Production and Characterization of Wood Polystyrene Composite from Recycled Waste Materials
Yıl 2024,
, 375 - 394, 30.06.2024
Süheyla Esin Köksal
,
Orhan Kelleci
Öz
In this study, it was aimed to recycle waste polystyrene (PS) to obtain PS composite with high screw withdrawal strength that can be used in the core layer of composite wood sandwich panels. For this purpose, waste MDF dust (MF) and glass fiber (GF) were used as fillers in the PS matrix. Waste PS was first dissolved in gasoline and then 50-100-150 % fillers were added and mixed. The solvent in the composite was removed from the composite with two different temperatures. Thickness swelling (TS) and water uptake (WA) amounts of the samples and screw withdrawal strength (SR) were analyzed for mechanical characterization. According to the analysis results, it was determined that as the MF ratio increased, there was no significant change in the TS, but the WA increased. MF filled composites has more TS than GF filled composites. However, it was determined that the WA in GF filled composites was higher than in MF filled composites. The fillers increased the densities except for the addition of 150% GF. SR analysis results showed that the addition of filler increased the SR of composites. As a result, waste PS can be converted into a material with high screw withdrawal strength by adding waste MF and GF and can be used instead of wood material.
Kaynakça
- Adeniyi, A. G., Abdulkareem, S. A., Ighalo, J. O., Onifade, D. V., Adeoye, S. A., &
Sampson, A. E. (2022). Morphological and thermal properties of polystyrene
composite reinforced with biochar from elephant grass (Pennisetum
purpureum). Journal of Thermoplastic Composite Materials, 35(10), 1532-1547.
https://doi.org/10.1177/0892705720939169
- Adeniran, A. A., Ayesu-Koranteng, E. & Shakantu, W. (2022). A Review of the Literature
on the Environmental and Health Impact of Plastic Waste Pollutants in Sub-Saharan
Africa. Pollutants, 2(4), 531-545. https://doi.org/10.3390/pollutants2040034
- Adhikary, K. B., Pang, S. & Staiger, M. P. (2008). Dimensional stability and mechanical
behaviour of wood–plastic composites based on recycled and virgin high-density
polyethylene (HDPE). Composites Part B: Engineering, 39(5), 807-815.
https://doi.org/10.1016/j.compositesb.2007.10.005
- Agarwal, S. & Gupta, R. K. (2017). Plastics in Buildings and Construction. In Applied
Plastics Engineering Handbook (pp. 635-649). Elsevier. https://doi.org/10.1016/B978-
0-323-39040-8.00030-4
- Akadiri, P. O., Chinyio, E. A. & Olomolaiye, P. O. (2012). Design of A Sustainable
Building: A Conceptual Framework for Implementing Sustainability in the Building
Sector. Buildings, 2(2), 126-152. https://doi.org/10.3390/buildings2020126
- Al-Thawadi, S. (2020). Microplastics and Nanoplastics in Aquatic Environments:
Challenges and Threats to Aquatic Organisms. Arabian Journal for Science and
Engineering, 45(6), 4419-4440. https://doi.org/10.1007/s13369-020-04402-z
- Birinci, E. (2023). Determination of technological properties of wood plastic
nanocomposites produced by flat press reinforced with nano MgO. Journal of
Composite Materials, 57(9), 1641-1651. https://doi.org/10.1177/00219983231161820
- Chaukura, N., Gwenzi, W., Bunhu, T., Ruziwa, D. T. & Pumure, I. (2016). Potential uses
and value-added products derived from waste polystyrene in developing countries: A
review. Resources, Conservation and Recycling, 107, 157-165.
https://doi.org/10.1016/j.resconrec.2015.10.031
- Chindaprasirt, P., Hiziroglu, S., Waisurasingha, C. & Kasemsiri, P. (2015). Properties of
wood flour/expanded polystyrene waste composites modified with diammonium
phosphate flame retardant. Polymer Composites, 36(4), 604–612.
https://doi.org/10.1002/pc.22977
- Chun, K. S., Muhammad, N., Fahamy, Y., Yeng, C. Y., Choo, H. L., Pang, M. M. & Tshai,
K. Y. (2018). Wood plastic composites made from corn husk fiber and recycled
polystyrene foam. Journal of Engineering Science and Technology, 13(11), 3445–
3456.
