Araştırma Makalesi
BibTex RIS Kaynak Göster

Urtica dioica L.’da Kuraklık Stresine İlişkin Antioksidant Savunma Sistemi ve ve Fizyolojik Yaklaşımlar

Yıl 2023, , 84 - 96, 29.12.2023
https://doi.org/10.58816/duzceod.1405714

Öz

Urtica dioicaTürkiye'nin Batı Karadeniz bölgesinin kayalık habitatına ait çok yıllık endemik bir bitkidir. Bu çalışmada, Seseli resinosum Freyn & Sint.’in kuraklığa olan tepkilerini ve tolerans mekanizmasını anlamak için bağıl su içeriği (RWC), klorofil floresansı, prolin birikimi, lipid peroksidasyonu (TBARS), hidrojen peroksit (H2O2) miktarı ve antioksidan enzim miktarındaki değişimleri kuraklık stresini teşvik eden polietilen glikol (PEG) 6000 ( %5, 10 ve 15) varlığında analiz edilmiştir. Araştırma sonucunda, yapraktaki RWC değişmeden kalırken, klorofil floresansı yüksek PEG seviyesi (%15) ile azalmıştır. Ayrıca, PEG uygulamasının artmasıyla H2O2 ve prolin birikimi gözlenmiş, ancak TBARS miktarında artış belirlenmemiştir. Dahası, kuraklık altındaki H2O2 miktarındaki artış, glutatyon redüktaz, katalaz ve süperoksit dismutaz aktivitelerindeki artışa eşlik etmiştir. Diğer taraftan, PEG-teşvikli kuraklık stresi peroksidaz ve askorbat peroksidaz aktivitelerinde azalmaya neden olmuştur. Bu sonuçlar, endemik Urtica dioica bitkisinin kurak şartlar altında antioksidan enzim aktivitelerindeki artışla su durumunu koruyarak etkili bir kuraklık toleransına sahip olduğunu göstermektedir. Bu çalışmada, endemik Seseli resinosum Freyn & Sint.'in fizyolojik ve antioksidatif tepkileri hakkında önemli bilgiler ilk kez ortaya konulmuştur.

Kaynakça

  • Aebi, H. (1984). Catalase in vitro. In: Methods in Enzymology. (eds) Colowick, S. P., Kaplan, N. O., Orlando: Academic Press, 114–121.
  • Ahluwalia, O., Singh, P. C., & Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria, Resources, Environment and Sustainability, 5, 100032.
  • Amoah, J. N., Ko, C. S., Yoon, J. S., & Weon, S. Y. (2019). Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions, 14(1), 492-505.
  • Askari, E., & Ehsanzadeh, P. (2015). Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiologia Plantarum, 37, 4.
  • Ayyaz, A., Miao, Y., Hannan, F., Islam, F., Zhang, K., Xu, J., Farooq, M. A., & Zhou, W. (2021). Drought tolerance in Brassica napus is accompanied with enhanced antioxidative protection, photosynthetic and hormonal regulation at seedling stage. Physiologia Plantarum, 172(2), 1133–1148.
  • Bacci, L., Baronti, S., Predieri, S., & Di Virgilio, N. (2009). Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Industria Crops and Products, 29, 480–484.
  • Bán, G., Fetykó, K., & Tóth, F. (2010). Predatory arthropod assemblages of alfalfa and stinging nettle as potential biological control agents of greenhouse pests. Acta Phytopathologica et Entomologica Hungarica, 45, 159–172.
  • Basu, S., Roychoudhury, A., Saha, P. P., & Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60, 51.
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry, 72, 248–254.
  • Fan, S., Wu, H., Gong, H., & Guo, J. (2022). The salicylic acid mediates selenium-induced tolerance to drought stress in tomato plants. Scientia Horticulturae, 300, 111092.
  • Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133, 21–25.
  • Fracasso, A., Trindade, L., & Amaducci, S. (2016). Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology, 190, 1–14.
  • Gill, S. S., & Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.
  • Gill, S. S., Anjum, N. A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S. C., & Tuteja, N. (2015). Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22, 10375–10394.
  • Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.
  • Hassan, N., Ebeed, H., & Aljaarany, A. (2020). Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiology and Molecular Biology of Plants, 26, 233–245.
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125, 189-198.
  • Heyneke, E., & Fernie, A.R. (2018). Metabolic regulation of photosynthesis. Biochemical Society Transactions, 46, 321–328.
  • Ings, J., Mur, L. A., Robson, P. R., & Bosch. M. (2013). Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. Frontiers and Plant Science, 4, 468–475.
  • Jaiswal, V., & Lee, H. -J. (2022). Antioxidant activity of Urtica dioica: An important property contributing to multiple biological activities. Antioxidants, 11, 2494.
  • Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22, 4642.
  • Kaiser, W. M. (1979). Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta, 145, 377–382.
  • Kaya, C. (2021). Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiologia Plantarum, 172, 351–370.
  • Kaya, C., & Shabala, S. (2023). Sodium hydrosulfide-mediated upregulation of nitrogen metabolism improves drought stress tolerance in pepper plants. Environmental and Experimental Botany, 209, 105305.
  • Killi, D., Raschi, A., & Bussotti, F. (2020). Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. International Journal of Molecular Sciences, 21, 4846.
  • Liu, J., Lu, B., & Xun, A. L. (2000). An improved method for the determination of hydrogen peroxide in leaves. Progress in Biochemistry and Biophysics, 27, 548–551.
  • Liu, N., Lin, Z., Guan, L., Gaughan, G., & Lin, G. (2014). Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis. PLOS ONE, 9(2): e87588.
  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview, Archives of Biochemistry and Biophysics, 444, 139.
  • Mattos, L. M., & Moretti, C. L. (2015). Oxidative stress in plants under drought conditions and the role of different enzymes. Enzyme Engineering, 5, 1.
  • Mika, A., & Lüthje, S. (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132, 1489–1498.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.
  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). The reactive oxygen gene network in plants. Trends in Plant Science, 9, 490–498.
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.
  • Oñate, M., & Munné-Bosch, S. (2009). Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica. Annals of Botany, 104, 945-956.
  • Rady, M. M., Belal, H. E. E., Gadallah, F. M., & Semida, W. M. (2020). Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266, 109290.
  • Santa-Cruz, A., Martinez-Rodriguez, M. M., Perez-Alfocea, F., Romero-Aranda, R., & Bolarin MC (2002). The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science, 162, 825–831.
  • Sarker, U., & Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports, 8, 16496.
  • Simancas, B., Juvany, M., Cotado, A., & Munné-Bosch, S. (2016). Sex-related differences in photoinhibition, photo-oxidative stress and photoprotection in stinging nettle (Urtica dioica L.) exposed to drought and nutrient deficiency. Journal of Photochemistry and Photobiology B: Biology, 156, 22–28.
  • Torre-González, A., Navarro-León, E., Albacete, A., Blasco, B., & Ruiz, J. M. (2017). Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. Journal of Plant Physiology, 216, 164-173.
  • Upton, R. (2013). Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. Journal of Herbal Medicine, 3, 9-38.
  • Vajic, U. -J., Grujic-Milanovic, J., Miloradovic, Z., Jovovic, D., Ivanov, M., Karanovic, D., Savikin, K., Bugarski, B., & Mihailovic-Stanojevic, N. (2018). Urtica dioica L. leaf extract modulates blood pressure and oxidative stress in spontaneously hypertensive rats. Phytomedicine, 46, 39–45.
  • Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P., & Kwak, S. S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570-577.

