Araştırma Makalesi
BibTex RIS Kaynak Göster

Alternatif silaj bitkilerinin AHP-TOPSIS yöntemi kullanarak değerlendirilmesi

Yıl 2024, Cilt: 17 Sayı: 2, 187 - 193, 31.12.2024
https://doi.org/10.47027/duvetfd.1575895

Öz

Mısır silajı ruminant hayvanların beslenmesinde kullanılan önemli bir yem bitkisidir. Ancak iklim değişikliğine bağlı olarak artan kuraklık probleminin ilerleyen yıllarda bu bitkinin silajlık olarak kullanımını kısıtlaması beklenmektedir. Dolayısıyla mısır bitkisine alternatif silajlık bitkilerin belirlenmesi önemli bir konu haline gelmiştir. Bu çalışmada silaj bitkisi seçiminde yeşil ot verimi, kuru madde (KM) oranı, pH, ham protein (HP) ve sindirilebilir KM oranı kriterlerine dayanarak bir analitik hiyerarşi prosesi (AHP) modeli kullanılmıştır. AHP analizinde yeşil ot veriminin %30, KM’nin %21, sindirilebilir KM’nin %19, pH’nın %18 ve HP’nin %11 oranında etkili olduğu belirlenmiştir. Bu kriterler İdeal Çözüme Benzerliğe Göre Tercih Sırası Tekniği (TOPSIS) analizine entegre edilerek skorlama yapıldığında mısır, yonca, sorgum, ayçiçeği ve buğday hasılının sırasıyla 0.729, 0.715, 0.618, 0.513 ve 0.273 puana sahip oldukları tespit edilmiştir. Sonuç olarak mısır silajından sonraki en iyi seçeneğin yonca silajı olabileceği, ancak bu modellemenin belirli bölgelere özgü saha çalışmaları yapılarak su kullanım verimliliği ve kuraklığa dayanıklılık kriterleri göz önüne alınarak yapılmasının daha etkili sonuçlar vereceği kanısına varılmıştır.

Etik Beyan

Anket çalışmasında kullanılan metot Bingöl Üniversitesi Sağlık Bilimleri Bilimsel Araştırma ve Yayın Etiği Kurulu tarafından onaylanmıştır (Sayı:182951)

