Karnosik ve Gallik Asidin Çözdürme Sonrası Koç Sperm Parametreleri ve Seminal Plazma Homosistein-Nesfatin Düzeyleri Üzerindeki Etkileri
Yıl 2020,
, 104 - 107, 31.12.2020
Caner Ozturk
,
Şükrü Güngör
,
Neşe Hayat Aksoy
,
Muhammed İnanç
Öz
Sunulan çalışmada koç spermasının çözüm sonu akrozom ve membran bütünlüğü üzerine karnosik ve gallik asidin koruyucu rolü incelendi, homosistein ve nesfatin düzeyleri belirlendi.
Çalışmada her bir koç için altı ejakülat kullanıldı. Beş eşit parçaya bölünen ejakülatlardan, 0.05 mM gallik asit (GA), 2 mM gallik asit, 0.05 mM karnosik asit (CA), 0.2 mM karnosik asit ve katkı maddesi içermeyen (kontrol) gruplar oluşturuldu. Sulandırma işlemi 37 °C'de yapıldı ve 5 ° C de soğutulduktan sonra azot buharında donduruldu.
Çözüm sonu koç sperması canlılığı gallik asit 2mM (%57.13±2.38) grubunda, kontrol grubundan (45.08 ±% 2.98) istatistiksel olarak farklı bulundu (p<0.05). Membran bütünlüğü değerlendirmesinde gruplar arasında istatistiksel fark bulunmadı (p> 0.05). En düşük homosistein seviyesi gallik asit gruplarında (0.67±0.11 ve 0.61±0.26 μmol/L) elde edildi ve kontrol grubu (1.36 ± 0.9 μmol/L) ile istatistiksel olarak farklı bulundu (p <0.05). Nesfatin düzeylerinde gruplar arasında anlamlı fark bulunmadı (p> 0.05).
Sperma sulandırıcısına GA ilavesinin koç spermasının çözüm sonu canlılığı ve membran bütünlüğü üzerine koruyucu ve aynı zamanda homosistein seviyesini düşürücü etkisi olduğu belirlendi. Nesfatin düzeyinin değerlendirilmesinde gruplar arasında anlamlı fark bulunmadı.
Kaynakça
- 1. Andrabi SMH, Maxwell WMC. (2007). A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim Reprod Sci. 99: 223-243.
- 2. Purdy PH. (2006). The post-thaw quality of ram sperm held for 0 to 48 h at 5oC prior to cryopreservation. Anim Reprod Sci. 93: 114-123.
- 3. Matsuoka T, Imai H, Kohno H, et al. (2006). Effect of bovine serum albumin in trehalose in semen diluents for improvement of frozen-thawed ram spermatozoa. J Reprod Dev. 52: 675-683.
- 4. Rizzo A, Sciorsci RL. (2019). Role of homocysteine metabolism in animal reproduction: A review. Research in Veterinary Science. 122: 29-35.
- 5. Faraci FM, Lentz SR. (2004). Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke. 35: 345–347.
- 6. Petras M, Tatarkova Z, Kovalska M, et al. (2014). Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol. 65(1): 15-23.
- 7. Kim J, Yang H. (2012). Nesfatin-1 as a new potent regulator in reproductive system. Development & reproduction. 16(4): 253.
- 8. Oh-I S, Shimizu H, Satoh T, et al. (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 443: 709-712.
- 9. Liu J, Yong H, Liu Y, et al. (2019). Recent advances in the preparation, structural characteristics, biological properties and applications of gallic acid grafted polysaccharides. International Journal of Biological Macromolecules. DOI: 10.1016/j.ijbiomac..11.202.
- 10. Kahkeshani N, Farzaei F, Fotouhi M, et al. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian journal of basic medical sciences. 22(3): 225.
- 11. Badhani B, Sharma N, Kakkar R, et al. (2015). Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. Rsc Advances. 5(35): 27540-27557.
- 12. Choubey S, Varughese LR, Kumar V, et al. (2015). Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharmaceutical patent analyst. 4(4): 305-315.