Antioxidant Defense System and Physiological Insights to Drought Stress in Urtica dioica L.

Yıl 2023, , 84 - 96, 29.12.2023
https://doi.org/10.58816/duzceod.1405714

Öz

Urtica dioicais an endemic perennial plant of rocky habitat of Western Black Sea region of Turkey. To understand drought responses and tolerance mechanism of Seseli resinosum Freyn & Sint., relative water content (RWC), chlorophyll fluorescence, proline accumulation, lipid peroxidation (TBARS), hydrogen peroxide (H2O2) content and changes in antioxidant enzymes were assayed in polyethylene glycol (PEG) 6000 (5, 10 and 15%) induced drought stress in the present study. Leaf RWC maintained unchanged, while chlorophyll fluorescence reduced with high level of PEG (15%). Additionally, H2O2 and proline accumulation were determined with the increase of PEG application, but no increase in the amount of TBARS was determined. Moreover, the increment in H2O2 content under drought was accompanied by increased in glutathione reductase, catalase and superoxide dismutase activities. On the other hand, PEG-induced drought stress caused a reduction in peroxidase and ascorbate peroxidase activities. These results suggest that endemic Urtica dioica plant have an efficient drought tolerance, as displayed by enhanced antioxidant enzyme activities with maintaining water status under drought conditions. In this study, important information about physiological and antioxidative responses of endemic Urtica dioica was revealed for the first time.