Kaynakça

  • Fulgueira CL, Amigot SL, Gaggiotti M, Romero LA, Basílico JC (2007). Forage quality: Techniques for testing. Fresh Prod., 1(2):121-131.
  • Worku A, Tamás T, Szilvia O, Róbert T (2019). Potenital forage resources as alternatives to partial or total substitution of corn silage in dairy cattle nutrition-a review. Anim Breed Fed., 68(2):109-127.
  • Nilahyane A, Islam MA, Mesbah AO, Herbert SK, Garcia y Garcia A (2020). Growth, water productivity, nutritive value, and physiology responses of silage corn to water stress. J Agron., 112(3):1625-1635.
  • Tigchelaar M, Battisti DS, Naylor RL, Ray DK (2018). Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci., 115(26):6644-6649.
  • Getachew G, Putnam DH, De Ben CM, De Peters EJ (2016). Potential of sorghum as an alternative to corn forage. American Journal of Plant Sciences., 7(7):1106-1121.
  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007). Designing sorghum as a dedicated bioenergy feedstock. Biofpr., 1(2):147-157.
  • Samarappuli D, Berti MT (2018). Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. J Clean Prod., 194:515-524.
  • Thomas V, Murray GA, Thacker D, Sneddon D (1982). Sunflower silage in rations for lactating holstein cows. J Dairy Sci., 65(2):267-270.
  • Cardoso-Gutiérrez E, Narváez-López AC, Robles-Jiménez LE ve ark. (2020). Production performance, nutrient digestibility, and milk composition of dairy ewes supplemented with crushed sunflower seeds and sunflower seed silage in corn silage-based diets. Animals., 10(12):2354.
  • Álvarez-García CD, Arriaga-Jordán CM, Estrada-Flores JG, López-González F (2023). Wheat or maize silage in feeding strategies for cows in small-scale dairy systems during the dry season. Chil J Agric Res., 83(4):398-407.
  • Wang Q, Tang B, Han Z (2013). The effects of the different silage on milk yield and composition in dairy cows. Dairy Cows., 9:52-54.
  • Brito AF, Broderick GA (2006). Effect of varying dietary ratios of alfalfa silage to corn silage on production and nitrogen utilization in lactating dairy cows. J Dairy Sci., 89(10):3924-3938.
  • Gamble J, Baker J, Dalzell B, Wente C, Feyereisen G (2022). Ecohydrology of irrigated silage maize and alfalfa production systems in the upper midwest US. Agric Water Manag., 267:107612.
  • Hatice E (2023). Analytical hierarchy process problem solution. (İçinde): Analytic Hierarchy Process. Fabio De F, Antonella P (editörler). IntechOpen, Rijeka, 1-20.
  • Şahin M (2021). Location selection by multi-criteria decision-making methods based on objective and subjective weightings. Knowl Inf Syst., 63(8):1991-2021.
  • Akçay A, Sarıözkan S, Al S (2018). Akademik personelin et tüketim tercihlerinin analitik hiyerarşi prosesi ile değerlendirilmesi. Vet Hekim Der Derg., 89(1):11-24.
  • Yavuz T (2022). AHP-TOPSIS hibrit çok kriterli karar verme tekniğiyle en uygun güçlendirme alternatifinin seçimine İlişkin bir örnek olay İncelemesi Yüksek Lisans Tezi. İstanbul Kültür Üniversitesi İnşaat Mühendisliği, İstanbul, Türkiye.
  • Darko A, Chan APC, Ameyaw EE, ve ark (2019). Review of application of analytic hierarchy process (AHP) in construction. Int J Constr Manag., 19(5):436-452.
  • Bai L, Zhang X, Lu Z ve ark. (2022). Effect of different harvest periods on dry matter accumulation and quality of silage maize, Proceedings of the 4th International Conference on Biomedical Engineering and Bioinformatics, July 07-10.
  • Yıldız H, İlker E, Yıldırım A (2017). Bazı silajlık mısır (Zea mays) çeşit ve çeşit adaylarının verim ve kalite özelliklerinin belirlenmesi. ISUBÜ ZFD., 12(2):81-89.
  • Filya I (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Anim Feed Sci Technol., 116(1):141-150.
