. Proceedings of International Symposium on Electromagnetic Compatibility, Beijing, China, 239-242.
- ECSS. (2012). ECSS-E-HB-20-07A, Space Engineering: Electromagnetic Compatibility Handbook. [Online]. Available: https://ecss.nl/hbstms/ecss-e-hb-20-07a-electromagnetic-compatibility-handbook-5-september-2012/.
- ECSS. (2017). ECSS-E-ST-33-11C Rev.1–Explosive Subsystems and Devices Standard. [Online]. Available: https://ecss.nl/standard/ecss-e-st-33-11c-rev-1-explosive-subsystems-and-devices/.
- ESCC. (2013). Detailed Specification No. 3901/019, Polyimide Insulated Wires and Cables, Low Frequency, 600V, -200 to +200°C Based on Type SPL. [Online]. Available: http://escies.org/escc-specs/published/3901019.pdf.
- ESCC. (2012). Detailed Specification No. 3901/025, Lightweight, Extra Thin, Fluorthermoplastic / Polyimide Insulated Wires and Cables, Low Frequency, 600V, -200 to +200 °C Based on Type CSC. [Online]. Available: http://escies.org/escc-specs/published/3901025.pdf.
- Gwozdecky, K. (2020). Wiring Harness Design Methodologies and Assembly Integration and Test for a Modular Microsatellite Platform. Master of Applied Science, Graduate Department of Institute for Aerospace Studies, University of Toronto, Italy.
- IPC. (2022). IPC/WHMA-A-620-Revision E-Standard Only: Requirements and Acceptance for Cable and Wire Harness Assemblies. [Online]. Available: https://shop.ipc.org/ipcwhma-a-620/ipcwhma-a-620-standard-only/Revision-e/english.
- Junge, A., Wolf, J., Mora, N., Rachidi, F., and Pelissou, P. (2014). Electromagnetic Interference Control Techniques for Spacecraft Harness. International Symposium on Electromagnetic Compatibility, Tokyo, Japanese, 840-843.
- NASA. (2002). Nasa Workmanship Standards, Picture of preferred discrete wire harnesses, book:4, section:4.01, page:2. [Online]. Available: https://workmanship.nasa.gov/lib/insp/2%20books/links/sections/files/401.pdf.
- NASA. (2022). Technical Standard NASA-STD 8739.4A, Workmanship Standard for Crimping, Interconnecting Cables, Harnesses, and Wiring. [Online]. Available: https://standards.nasa.gov/standard/NASA/NASA-STD-87394.
- Reda, R., Ahmed, Y., Magdy, I., Nabil, H., Khamis, M., Refaey, A., Eldabaa, N., Elmagd, M. A., Lila, M. A., Ergawy, H., Elgarf, H., and Abed, G. (2023). Basic Principles and Mechanical Considerations of Satellites: A Short Review. Transactions on Aerospace Research, 272(3), 32-54.
- Rickman, S. L., Iannello, C. J. (2016). Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles. 14th International Conference on Simulation and Experiments in Heat Transfer and its Applications, Ancona, IT.
- Sozbir, N., Bulut, M., Oktem, M. F., Kahriman, A., and Chaix, A. (2008). Design of Thermal Control Subsystem for TUSAT Telecommunication Satellite. World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering, 2(7), 1370-1373.
- Trommnau, J., Kühnle, J., Siegert, J., Inderka, R., and Bauernhansl, T. (2019). Overview of the State of the Art in the Production Process of Automotive Wire Harnesses, Current Research and Future Trends. 52nd CIRP Conference on Manufacturing Systems, Ljubljana, Slovenia, 387-392.
- Van Benthem, R. C., Doctor, F., Malagoli, M., and Bonnafous, B. (2015). Derating Standards and Thermal Modelling Tools for Space Harness Designs. 45th International Conference on Environmental Systems, Bellevue, Washington, 1-8.
- Zhao, Y., Liu, J., Ma, J., and Wu, L. (2021). Multi.Branch Cable Harness Layout Design Based on Genetic Algorithm with Probabilistic Roadmap Method. Chinese Journal of Mechanical Engineering, 33(34), 1-11.
- Zhu1, Z., La Rocca1, G., and Van Tooren, M. J. L. (2017). A Methodology to Enable Automatic 3D Routing of Aircraft Electrical Wiring Interconnection System. CEAS Air & Space Conference, Delft, Netherlands, 287-302.