- 13. Bahri S, Jameleddine S, Shlyonsky V. (2016). Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomedicine & pharmacotherapy. 84: 569-582.
- 14. Munné-Bosch S, Alegre L. (2000). Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta; 210(6): 925-931.
- 15. Fuhrman B, Volkova N, Rosenblat M, et al. (2000). Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxidants and Redox Signaling. 2(3): 491-506.
- 16. Akalın PP, Bülbül B, Coyan K, et al. (2015). Relationship of blood and seminal plasma ceruloplasmin, copper, iron and cadmium concentrations with sperm quality in Merino rams. Small Ruminant Research. 133: 135-139.
- 17. Watson PF. (2000). The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science. 60: 481-492.
- 18. Câmara DR, Silva SV, Almeida FC, et al. (2011). Effects of antioxidants and duration of pre-freezing equilibration on frozen-thawed ram semen. Theriogenology. 76(2): 342-350.
- 19. Clarke R, Daly L, Robinson K, et al. (1991). Hyperhomocysteinemia: an independent risk factor for vascular disease. N Eng J Med. 324(17): 1149–55.
- 20. Blom HJ, Kleinveld HA, Boers GH, et al. (1995). Lipid peroxidation and susceptibility of lowdensity lipoprotein to in vitro oxidation in hyperhomocysteinemia. Eur J Clin Invest. 25(3): 149–54.
- 21. Aitken RJ, West KM. (1990). Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. International Journal of Andrology. 13(6): 433-451.
- 22. Rezk BM, Khanna M, Dewitt S, et al. (2010). Homocysteine Reduces Sperm Motility via Elevation of Mitochondrial Superoxide Anions in Normal and Subfertile subjects: Potential Effect of Co-treatment with Folic acid. Free Radical Biology and Medicine. 49: 195.
- 23. Ranjan A, Choubey M, Yada T, et al. (2019). Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. General and comparative endocrinology. 271: 49-60.
- 24. Gao X, Zhang K, Song M, et al. (2016). Role of nesfatin-1 in the reproductive axis of male rat. Scientific reports. 6: 32877.
- 25. Kuppan G, Balasubramanyam J, Monickaraj F, et al. (2010). Transcriptional regulation of cytokines and oxidative stressby gallic acid in human THP-1 monocytes. Cytokine. 49: 229-234.
- 26. Li D, Liu Z, Zhao W, et al. (2011). A straightforward method to determine thecytocidal and cytopathic effects of the functional groups of gallic acid. ProcessBiochemistry. 46: 2210–2214.
- 27. Nikseresht M, Fallahzadeh AR, Toori MA, et al. (2015). Effects of pomegranate seed oil on the fertilization potency of rat’s sperm. Journal of Clinical and Diagnostic Research. 9: 1-4.
- 28. Güngör Ș, Inanc ME, Ata A. (2019). Effect of gallic acid on ram semen spermatological parameters at+ 4° C storage. Eurasian Journal of Veterinary Sciences. 35(2): 87-92.
- 29. Mehraban Z, Ghaffari Novin M, Golmohammadi MG, et al. (2019). Protective effect of gallic acid on apoptosis of sperm and in vitro fertilization in adult male mice treated with cyclophosphamide. Journal of cellular biochemistry. 120(10): 17250-17257.
- 30. Moreno S, Scheyer T, Romano CS, et al. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res. 40: 223-231.
- 31. Yeni D, Inanc ME, Avdatek F, et al. (2018). Supplementation of rosmarinic acid has reduced oxidative stress on bull spermatozoa following the freeze thawing process. CryoLetters. 39: 156-165.
- 32. Zanganeh Z, Zhandi M, Zare-Shahneh A, et al. (2013). Does rosemary aqueous extract improve buck semen cryopreservation?. Small Ruminant Research. 114(1): 120-125.
- 33. Gonzalez N, Gil L, Martinez F, et al. (2010). Effect of natural antioxidant rosemary in canine soya freezing extender.Reprod Domest Anim. 45: 88.