  • Li J, Wen X, Yang J ve ark. (2022). Effects of maize varieties on biomass yield and silage quality of maize–soybean intercropping in the qinghai–tibet plateau. Fermentation., 8(10):542.
  • Yılmaz N, Akman O, Önal Aşcı Ö (2020). Bazı silajlık mısır çeşitlerinde (Zea mays L.) verim ve kalite özelliklerinin belirlenmesi. AZD., 9(2):271-278.
  • Khan NA, Yu P, Ali M, Cone JW, Hendriks WH (2015). Nutritive value of maize silage in relation to dairy cow performance and milk quality. J Sci Food Agric., 95(2):238-252.
  • Alvarado-Ramírez ER, Ballesteros-Rodea G, Salem AZ ve ark. (2023). The impact of genotype on chemical composition, feeding value and in vitro rumen degradability of fresh and ensiled forage of native maize (Zea mays L.) from mexico. Agriculture., 13(11):2161.
  • Huang Y, Liang L, Dai S ve ark. (2021). Effect of different regions and ensiling periods on fermentation quality and the bacterial community of whole-plant maize silage. Front microbiol., 12.
  • Sırakaya S (2024). Effects of chitosan and its organic acid solutions on corn silage quality. TURJAF., 12(5):739-746.
  • Meeske R, Basson HM (1998). The effect of a lactic acid bacterial inoculant on maize silage. Anim Feed Sci Technol., 70(3):239-247.
  • Arıcı RÇ, Avcı MA (2022). Orta Anadolu şartlarında farklı silaj sorgum genotiplerinde su stresinin biyokütle verimi ve bazı tarımsal özellikler üzerine etkilerinin belirlenmesi. BBAD., 11(2):145-156.
  • Farhadi A, Paknejad F, Golzardi F, Ilkaee MN, Aghayari F (2022). Effects of limited irrigation and nitrogen rate on the herbage yield, water productivity, and nutritive value of sorghum silage. Commun Soil Sci Plant Anal., 53(5):576-589.
  • Terler G, Resch R, Gappmaier S, Gruber L (2021). Nutritive value for ruminants of different fresh and ensiled sorghum (Sorghum bicolor (L.) moench) varieties harvested at varying maturity stages. Arch Anim Nutr., 75(3):167-182.
  • Rodrigues PHM, Pinedo LA, Meyer PM, da Silva TH, Guimarães ICdSB (2020). Sorghum silage quality as determined by chemical–nutritional factors. Grass Forage Sci., 75(4):462-473.
  • Arriola KG, Vyas D, Kim D ve ark. (2021). Effect of Lactobacillus hilgardii, Lactobacillus buchneri, or their combination on the fermentation and nutritive value of sorghum silage and corn silage. J Dairy Sci., 104(9):9664-9675.
  • McCary CL, Vyas D, Faciola AP, Ferraretto LF (2020). Graduate student literature review: Current perspectives on whole-plant sorghum silage production and utilization by lactating dairy cows. J Dairy Sci., 103(6):5783-5790.
  • Lv X, Chen L, Zhou C ve ark. (2023). Application of different proportions of sweet sorghum silage as a substitute for corn silage in dairy cows. Food sci nutr., 11(6):3575-3587.
  • Demirel M, Bolat D, Çelik S, Bakici Y, Çelik S (2006). Quality of silages from sunflower harvested at different vegetational stages. J Appl Anim Res., 30(2):161-165.
  • Erdoğan S, Yıldız S (2018). Van koşullarında yetiştirilen silajlık mısır (Zea mays L.) ve ayçiçeği (Helianthus annuus L.)’nin verim parametreleri ve besin madde kompozisyonuna ait kalite özellikleri. TÜTAD., 5(3):280-285.
  • Tan M (2015). Nutritive value of sunflower silages ensiled with corn or alfalfa at different rate. J Agric Sci., 21(2):184-191.
  • Santos CBD, Costa KAP, Souza WF ve ark. (2020). Production and quality of sunflower and paiaguas palisadegrass silage in monocropped and intercropping in different forage systems. Acta Sci-Anim Sci., 42:e48304.
  • Filya I (2003). Nutritive value of whole crop wheat silage harvested at three stages of maturity. Anim Feed Sci Technol., 103(1):85-95.
  • Nadeau E (2007). Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage. J Sci Food Agric., 87(5):789-801.
  • Crovetto GM, Galassi G, Rapetti L, Sandrucci A, Tamburini A (1998). Effect of the stage of maturity on the nutritive value of whole crop wheat silage. Livest Prod Sci., 55(1):21-32.