- Chun, K. S., Subramaniam, V., Yeng, C. M., Meng, P. M., Ratnam, C. T., Yeow, T. K. &
How, C. K. (2019). Wood plastic composites made from post-used polystyrene foam
and agricultural waste. Journal of Thermoplastic Composite Materials, 32(11), 1455-
1466. https://doi.org/10.1177/0892705718799836
- Eitzen, L., Ruhl, A. S. & Jekel, M. (2020). Particle Size and Pre-Treatment Effects on
Polystyrene Microplastic Settlement in Water: Implications for Environmental
Behavior and Ecotoxicological Tests. Water, 12(12), 3436.
https://doi.org/10.3390/w12123436
- Elsheikh, A. H., Panchal, H., Shanmugan, S., Muthuramalingam, T., El-Kassas, Ahmed. M.
& Ramesh, B. (2022). Recent progresses in wood-plastic composites: Pre-processing
treatments, manufacturing techniques, recyclability and eco-friendly assessment.
Cleaner Engineering and Technology, 8, 100450.
https://doi.org/10.1016/j.clet.2022.100450
- Eskander, S. B., Tawfik, M. E. & Tawfic, M. L. (2018). Mechanical, flammability and
thermal degradation characteristics of rice straw fiber-recycled polystyrene foam hard
wood composites incorporating fire retardants. Journal of Thermal Analysis and
Calorimetry, 132(2), 1115-1124. https://doi.org/10.1007/s10973-018-6984-6
- Ferah, O. (1995). Studies on the Determination of Nail and Screw Holding Properties of
Some Native Tree Species. In Turkish forestry research institute.
- Friedrich, D. & Luible, A. (2016). Investigations on ageing of wood-plastic composites for
outdoor applications: A meta-analysis using empiric data derived from diverse
weathering trials. Construction and Building Materials, 124, 1142-1152.
https://doi.org/10.1016/j.conbuildmat.2016.08.123
- Heimbs, S. & Pein, M. (2009). Failure behaviour of honeycomb sandwich corner joints and
inserts. Composite Structures, 89(4), 575-588.
https://doi.org/10.1016/j.compstruct.2008.11.013
- Jivkov, V., Simeonova, R., Antov, P., Marinova, A., Petrova, B. & Kristak, L. (2021).
Structural application of lightweight panels made of waste cardboard and beech
veneer. Materials, 14(7), 5064.
Kaho, S. P., Kouadio, K. C., Kouakou, C. H. & Eméruwa, E. (2020). Development of a
Composite Material Based on Wood Waste Stabilized with Recycled Expanded
Polystyrene. Open Journal of Composite Materials, 10(03), 66–76.
https://doi.org/10.4236/ojcm.2020.103005
- Kehinde, O., Ramonu, O. J., Babaremu, K. O. & Justin, L. D. (2020). Plastic wastes:
environmental hazard and instrument for wealth creation in Nigeria. Heliyon, 6(10),
e05131. https://doi.org/10.1016/j.heliyon.2020.e05131
- Kelleci, O., Koksal, S. E., Aydemir, D. & Sancar, S. (2022). Eco-friendly particleboards
with low formaldehyde emission and enhanced mechanical properties produced with
foamed urea-formaldehyde resins. Journal of Cleaner Production, 134785.
- Khojasteh-Khosro, S., Shalbafan, A. & Thoemen, H. (2020). Preferences of furniture
manufacturers for using lightweight wood-based panels as eco-friendly products.
European Journal of Wood and Wood Products, 78(3), 593-603.
https://doi.org/10.1007/s00107-020-01519-8
- Khojasteh-Khosro, S., Shalbafan, A. & Thoemen, H. (2022). Consumer behavior assessment
regarding lightweight furniture as an environmentally-friendly product. Wood
Material Science & Engineering, 17(3), 192-201.
https://doi.org/10.1080/17480272.2020.1847187
- Koay, S. C., Subramanian, V., Chan, M. Y., Pang, M. M., Tsai, K. Y. & Cheah, K. H. (2018).
Preparation and Characterization of Wood Plastic Composite Made Up of Durian
Husk Fiber and Recycled Polystyrene Foam. MATEC Web of Conferences, 152,
02019, EDP Sciences. https://doi.org/10.1051/matecconf/201815202019
- Maharana, T., Negi, Y. S. & Mohanty, B. (2007). Review Article: Recycling of Polystyrene.
Polymer-Plastics Technology and Engineering, 46(7), 729-736.
https://doi.org/10.1080/03602550701273963
- Maldas, D., Kokta, B. V., Raj, R. G. & Daneault, C. (1988). Improvement of the mechanical
properties of sawdust wood fibre-polystyrene composites by chemical treatment.