- 34. Gil L, Mascaro F, Mur P, et al. (2010). Freezing ram semen: the effect of combination of soya and rose-mary essences as a freezing extender on post-thaw sperm motility. Reprod Domest Anim. 45: 91.
Effects of Carnosic and Gallic Acid on Ram Sperm Parameters and Seminal Plasma Homocysteine-Nesfatin Levels after Thawing
Yıl 2020,
, 104 - 107, 31.12.2020
Caner Ozturk
,
Şükrü Güngör
,
Neşe Hayat Aksoy
,
Muhammed İnanç
Öz
In the presented study, the protective role of carnosic and gallic acid on post-thaw ram sperm acrosome and membrane integrity was examined, homocysteine and nesfatin levels were determined.
Six ejaculates for each ram were used in the study. Each ejaculate, split into five equal aliquots was diluted with extenders including 0.05 mM gallic acid (GA), 2 mM gallic acid, 0.05 mM carnosic acid (CA), 0.2 mM carnosic acid and no additive (control) at 37 °C cooled to 5 °C then frozen at nitrogen vapor.
Freeze-thawed ram semen viability was achieved in gallic acid 2mM (57.13± 2.38%) group and statistical difference was found with control group (45.08±2.98%) (p<0.05). There was no statistical difference between the groups in membrane integrity evaluation (p>0.05). The lowest level of homocysteine was obtained in the gallic acid groups (0.67±0.11 and 0.61±0.26 μmol/L) and was found statistically different with the control group (1.36±0.9 μmol/L) (p<0.05). No significant difference was found in nesfatin levels among groups (p>0.05).
GA supplementation in ram semen extender has been determined to protect viability and membrane integrity also to decrease homocysteine level. There was no significant difference between the groups in the evaluation of nesfatin level.
Kaynakça
- 1. Andrabi SMH, Maxwell WMC. (2007). A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim Reprod Sci. 99: 223-243.
- 2. Purdy PH. (2006). The post-thaw quality of ram sperm held for 0 to 48 h at 5oC prior to cryopreservation. Anim Reprod Sci. 93: 114-123.
- 3. Matsuoka T, Imai H, Kohno H, et al. (2006). Effect of bovine serum albumin in trehalose in semen diluents for improvement of frozen-thawed ram spermatozoa. J Reprod Dev. 52: 675-683.
- 4. Rizzo A, Sciorsci RL. (2019). Role of homocysteine metabolism in animal reproduction: A review. Research in Veterinary Science. 122: 29-35.
- 5. Faraci FM, Lentz SR. (2004). Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke. 35: 345–347.
- 6. Petras M, Tatarkova Z, Kovalska M, et al. (2014). Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol. 65(1): 15-23.
- 7. Kim J, Yang H. (2012). Nesfatin-1 as a new potent regulator in reproductive system. Development & reproduction. 16(4): 253.
- 8. Oh-I S, Shimizu H, Satoh T, et al. (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 443: 709-712.
- 9. Liu J, Yong H, Liu Y, et al. (2019). Recent advances in the preparation, structural characteristics, biological properties and applications of gallic acid grafted polysaccharides. International Journal of Biological Macromolecules. DOI: 10.1016/j.ijbiomac..11.202.
- 10. Kahkeshani N, Farzaei F, Fotouhi M, et al. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian journal of basic medical sciences. 22(3): 225.
- 11. Badhani B, Sharma N, Kakkar R, et al. (2015). Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. Rsc Advances. 5(35): 27540-27557.
- 12. Choubey S, Varughese LR, Kumar V, et al. (2015). Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharmaceutical patent analyst. 4(4): 305-315.
- 13. Bahri S, Jameleddine S, Shlyonsky V. (2016). Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomedicine & pharmacotherapy. 84: 569-582.
- 14. Munné-Bosch S, Alegre L. (2000). Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta; 210(6): 925-931.