  • Xie ZL, Zhang TF, Chen XZ, Li GD, Zhang JG (2012). Effects of maturity stages on the nutritive composition and silage quality of whole crop wheat. Asian-Australas J Anim Sci., 25(10):1374-1380.
  • Keskin B, Temel S, Eren B (2020). Iğdır ekolojik şartlarında bazı yonca (Medicago sativa L.) çeşitlerinin ot verimleri. TURKJANS., 7(3):757-764.
  • Albayrak S, Öten M (2020). Döl kontrolü parsellerindeki yonca (Medicago sativa L.) genotiplerinin verim ve kalite özellikleri ile genel kombinasyon yeteneklerinin belirlenmesi. Ana Tar Bil Der., 35(3):353-360.
  • Gao R, Wang B, Jia T, Luo Y, Yu Z (2021). Effects of different carbohydrate sources on alfalfa silage quality at different ensiling days. Agriculture., 11(1):58.
  • Broderick GA (1985). Alfalfa silage or hay versus corn silage as the sole forage for lactating dairy cows. J Dairy Sci., 68(12):3262-3271.
  • Wang X, Haruta S, Wang P ve ark. (2006). Diversity of a stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. FEMS Microbiol Ecol., 57(1):106-115.
  • Saaty TL (2008). Decision making with the analytic hierarchy process. Int J Serv Sci., 1(1):83-98.
  • Vafaei N, Ribeiro RA, Camarinha-Matos LM (2016). Normalization techniques for multi-criteria decision making: Analytical hierarchy process case study. (İçinde): Technological Innovation for Cyber-Physical Systems. Camarinha-Matos LM, Falcão AJ, Vafaei N, Najdi S (editörler). Springer International Publishing, Cham, 261-269.
  • Russo RdFSM, Camanho R (2015). Criteria in AHP: A systematic review of literature. Procedia Comput Sci., 55:1123-1132.
  • Saaty TL, Tran LT (2007). On the invalidity of fuzzifying numerical judgments in the analytic hierarchy process. Math Comput Model., 46(7):962-975.
  • Raharjo H, Endah D (2006). Evaluating relationship of consistency ratio and number of alternatives on rank reversal in the AHP. Qual Eng., 18(1):39-46.
  • Hwang C-L, Yoon K (1981). Methods for multiple attribute decision making. (İçinde): Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey.Hwang C-L, Yoon K (editörler). Springer Berlin Heidelberg, Berlin, Heidelberg, 58-191.
  • Hwang C-L, Lai Y-J, Liu T-Y (1993). A new approach for multiple objective decision making. Comput Oper Res., 20(8):889-899.
  • Zulqarnain R, Saeed M, Ahmad N, Dayan F, Ahmad B (2020). Application of TOPSIS method for decision making. IJSRMSS., 7(2):72-81.
  • Çalık A, Çizmecioğlu S, Akpınar A (2019). An integrated AHP-TOPSIS framework for foreign direct investment in Turkey. J Multi-Criteria Decis Anal., 26(5-6):296-307.
  • Hanine M, Boutkhoum O, Tikniouine A, Agouti T (2016). Application of an integrated multi-criteria decision making AHP-TOPSIS Methodology for Etl Software Selection. SpringerPlus., 5(1):263.
  • Ahmad S, Parvez M, Khan TA, Khan O (2022). A hybrid approach using AHP–TOPSIS methods for ranking of soft computing techniques based on their attributes for prediction of solar radiation. Environ Chall., 9:100634.
  • Latif A, Sun Y, Noman A (2023). Herbaceous alfalfa plant as a multipurpose crop and predominant forage specie in pakistan. Front sustain food syst., 7.
  • Martin NP, Russelle MP, Powell JM ve ark. (2017). Sustainable forage and grain crop production for the US dairy industry. J Dairy Sci., 100(12):9479-9494.
  • Howell TA, Evett SR, Tolk JA ve ark. (2008). Evapotranspiration of corn and forage sorghum for silage. World Environmental and Water Resources Congress 2008. 12-15 August.
  • Harper MT, Oh J, Giallongo F ve ark. (2017). Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations. J Dairy Sci., 100(7):5250-5265.
  • Hussain M, Farooq S, Hasan W ve ark. (2018). Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag., 201:152-166.