Polymer, 29(7), 1255–1265. https://doi.org/10.1016/0032-3861(88)90053-5
- Morrell, J. J., Stark, N. M., Pendleton, D. E. & Mcdonald, A. G. (2006). Durability of WoodPlastic Composites. Wood Design Focus, 16(3), 7-10.
Najafi, S. K., Kiaefar, A., Hamidina, E. & Tajvidi, M. (2007). Water Absorption Behavior
of Composites from Sawdust and Recycled Plastics. Journal of Reinforced Plastics
and Composites, 26(3), 341-348. https://doi.org/10.1177/0731684407072519
- Nelson, J., Pickering, K. L. & Beg, M. D. H. (2023). Assessment of the Potential of Waste
Copper Chromium and Arsenic (CCA)-Treated Timber Fibre Reinforced
Polypropylene Composites for Construction. Journal of Composites Science, 7(2), 48.
https://doi.org/10.3390/jcs7020048
- Noguchi, T., Tomita, H., Satake, K. & Watanabe, H. (1998). A new recycling system for
expanded polystyrene using a natural solvent. Part 3. Life cycle assessment. Packaging
Technology and Science, 11(1), 39-44. https://doi.org/10.1002/(SICI)1099-
1522(199802)11:1<39:AID PTS416>3.0.CO;2-Y
- Ogundipe, K. E., Ogunbayo, B. F., Olofinnade, O. M., Amusan, L. M. & Aigbavboa, C. O.
(2021). Affordable housing issue: Experimental investigation on properties of ecofriendly lightweight concrete produced from incorporating periwinkle and palm kernel
shells. Results in Engineering, 9, 100193.
https://doi.org/10.1016/j.rineng.2020.100193
- Osburg, V.-S., Strack, M. & Toporowski, W. (2016). Consumer acceptance of WoodPolymer Composites: a conjoint analytical approach with a focus on innovative and
environmentally concerned consumers. Journal of Cleaner Production, 110, 180-190.
https://doi.org/10.1016/j.jclepro.2015.04.086
- Osemeahon, S. A., Barminas, J. T. & Jang, A. L. (2013). Development of Waste Polystyrene
as a binder for emulsion paint formulation I: Effect of polystyrene Concentration. The
International Journal of Engineering and Science (IJES), 2(8), 30-35.
- Osemeahon, S. A., Reuben, U. & Emmanuel, E. (2022). Development of adhesive from
polystyrene waste. BIOMED Natural and Applied Science, 02(01), 13-24.
https://doi.org/10.53858/bnas02011324
- Palomba, G., Epasto, G., Sutherland, L. & Crupi, V. (2022). Aluminium honeycomb
sandwich as a design alternative for lightweight marine structures. Ships and Offshore
Structures, 17(10), 2355-2366. https://doi.org/10.1080/17445302.2021.1996109
- Partanen, A. & Carus, M. (2019). Biocomposites, find the real alternative to plastic – An
examination of biocomposites in the market. Reinforced Plastics, 63(6), 317-321.
https://doi.org/10.1016/j.repl.2019.04.065
- Patel, V. K. & Rawat, N. (2017). Physico-mechanical properties of sustainable Sagwan-Teak
Wood Flour/Polyester Composites with/without gum rosin. Sustainable Materials and
Technologies, 13, 1-8. https://doi.org/10.1016/j.susmat.2017.05.002
- Penjumras, P., Rahman, R. A., Talib, R. A. & Abdan, K. (2015). Mechanical properties and
water absorption behaviour of durian rind cellulose reinforced poly (lactic acid)
biocomposites. International Journal on Advanced Science, Engineering and
Information Technology, 5(5), 343–349.
- Petutschnigg, A. J. & Ebner, M. (2007). Lightweight paper materials for furniture – A design
study to develop and evaluate materials and joints. Materials & Design, 28(2), 408-
413. https://doi.org/10.1016/j.matdes.2005.09.017
- Petutschnigg, A. J., Koblinger, R., Pristovnik, M., Truskaller, M., Dermouz, H. & Zimmer,
B. (2004). Leichtbauplatten aus Holzwerkstoffen-Teil I: Eckverbindungen. Holz Als
Roh- Und Werkstoff, 62(6), 405-410. https://doi.org/10.1007/s00107-004-0526-6
- Pham Van, T., Schöpper, C., Klüppel, A. & Mai, C. (2021). Effect of wood and panel density
on the properties of lightweight strand boards. Wood Material Science & Engineering,
16(4), 237–245. https://doi.org/10.1080/17480272.2019.1705906
- Ponomarenko, O., Yevtushenko, N., Lysenko, T., Solonenko, L. & Shynsky, V. (2020). A
New Technology for Producing the Polystyrene Foam Molds Including Implants at
Foundry Industry. In Advances in Design, Simulation and Manufacturing II (pp. 430–
437). Springer. https://doi.org/10.1007/978-3-030-22365-6_43
- Rahimi, A. & García, J. M. (2017). Chemical recycling of waste plastics for new materials
production. Nature Reviews Chemistry, 1(6), 0046. https://doi.org/10.1038/s41570-
017-0046
- Roziņš, R., Iejavs, J., Jakovļevs, V. & Spulle, U. (2020). The properties of lightweight
stabilised blockboard panels. Drewno, 2020(206), 1-17.