- 15. Fuhrman B, Volkova N, Rosenblat M, et al. (2000). Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxidants and Redox Signaling. 2(3): 491-506.
- 16. Akalın PP, Bülbül B, Coyan K, et al. (2015). Relationship of blood and seminal plasma ceruloplasmin, copper, iron and cadmium concentrations with sperm quality in Merino rams. Small Ruminant Research. 133: 135-139.
- 17. Watson PF. (2000). The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science. 60: 481-492.
- 18. Câmara DR, Silva SV, Almeida FC, et al. (2011). Effects of antioxidants and duration of pre-freezing equilibration on frozen-thawed ram semen. Theriogenology. 76(2): 342-350.
- 19. Clarke R, Daly L, Robinson K, et al. (1991). Hyperhomocysteinemia: an independent risk factor for vascular disease. N Eng J Med. 324(17): 1149–55.
- 20. Blom HJ, Kleinveld HA, Boers GH, et al. (1995). Lipid peroxidation and susceptibility of lowdensity lipoprotein to in vitro oxidation in hyperhomocysteinemia. Eur J Clin Invest. 25(3): 149–54.
- 21. Aitken RJ, West KM. (1990). Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. International Journal of Andrology. 13(6): 433-451.
- 22. Rezk BM, Khanna M, Dewitt S, et al. (2010). Homocysteine Reduces Sperm Motility via Elevation of Mitochondrial Superoxide Anions in Normal and Subfertile subjects: Potential Effect of Co-treatment with Folic acid. Free Radical Biology and Medicine. 49: 195.
- 23. Ranjan A, Choubey M, Yada T, et al. (2019). Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. General and comparative endocrinology. 271: 49-60.
- 24. Gao X, Zhang K, Song M, et al. (2016). Role of nesfatin-1 in the reproductive axis of male rat. Scientific reports. 6: 32877.
- 25. Kuppan G, Balasubramanyam J, Monickaraj F, et al. (2010). Transcriptional regulation of cytokines and oxidative stressby gallic acid in human THP-1 monocytes. Cytokine. 49: 229-234.
- 26. Li D, Liu Z, Zhao W, et al. (2011). A straightforward method to determine thecytocidal and cytopathic effects of the functional groups of gallic acid. ProcessBiochemistry. 46: 2210–2214.
- 27. Nikseresht M, Fallahzadeh AR, Toori MA, et al. (2015). Effects of pomegranate seed oil on the fertilization potency of rat’s sperm. Journal of Clinical and Diagnostic Research. 9: 1-4.
- 28. Güngör Ș, Inanc ME, Ata A. (2019). Effect of gallic acid on ram semen spermatological parameters at+ 4° C storage. Eurasian Journal of Veterinary Sciences. 35(2): 87-92.
- 29. Mehraban Z, Ghaffari Novin M, Golmohammadi MG, et al. (2019). Protective effect of gallic acid on apoptosis of sperm and in vitro fertilization in adult male mice treated with cyclophosphamide. Journal of cellular biochemistry. 120(10): 17250-17257.
- 30. Moreno S, Scheyer T, Romano CS, et al. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res. 40: 223-231.
- 31. Yeni D, Inanc ME, Avdatek F, et al. (2018). Supplementation of rosmarinic acid has reduced oxidative stress on bull spermatozoa following the freeze thawing process. CryoLetters. 39: 156-165.
- 32. Zanganeh Z, Zhandi M, Zare-Shahneh A, et al. (2013). Does rosemary aqueous extract improve buck semen cryopreservation?. Small Ruminant Research. 114(1): 120-125.
- 33. Gonzalez N, Gil L, Martinez F, et al. (2010). Effect of natural antioxidant rosemary in canine soya freezing extender.Reprod Domest Anim. 45: 88.
- 34. Gil L, Mascaro F, Mur P, et al. (2010). Freezing ram semen: the effect of combination of soya and rose-mary essences as a freezing extender on post-thaw sperm motility. Reprod Domest Anim. 45: 91.