Evaluation of alternative silage crops using AHP-TOPSIS method

Yıl 2024, Cilt: 17 Sayı: 2, 187 - 193, 31.12.2024
https://doi.org/10.47027/duvetfd.1575895

Öz

Maize silage is an important forage plant used to feed ruminant animals. However, due to climate change, increasing drought problems are expected to restrict the use of this plant as silage in the future. Hence, finding alternative plants for silage besides corn has become a significant concern. In this study, an Analytical Hierarchy Process (AHP) model was used based on the criteria of green grass yield, dry matter (DM), pH, crude protein (CP), and digestible DM for selecting silage plants. The AHP analysis determined that green grass yield was 30%, DM was 21%, digestible DM was 19%, pH was 18%, and HP was 11% effective. When these criteria were integrated into Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis and scoring were performed, and it was determined that maize, alfalfa, sorghum, sunflower, and whole crop wheat had 0.729, 0.715, 0.618, 0.513, and 0.273 points, respectively. Following maize silage, alfalfa silage emerged as the subsequent favorable choice. However, it was concluded that this modelling would yield more effective results if field studies specific to certain regions were conducted and water use efficiency and drought resistance criteria were considered.

Kaynakça

  • Fulgueira CL, Amigot SL, Gaggiotti M, Romero LA, Basílico JC (2007). Forage quality: Techniques for testing. Fresh Prod., 1(2):121-131.
  • Worku A, Tamás T, Szilvia O, Róbert T (2019). Potenital forage resources as alternatives to partial or total substitution of corn silage in dairy cattle nutrition-a review. Anim Breed Fed., 68(2):109-127.
  • Nilahyane A, Islam MA, Mesbah AO, Herbert SK, Garcia y Garcia A (2020). Growth, water productivity, nutritive value, and physiology responses of silage corn to water stress. J Agron., 112(3):1625-1635.
  • Tigchelaar M, Battisti DS, Naylor RL, Ray DK (2018). Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci., 115(26):6644-6649.
  • Getachew G, Putnam DH, De Ben CM, De Peters EJ (2016). Potential of sorghum as an alternative to corn forage. American Journal of Plant Sciences., 7(7):1106-1121.
  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007). Designing sorghum as a dedicated bioenergy feedstock. Biofpr., 1(2):147-157.
  • Samarappuli D, Berti MT (2018). Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. J Clean Prod., 194:515-524.
  • Thomas V, Murray GA, Thacker D, Sneddon D (1982). Sunflower silage in rations for lactating holstein cows. J Dairy Sci., 65(2):267-270.
  • Cardoso-Gutiérrez E, Narváez-López AC, Robles-Jiménez LE ve ark. (2020). Production performance, nutrient digestibility, and milk composition of dairy ewes supplemented with crushed sunflower seeds and sunflower seed silage in corn silage-based diets. Animals., 10(12):2354.
  • Álvarez-García CD, Arriaga-Jordán CM, Estrada-Flores JG, López-González F (2023). Wheat or maize silage in feeding strategies for cows in small-scale dairy systems during the dry season. Chil J Agric Res., 83(4):398-407.
  • Wang Q, Tang B, Han Z (2013). The effects of the different silage on milk yield and composition in dairy cows. Dairy Cows., 9:52-54.
  • Brito AF, Broderick GA (2006). Effect of varying dietary ratios of alfalfa silage to corn silage on production and nitrogen utilization in lactating dairy cows. J Dairy Sci., 89(10):3924-3938.
  • Gamble J, Baker J, Dalzell B, Wente C, Feyereisen G (2022). Ecohydrology of irrigated silage maize and alfalfa production systems in the upper midwest US. Agric Water Manag., 267:107612.
  • Hatice E (2023). Analytical hierarchy process problem solution. (İçinde): Analytic Hierarchy Process. Fabio De F, Antonella P (editörler). IntechOpen, Rijeka, 1-20.
  • Şahin M (2021). Location selection by multi-criteria decision-making methods based on objective and subjective weightings. Knowl Inf Syst., 63(8):1991-2021.
  • Akçay A, Sarıözkan S, Al S (2018). Akademik personelin et tüketim tercihlerinin analitik hiyerarşi prosesi ile değerlendirilmesi. Vet Hekim Der Derg., 89(1):11-24.
  • Yavuz T (2022). AHP-TOPSIS hibrit çok kriterli karar verme tekniğiyle en uygun güçlendirme alternatifinin seçimine İlişkin bir örnek olay İncelemesi Yüksek Lisans Tezi. İstanbul Kültür Üniversitesi İnşaat Mühendisliği, İstanbul, Türkiye.
