Araştırma Makalesi
BibTex RIS Kaynak Göster

ELASTIC PROPERTIES OF PERIODIC CORE'S STRUCTURES OF MULTILAYERS FURNITURE PANELS

Yıl 2017, Cilt: 6 Sayı: 3, 1249 - 1263, 15.12.2017

Öz

The
elastic properties of cellular structures of sandwich panel cores depend on
their density. Density depends on a number of geometric parameters of the core
structure. Research is ongoing to find optimal cell sizes with high stiffness
of cores and low relative density. The aim of the investigation was to develop
mathematical models describing the relative density and elastic properties of
periodic cells: hexagonal, auxetic and lattice. Relative density models are
presented as functions of main structural dimensions that affect the shape and
size of individual cells. The analysis of the calculation results revealed that
the relative density of the core cell was determined by: the thickness of the
cell wall, the thickness of the rib, the angle of inclination of the walls and
ribs, the length of the walls and the height of the core. For each of the cell
types, three models were selected, with different geometries but with equal
relative density. Additionally, linear elastic
modulus was calculated, as well as modulus of elasticity and Poisson's
coefficients for selected structures. Based on the above assumptions, reference
cells with the highest mechanical parameters were selected.

Kaynakça

  • [1] Jen Y, Chang L. Evaluating bending fatigue strength of aluminum honeycomb sandwich beams using local parameters. Int J Fatigue 2008;30:1103–14. doi:10.1016/j.ijfatigue.2007.08.006. [2] Smardzewski J. Elastic properties of cellular wood panels with hexagonal and auxetic cores. Holzforschung 2013;67:87–92. doi:10.1515/hf-2012-0055. [3] Smardzewski J. Mechanical properties of wood-based sandwich panels with a wavy core 2015. [4] Barboutis I, Vassiliou V. Strength Properties Of Lightweight Paper Honeycomb Panels For The Furniture. 10th Int Sci Conf Eng Des (Interior Furnit Des 2005:17–8. [5] J. Pflug, Vangrimde B, Verpoest I, Vandepitte D, Britzke M, Wagenführ A. Continuously Produced Paper Honeycomb Sandwich Panels for Furniture Applications. 5th Glob Wood Nat Fibre Compos Symosium 2004:1–9. [6] Sam-brew S, Semple K, Smith GD. Preliminary Experiments on the Manufacture of Hollow Core Composite Panels. For Prod J 2011;61:381–9. [7] Hu L, You F, Yu T. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater Des 2013;46:511–23. doi:10.1016/j.matdes.2012.10.050. [8] RS L. Foam Structures with a Negative Poisson’s Ratio 1987. [9] Gibson L. AM. Cellular solids: structure and properties 1988. [10] Evans KE. Design of doubly curved sandwich panels with honeycomb cores 1991:95–111. [11] Caddock B., Evans K. MI. Honeycomb cores with a negative Poisson ’ s ratio for use in composite sandwich panels 1991. [12] Masters 1. EK. Auxetic honeycombs for composite sandwich panels 1993:1–2. [13] Miller W, Smith CW, Scarpa F, Evans KE. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos Sci Technol 2010;70:1049–56. doi:10.1016/j.compscitech.2009.10.022. [14] Scarpa F. TP. On the transverse shear modulus of negative Poisson’s ratio honeycomb structures 2000. [15] Evans K. AA. Auxetic Materials: Functional Materials and Structures from Lateral Thinking! 2000. [16] Yang W., Li Z.-M., Shi W., Xie B.—H. YM —B. Review on auxetic materials 2004:8. [17] T L. Flexural Rigidity Of Thin Auxetic Plates n.d.:1–6. [18] Gibson L., Ashby M., Schajer G. RC. The Mechanics of Two-Dimensional Cellular Materials 1982. [19] Masters IG, Evans KE. Models for the elastic deformation of honeycombs. Compos Struct 1996;35:403–22. doi:10.1016/S0263-8223(96)00054-2. [20] Dziuba T. Optimierung der Konstruktion von Stuhlseitenteilen. Holztechnologie 30, 6: 303–306. 1990. [21] Goliński J. Metody optymalizacyjne w projektowaniu technicznym (Optimisation methods in technical designing). Wydawnictwo Naukowo-Techniczne, Warszawa. 1974. [22] Ostwald H. Optymalizacja konstrukcji (Contruction optimisation). Wydawnictwo Politechniki Poznańskiej, Poznań. 1987. [23] Smardzewski J. Optymalizacja konstrukcji skrzydeł okiennych (Construction optimisation of window wings). Przemysł Drzewny, 4: 21–24. 1989. [24] Smardzewski J. Numeryczna optymalizacja konstrukcji krzeseł (Numerical optimisation of chair constructions). Przemysł Drzewny, 1: 1–6. 1992. [25] Jerzy Smardzewski. Furniture Design. Springer. 2015.