Kaynakça

  • Aebi, H. (1984). Catalase in vitro. In: Methods in Enzymology. (eds) Colowick, S. P., Kaplan, N. O., Orlando: Academic Press, 114–121.
  • Ahluwalia, O., Singh, P. C., & Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria, Resources, Environment and Sustainability, 5, 100032.
  • Amoah, J. N., Ko, C. S., Yoon, J. S., & Weon, S. Y. (2019). Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions, 14(1), 492-505.
  • Askari, E., & Ehsanzadeh, P. (2015). Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiologia Plantarum, 37, 4.
  • Ayyaz, A., Miao, Y., Hannan, F., Islam, F., Zhang, K., Xu, J., Farooq, M. A., & Zhou, W. (2021). Drought tolerance in Brassica napus is accompanied with enhanced antioxidative protection, photosynthetic and hormonal regulation at seedling stage. Physiologia Plantarum, 172(2), 1133–1148.
  • Bacci, L., Baronti, S., Predieri, S., & Di Virgilio, N. (2009). Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Industria Crops and Products, 29, 480–484.
  • Bán, G., Fetykó, K., & Tóth, F. (2010). Predatory arthropod assemblages of alfalfa and stinging nettle as potential biological control agents of greenhouse pests. Acta Phytopathologica et Entomologica Hungarica, 45, 159–172.
  • Basu, S., Roychoudhury, A., Saha, P. P., & Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60, 51.
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry, 72, 248–254.
  • Fan, S., Wu, H., Gong, H., & Guo, J. (2022). The salicylic acid mediates selenium-induced tolerance to drought stress in tomato plants. Scientia Horticulturae, 300, 111092.
  • Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133, 21–25.
  • Fracasso, A., Trindade, L., & Amaducci, S. (2016). Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology, 190, 1–14.
  • Gill, S. S., & Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.
  • Gill, S. S., Anjum, N. A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S. C., & Tuteja, N. (2015). Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22, 10375–10394.
  • Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.
  • Hassan, N., Ebeed, H., & Aljaarany, A. (2020). Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiology and Molecular Biology of Plants, 26, 233–245.
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125, 189-198.
  • Heyneke, E., & Fernie, A.R. (2018). Metabolic regulation of photosynthesis. Biochemical Society Transactions, 46, 321–328.
  • Ings, J., Mur, L. A., Robson, P. R., & Bosch. M. (2013). Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. Frontiers and Plant Science, 4, 468–475.
  • Jaiswal, V., & Lee, H. -J. (2022). Antioxidant activity of Urtica dioica: An important property contributing to multiple biological activities. Antioxidants, 11, 2494.
  • Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22, 4642.
  • Kaiser, W. M. (1979). Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta, 145, 377–382.
  • Kaya, C. (2021). Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiologia Plantarum, 172, 351–370.
  • Kaya, C., & Shabala, S. (2023). Sodium hydrosulfide-mediated upregulation of nitrogen metabolism improves drought stress tolerance in pepper plants. Environmental and Experimental Botany, 209, 105305.
  • Killi, D., Raschi, A., & Bussotti, F. (2020). Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. International Journal of Molecular Sciences, 21, 4846.
  • Liu, J., Lu, B., & Xun, A. L. (2000). An improved method for the determination of hydrogen peroxide in leaves. Progress in Biochemistry and Biophysics, 27, 548–551.
  • Liu, N., Lin, Z., Guan, L., Gaughan, G., & Lin, G. (2014). Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis. PLOS ONE, 9(2): e87588.
  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview, Archives of Biochemistry and Biophysics, 444, 139.
  • Mattos, L. M., & Moretti, C. L. (2015). Oxidative stress in plants under drought conditions and the role of different enzymes. Enzyme Engineering, 5, 1.
  • Mika, A., & Lüthje, S. (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132, 1489–1498.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.
  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). The reactive oxygen gene network in plants. Trends in Plant Science, 9, 490–498.
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.
  • Oñate, M., & Munné-Bosch, S. (2009). Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica. Annals of Botany, 104, 945-956.
  • Rady, M. M., Belal, H. E. E., Gadallah, F. M., & Semida, W. M. (2020). Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266, 109290.
  • Santa-Cruz, A., Martinez-Rodriguez, M. M., Perez-Alfocea, F., Romero-Aranda, R., & Bolarin MC (2002). The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science, 162, 825–831.
  • Sarker, U., & Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports, 8, 16496.
  • Simancas, B., Juvany, M., Cotado, A., & Munné-Bosch, S. (2016). Sex-related differences in photoinhibition, photo-oxidative stress and photoprotection in stinging nettle (Urtica dioica L.) exposed to drought and nutrient deficiency. Journal of Photochemistry and Photobiology B: Biology, 156, 22–28.
  • Torre-González, A., Navarro-León, E., Albacete, A., Blasco, B., & Ruiz, J. M. (2017). Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. Journal of Plant Physiology, 216, 164-173.
  • Upton, R. (2013). Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. Journal of Herbal Medicine, 3, 9-38.
  • Vajic, U. -J., Grujic-Milanovic, J., Miloradovic, Z., Jovovic, D., Ivanov, M., Karanovic, D., Savikin, K., Bugarski, B., & Mihailovic-Stanojevic, N. (2018). Urtica dioica L. leaf extract modulates blood pressure and oxidative stress in spontaneously hypertensive rats. Phytomedicine, 46, 39–45.
  • Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P., & Kwak, S. S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570-577.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Materyali ve Yetiştiriciliği
Bölüm Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi 19(2)
Yazarlar

Hülya Torun 0000-0002-1118-5130

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 16 Aralık 2023
Kabul Tarihi 22 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Torun, H. (2023). Antioxidant Defense System and Physiological Insights to Drought Stress in Urtica dioica L. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 19(2), 84-96. https://doi.org/10.58816/duzceod.1405714

........