  • Darko A, Chan APC, Ameyaw EE, ve ark (2019). Review of application of analytic hierarchy process (AHP) in construction. Int J Constr Manag., 19(5):436-452.
  • Bai L, Zhang X, Lu Z ve ark. (2022). Effect of different harvest periods on dry matter accumulation and quality of silage maize, Proceedings of the 4th International Conference on Biomedical Engineering and Bioinformatics, July 07-10.
  • Yıldız H, İlker E, Yıldırım A (2017). Bazı silajlık mısır (Zea mays) çeşit ve çeşit adaylarının verim ve kalite özelliklerinin belirlenmesi. ISUBÜ ZFD., 12(2):81-89.
  • Filya I (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Anim Feed Sci Technol., 116(1):141-150.
  • Li J, Wen X, Yang J ve ark. (2022). Effects of maize varieties on biomass yield and silage quality of maize–soybean intercropping in the qinghai–tibet plateau. Fermentation., 8(10):542.
  • Yılmaz N, Akman O, Önal Aşcı Ö (2020). Bazı silajlık mısır çeşitlerinde (Zea mays L.) verim ve kalite özelliklerinin belirlenmesi. AZD., 9(2):271-278.
  • Khan NA, Yu P, Ali M, Cone JW, Hendriks WH (2015). Nutritive value of maize silage in relation to dairy cow performance and milk quality. J Sci Food Agric., 95(2):238-252.
  • Alvarado-Ramírez ER, Ballesteros-Rodea G, Salem AZ ve ark. (2023). The impact of genotype on chemical composition, feeding value and in vitro rumen degradability of fresh and ensiled forage of native maize (Zea mays L.) from mexico. Agriculture., 13(11):2161.
  • Huang Y, Liang L, Dai S ve ark. (2021). Effect of different regions and ensiling periods on fermentation quality and the bacterial community of whole-plant maize silage. Front microbiol., 12.
  • Sırakaya S (2024). Effects of chitosan and its organic acid solutions on corn silage quality. TURJAF., 12(5):739-746.
  • Meeske R, Basson HM (1998). The effect of a lactic acid bacterial inoculant on maize silage. Anim Feed Sci Technol., 70(3):239-247.
  • Arıcı RÇ, Avcı MA (2022). Orta Anadolu şartlarında farklı silaj sorgum genotiplerinde su stresinin biyokütle verimi ve bazı tarımsal özellikler üzerine etkilerinin belirlenmesi. BBAD., 11(2):145-156.
  • Farhadi A, Paknejad F, Golzardi F, Ilkaee MN, Aghayari F (2022). Effects of limited irrigation and nitrogen rate on the herbage yield, water productivity, and nutritive value of sorghum silage. Commun Soil Sci Plant Anal., 53(5):576-589.
  • Terler G, Resch R, Gappmaier S, Gruber L (2021). Nutritive value for ruminants of different fresh and ensiled sorghum (Sorghum bicolor (L.) moench) varieties harvested at varying maturity stages. Arch Anim Nutr., 75(3):167-182.
  • Rodrigues PHM, Pinedo LA, Meyer PM, da Silva TH, Guimarães ICdSB (2020). Sorghum silage quality as determined by chemical–nutritional factors. Grass Forage Sci., 75(4):462-473.
  • Arriola KG, Vyas D, Kim D ve ark. (2021). Effect of Lactobacillus hilgardii, Lactobacillus buchneri, or their combination on the fermentation and nutritive value of sorghum silage and corn silage. J Dairy Sci., 104(9):9664-9675.
  • McCary CL, Vyas D, Faciola AP, Ferraretto LF (2020). Graduate student literature review: Current perspectives on whole-plant sorghum silage production and utilization by lactating dairy cows. J Dairy Sci., 103(6):5783-5790.
  • Lv X, Chen L, Zhou C ve ark. (2023). Application of different proportions of sweet sorghum silage as a substitute for corn silage in dairy cows. Food sci nutr., 11(6):3575-3587.
  • Demirel M, Bolat D, Çelik S, Bakici Y, Çelik S (2006). Quality of silages from sunflower harvested at different vegetational stages. J Appl Anim Res., 30(2):161-165.
  • Erdoğan S, Yıldız S (2018). Van koşullarında yetiştirilen silajlık mısır (Zea mays L.) ve ayçiçeği (Helianthus annuus L.)’nin verim parametreleri ve besin madde kompozisyonuna ait kalite özellikleri. TÜTAD., 5(3):280-285.
  • Tan M (2015). Nutritive value of sunflower silages ensiled with corn or alfalfa at different rate. J Agric Sci., 21(2):184-191.
  • Santos CBD, Costa KAP, Souza WF ve ark. (2020). Production and quality of sunflower and paiaguas palisadegrass silage in monocropped and intercropping in different forage systems. Acta Sci-Anim Sci., 42:e48304.