ELASTIC PROPERTIES OF PERIODIC CORE'S STRUCTURES OF MULTILAYERS FURNITURE PANELS

Yıl 2017, Cilt: 6 Sayı: 3, 1249 - 1263, 15.12.2017

Öz

The
elastic properties of cellular structures of sandwich panel cores depend on
their density. Density depends on a number of geometric parameters of the core
structure. Research is ongoing to find optimal cell sizes with high stiffness
of cores and low relative density. The aim of the investigation was to develop
mathematical models describing the relative density and elastic properties of
periodic cells: hexagonal, auxetic and lattice. Relative density models are
presented as functions of main structural dimensions that affect the shape and
size of individual cells. The analysis of the calculation results revealed that
the relative density of the core cell was determined by: the thickness of the
cell wall, the thickness of the rib, the angle of inclination of the walls and
ribs, the length of the walls and the height of the core. For each of the cell
types, three models were selected, with different geometries but with equal
relative density. Additionally, linear elastic
modulus was calculated, as well as modulus of elasticity and Poisson's
coefficients for selected structures. Based on the above assumptions, reference
cells with the highest mechanical parameters were selected.

Kaynakça

  • [1] Jen Y, Chang L. Evaluating bending fatigue strength of aluminum honeycomb sandwich beams using local parameters. Int J Fatigue 2008;30:1103–14. doi:10.1016/j.ijfatigue.2007.08.006. [2] Smardzewski J. Elastic properties of cellular wood panels with hexagonal and auxetic cores. Holzforschung 2013;67:87–92. doi:10.1515/hf-2012-0055. [3] Smardzewski J. Mechanical properties of wood-based sandwich panels with a wavy core 2015. [4] Barboutis I, Vassiliou V. Strength Properties Of Lightweight Paper Honeycomb Panels For The Furniture. 10th Int Sci Conf Eng Des (Interior Furnit Des 2005:17–8. [5] J. Pflug, Vangrimde B, Verpoest I, Vandepitte D, Britzke M, Wagenführ A. Continuously Produced Paper Honeycomb Sandwich Panels for Furniture Applications. 5th Glob Wood Nat Fibre Compos Symosium 2004:1–9. [6] Sam-brew S, Semple K, Smith GD. Preliminary Experiments on the Manufacture of Hollow Core Composite Panels. For Prod J 2011;61:381–9. [7] Hu L, You F, Yu T. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater Des 2013;46:511–23. doi:10.1016/j.matdes.2012.10.050. [8] RS L. Foam Structures with a Negative Poisson’s Ratio 1987. [9] Gibson L. AM. Cellular solids: structure and properties 1988. [10] Evans KE. Design of doubly curved sandwich panels with honeycomb cores 1991:95–111. [11] Caddock B., Evans K. MI. Honeycomb cores with a negative Poisson ’ s ratio for use in composite sandwich panels 1991. [12] Masters 1. EK. Auxetic honeycombs for composite sandwich panels 1993:1–2. [13] Miller W, Smith CW, Scarpa F, Evans KE. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos Sci Technol 2010;70:1049–56. doi:10.1016/j.compscitech.2009.10.022. [14] Scarpa F. TP. On the transverse shear modulus of negative Poisson’s ratio honeycomb structures 2000. [15] Evans K. AA. Auxetic Materials: Functional Materials and Structures from Lateral Thinking! 2000. [16] Yang W., Li Z.-M., Shi W., Xie B.—H. YM —B. Review on auxetic materials 2004:8. [17] T L. Flexural Rigidity Of Thin Auxetic Plates n.d.:1–6. [18] Gibson L., Ashby M., Schajer G. RC. The Mechanics of Two-Dimensional Cellular Materials 1982. [19] Masters IG, Evans KE. Models for the elastic deformation of honeycombs. Compos Struct 1996;35:403–22. doi:10.1016/S0263-8223(96)00054-2. [20] Dziuba T. Optimierung der Konstruktion von Stuhlseitenteilen. Holztechnologie 30, 6: 303–306. 1990. [21] Goliński J. Metody optymalizacyjne w projektowaniu technicznym (Optimisation methods in technical designing). Wydawnictwo Naukowo-Techniczne, Warszawa. 1974. [22] Ostwald H. Optymalizacja konstrukcji (Contruction optimisation). Wydawnictwo Politechniki Poznańskiej, Poznań. 1987. [23] Smardzewski J. Optymalizacja konstrukcji skrzydeł okiennych (Construction optimisation of window wings). Przemysł Drzewny, 4: 21–24. 1989. [24] Smardzewski J. Numeryczna optymalizacja konstrukcji krzeseł (Numerical optimisation of chair constructions). Przemysł Drzewny, 1: 1–6. 1992. [25] Jerzy Smardzewski. Furniture Design. Springer. 2015.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Marlena Wojnowska Bu kişi benim