  • Filya I (2003). Nutritive value of whole crop wheat silage harvested at three stages of maturity. Anim Feed Sci Technol., 103(1):85-95.
  • Nadeau E (2007). Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage. J Sci Food Agric., 87(5):789-801.
  • Crovetto GM, Galassi G, Rapetti L, Sandrucci A, Tamburini A (1998). Effect of the stage of maturity on the nutritive value of whole crop wheat silage. Livest Prod Sci., 55(1):21-32.
  • Xie ZL, Zhang TF, Chen XZ, Li GD, Zhang JG (2012). Effects of maturity stages on the nutritive composition and silage quality of whole crop wheat. Asian-Australas J Anim Sci., 25(10):1374-1380.
  • Keskin B, Temel S, Eren B (2020). Iğdır ekolojik şartlarında bazı yonca (Medicago sativa L.) çeşitlerinin ot verimleri. TURKJANS., 7(3):757-764.
  • Albayrak S, Öten M (2020). Döl kontrolü parsellerindeki yonca (Medicago sativa L.) genotiplerinin verim ve kalite özellikleri ile genel kombinasyon yeteneklerinin belirlenmesi. Ana Tar Bil Der., 35(3):353-360.
  • Gao R, Wang B, Jia T, Luo Y, Yu Z (2021). Effects of different carbohydrate sources on alfalfa silage quality at different ensiling days. Agriculture., 11(1):58.
  • Broderick GA (1985). Alfalfa silage or hay versus corn silage as the sole forage for lactating dairy cows. J Dairy Sci., 68(12):3262-3271.
  • Wang X, Haruta S, Wang P ve ark. (2006). Diversity of a stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. FEMS Microbiol Ecol., 57(1):106-115.
  • Saaty TL (2008). Decision making with the analytic hierarchy process. Int J Serv Sci., 1(1):83-98.
  • Vafaei N, Ribeiro RA, Camarinha-Matos LM (2016). Normalization techniques for multi-criteria decision making: Analytical hierarchy process case study. (İçinde): Technological Innovation for Cyber-Physical Systems. Camarinha-Matos LM, Falcão AJ, Vafaei N, Najdi S (editörler). Springer International Publishing, Cham, 261-269.
  • Russo RdFSM, Camanho R (2015). Criteria in AHP: A systematic review of literature. Procedia Comput Sci., 55:1123-1132.
  • Saaty TL, Tran LT (2007). On the invalidity of fuzzifying numerical judgments in the analytic hierarchy process. Math Comput Model., 46(7):962-975.
  • Raharjo H, Endah D (2006). Evaluating relationship of consistency ratio and number of alternatives on rank reversal in the AHP. Qual Eng., 18(1):39-46.
  • Hwang C-L, Yoon K (1981). Methods for multiple attribute decision making. (İçinde): Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey.Hwang C-L, Yoon K (editörler). Springer Berlin Heidelberg, Berlin, Heidelberg, 58-191.
  • Hwang C-L, Lai Y-J, Liu T-Y (1993). A new approach for multiple objective decision making. Comput Oper Res., 20(8):889-899.
  • Zulqarnain R, Saeed M, Ahmad N, Dayan F, Ahmad B (2020). Application of TOPSIS method for decision making. IJSRMSS., 7(2):72-81.
  • Çalık A, Çizmecioğlu S, Akpınar A (2019). An integrated AHP-TOPSIS framework for foreign direct investment in Turkey. J Multi-Criteria Decis Anal., 26(5-6):296-307.
  • Hanine M, Boutkhoum O, Tikniouine A, Agouti T (2016). Application of an integrated multi-criteria decision making AHP-TOPSIS Methodology for Etl Software Selection. SpringerPlus., 5(1):263.
  • Ahmad S, Parvez M, Khan TA, Khan O (2022). A hybrid approach using AHP–TOPSIS methods for ranking of soft computing techniques based on their attributes for prediction of solar radiation. Environ Chall., 9:100634.
  • Latif A, Sun Y, Noman A (2023). Herbaceous alfalfa plant as a multipurpose crop and predominant forage specie in pakistan. Front sustain food syst., 7.
  • Martin NP, Russelle MP, Powell JM ve ark. (2017). Sustainable forage and grain crop production for the US dairy industry. J Dairy Sci., 100(12):9479-9494.
  • Howell TA, Evett SR, Tolk JA ve ark. (2008). Evapotranspiration of corn and forage sorghum for silage. World Environmental and Water Resources Congress 2008. 12-15 August.
  • Harper MT, Oh J, Giallongo F ve ark. (2017). Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations. J Dairy Sci., 100(7):5250-5265.
  • Hussain M, Farooq S, Hasan W ve ark. (2018). Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag., 201:152-166.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvan Besleme ve Beslenme Hastalıkları
Bölüm Araştıma
Yazarlar

Emre Şahin 0000-0001-7625-1883

Erdal Çaçan 0000-0002-9469-2495

Doğukan Özen 0000-0003-1943-2690

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 30 Ekim 2024
Kabul Tarihi 10 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 2

Kaynak Göster

APA Şahin, E., Çaçan, E., & Özen, D. (2024). Alternatif silaj bitkilerinin AHP-TOPSIS yöntemi kullanarak değerlendirilmesi. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 17(2), 187-193. https://doi.org/10.47027/duvetfd.1575895
AMA Şahin E, Çaçan E, Özen D. Alternatif silaj bitkilerinin AHP-TOPSIS yöntemi kullanarak değerlendirilmesi. Dicle Üniv Vet Fak Derg. Aralık 2024;17(2):187-193. doi:10.47027/duvetfd.1575895
Chicago Şahin, Emre, Erdal Çaçan, ve Doğukan Özen. “Alternatif Silaj Bitkilerinin AHP-TOPSIS yöntemi Kullanarak değerlendirilmesi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17, sy. 2 (Aralık 2024): 187-93. https://doi.org/10.47027/duvetfd.1575895.
EndNote Şahin E, Çaçan E, Özen D (01 Aralık 2024) Alternatif silaj bitkilerinin AHP-TOPSIS yöntemi kullanarak değerlendirilmesi. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17 2 187–193.
IEEE E. Şahin, E. Çaçan, ve D. Özen, “Alternatif silaj bitkilerinin AHP-TOPSIS yöntemi kullanarak değerlendirilmesi”, Dicle Üniv Vet Fak Derg, c. 17, sy. 2, ss. 187–193, 2024, doi: 10.47027/duvetfd.1575895.
ISNAD Şahin, Emre vd. “Alternatif Silaj Bitkilerinin AHP-TOPSIS yöntemi Kullanarak değerlendirilmesi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17/2 (Aralık 2024), 187-193. https://doi.org/10.47027/duvetfd.1575895.
JAMA Şahin E, Çaçan E, Özen D. Alternatif silaj bitkilerinin AHP-TOPSIS yöntemi kullanarak değerlendirilmesi. Dicle Üniv Vet Fak Derg. 2024;17:187–193.
MLA Şahin, Emre vd. “Alternatif Silaj Bitkilerinin AHP-TOPSIS yöntemi Kullanarak değerlendirilmesi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, c. 17, sy. 2, 2024, ss. 187-93, doi:10.47027/duvetfd.1575895.
Vancouver Şahin E, Çaçan E, Özen D. Alternatif silaj bitkilerinin AHP-TOPSIS yöntemi kullanarak değerlendirilmesi. Dicle Üniv Vet Fak Derg. 2024;17(2):187-93.