Krzysztof Pelıńskı Bu kişi benim

Michał Maslej Bu kişi benim

Michał Słonına Bu kişi benim

Jerzy Smardzewskı Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 6 Sayı: 3

Kaynak Göster

APA Wojnowska, M., Pelıńskı, K., Maslej, M., Słonına, M., vd. (2017). ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS. İleri Teknoloji Bilimleri Dergisi, 6(3), 1249-1263.
AMA Wojnowska M, Pelıńskı K, Maslej M, Słonına M, Smardzewskı J. ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS. İleri Teknoloji Bilimleri Dergisi. Aralık 2017;6(3):1249-1263.
Chicago Wojnowska, Marlena, Krzysztof Pelıńskı, Michał Maslej, Michał Słonına, ve Jerzy Smardzewskı. “ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS”. İleri Teknoloji Bilimleri Dergisi 6, sy. 3 (Aralık 2017): 1249-63.
EndNote Wojnowska M, Pelıńskı K, Maslej M, Słonına M, Smardzewskı J (01 Aralık 2017) ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS. İleri Teknoloji Bilimleri Dergisi 6 3 1249–1263.
IEEE M. Wojnowska, K. Pelıńskı, M. Maslej, M. Słonına, ve J. Smardzewskı, “ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS”, İleri Teknoloji Bilimleri Dergisi, c. 6, sy. 3, ss. 1249–1263, 2017.
ISNAD Wojnowska, Marlena vd. “ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS”. İleri Teknoloji Bilimleri Dergisi 6/3 (Aralık 2017), 1249-1263.
JAMA Wojnowska M, Pelıńskı K, Maslej M, Słonına M, Smardzewskı J. ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS. İleri Teknoloji Bilimleri Dergisi. 2017;6:1249–1263.
MLA Wojnowska, Marlena vd. “ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS”. İleri Teknoloji Bilimleri Dergisi, c. 6, sy. 3, 2017, ss. 1249-63.
Vancouver Wojnowska M, Pelıńskı K, Maslej M, Słonına M, Smardzewskı J. ELASTIC PROPERTIES OF PERIODIC CORE’S STRUCTURES OF MULTILAYERS FURNITURE PANELS. İleri Teknoloji Bilimleri Dergisi. 2017;6(3):1249-63.