https://doi.org/10.12841/wood.1644-3985.334.02
- Rubino, F., Nisticò, A., Tucci, F. & Carlone, P. (2020). Marine Application of Fiber
Reinforced Composites: A Review. Journal of Marine Science and Engineering, 8(1),
26. https://doi.org/10.3390/jmse8010026
- Saba, N., Jawaid, M., Sultan, M. T. H. & Alothman, O. Y. (2017). Green Biocomposites for
Structural Applications. In M. Jawaid, M. Salit, & O. Alothman (Eds.), Green
Biocomposites. Green Energy and Technology (pp. 1-27). Springer.
https://doi.org/10.1007/978-3-319-49382-4_1
- Şahin, S. (2020). Geçmiş,Günümüz ve Gelecekte Nüfus Gerçeği (5th ed.). Ankara Pegem
Akademi Yayıncılık. https://doi.org/10.14527/9786053180173
- Santoni, A., Bonfiglio, P., Mollica, F., Fausti, P., Pompoli, F. & Mazzanti, V. (2018). Vibroacoustic optimisation of Wood Plastic Composite systems. Construction and Building
Materials, 174, 730-740. https://doi.org/10.1016/j.conbuildmat.2018.04.155
- Schirp, A., Ibach, R. E., Pendleton, D. E. & Wolcott, M. P. (2008). Biological Degradation
of Wood-Plastic Composites (WPC) and strategies for Improving the Resistance of
WPC against Biological Decay; Chapter 29. In P. S. Tor, M. Holger, H. F. Michael,
- G. Barry, & D. N. Darrel (Eds.), Development of Commercial Wood Preservatives
Efficacy, Environmental, and Health Issues (pp. 480-507). American Chemical
Society.
- Schwarzkopf, M. J. & Burnard, M. D. (2016). Wood-Plastic Composites-Performance and
Environmental Impacts. In A. Kutnar & S. Muthu (Eds.), Environmental Impacts of
Traditional and Innovative Forest-based Bioproducts. Environmental Footprints and
Eco-design of Products and Processes (pp. 19-43). Springer.
https://doi.org/10.1007/978-981-10-0655-5_2
- Schyns, Z. O. G. & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A
Review. Macromolecular Rapid Communications, 42(3), 2000415.
https://doi.org/10.1002/marc.202000415
- Šernek, M., Turičnik, V., Repič, R. & Šega, B. (2020). Use of waste plastics for the
preparation of adhesives for wood bonding. Les/Wood, 69(2), 107-116.
https://doi.org/10.26614/les-wood.2020.v69n02a08
- Shao, X., Yang, Q., Liu, Y. & Cao, L. (2021). Advantage analysis of aluminum honeycomb
composite used in motorhomes. E3S Web of Conferences, 290, 01038.
https://doi.org/10.1051/e3sconf/202129001038
- Silva, H. S. N. (2013). Characterisation of polymer-based wood-substitute for sustainable
building and construction (Order No. 27826588) [Dissertation]. Faculty of Computing,
Engineering and Science.
- Sitorus, R., Wirjosentono, B., Tamrin, T., Siregar, A. H., & Nasution, D. A. (2020,
September). Characteristics of maleic anhydride-modified polystyrene and natural
rubber blends containing “Talang” bamboo powder as sound damping material.
020050. In AIP Conference Proceedings. AIP Publishing.
https://doi.org/10.1063/5.0015749
- Smardzewski, J. & Kramski, D. (2019). Modelling stiffness of furniture manufactured from
honeycomb panels depending on changing climate conditions. Thin-Walled
Structures, 137, 295-302. https://doi.org/10.1016/j.tws.2019.01.019
- Smardzewski, J., Słonina, M. & Maslej, M. (2017). Stiffness and failure behaviour of wood
based honeycomb sandwich corner joints in different climates. Composite Structures,
168, 153-163. https://doi.org/10.1016/j.compstruct.2017.02.047
- Sriprom, W., Sirivallop, A., Choodum, A., Limsakul, W. & Wongniramaikul, W. (2022).
Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam
Waste. Polymers, 14(11), 2241. https://doi.org/10.3390/polym14112241
- Tapia-Blácido, D. R., Aguilar, G. J., de Andrade, M. T., Rodrigues-Júnior, M. F. &
Guareschi-Martins, F. C. (2022). Trends and challenges of starch-based foams for use
as food packaging and food container. Trends in Food Science & Technology, 119,
257-271. https://doi.org/10.1016/j.tifs.2021.12.005
- Teuber, L., Osburg, V.-S., Toporowski, W., Militz, H. & Krause, A. (2016). Wood polymer
composites and their contribution to cascading utilisation. Journal of Cleaner
Production, 110, 9-15. https://doi.org/10.1016/j.jclepro.2015.04.009
- Uddin, M. N., Desai, F. J., & Asmatulu, E. (2020). Biomimetic electrospun nanocomposite
fibers from recycled polystyrene foams exhibiting superhydrophobicity. Energy,
Ecology and Environment, 5(1), 1-11. https://doi.org/10.1007/s40974-019-00140-7
- Uğur, L., Duzcukoglu, H., Sahin, O. S. & Akkuş, H. (2020). Investigation of impact force
on aluminium honeycomb structures by finite element analysis. Journal of Sandwich
Structures & Materials, 22(1), 87-103. https://doi.org/10.1177/1099636217733235
- Ugwu, S. C. & Obele, C. M. (2023). A mini-review on expanded polystyrene waste recycling
and its applications. World Journal of Advanced Engineering Technology and
Sciences, 8(1), 315-329. https://doi.org/10.30574/wjaets.2023.8.1.0057
- Uysal, M., & Güntekin, E. (2024). Prediction of screw withdrawal resistance for plywood
laminated panels and sandwich panels. Turkish Journal of Forestry, 25(1), 81-88.
https://doi.org/10.18182/tjf.1375273
- Vilaplana, F., Ribes-Greus, A. & Karlsson, S. (2007). Analytical strategies for the quality
assessment of recycled high-impact polystyrene: A combination of thermal analysis,
vibrational spectroscopy, and chromatography. Analytica Chimica Acta, 604(1), 18-
28. https://doi.org/10.1016/j.aca.2007.04.046
- Wang, H.-M., Yuan, T.-Q., Song, G.-Y. & Sun, R.-C. (2021). Advanced and versatile ligninderived biodegradable composite film materials toward a sustainable world. Green
Chemistry, 23(11), 3790-3817. https://doi.org/10.1039/D1GC00790D
- Wang, J., Huang, T., Lei, F., Song, L., Luan, J. & Tang, Z. (2022). Investigation of the
physical and mechanical properties of lightweight particleboard bonded by foamable
polyurethane adhesive. European Journal of Wood and Wood Products, 80(1), 213-
222. https://doi.org/10.1007/s00107-021-01744-9
Geri Dönüştürülmüş Atık Malzemelerden Ahşap Polistiren Kompozitin Üretimi ve Karakterizasyonu
Yıl 2024,
, 375 - 394, 30.06.2024
Süheyla Esin Köksal
,
Orhan Kelleci
Öz
Bu çalışmada atık polistirenin (PS) geri dönüştürülerek kompozit ahşap sandviç panellerin çekirdek tabakasında kullanılabilen, vida tutma direnci yüksek PS kompozit elde edilmesi amaçlanmıştır. Bu amaçla PS matrisinde dolgu maddesi olarak atık MDF tozu (MF) ve cam elyafı (GF) kullanılmıştır. Atık PS önce benzin kullanılarak eritilmiştir ve ardından % 50-100-150 oranında dolgu maddesi ile karıştırılmıştır. Kompozitteki çözücü iki farklı sıcaklık ile kompozitten uzaklaştırılmıştır. Numunelerin kalınlığına şişme (TS) ve su alma (WA) miktarları ile mekanik karakterizasyon için vida çekme dirençleri (SR) analiz edilmiştir. Elde edilen sonuçlara göre MF dolgusu arttıkça TS miktarında önemli bir değişiklik olmadığı ancak WA miktarının arttığı belirlenmiştir. GF dolgulu kompozitlerde MF'ye göre daha az kalınlığına şişme tespit edilmiştir. Ancak GF dolgulu kompozitlerde WA miktarının, MF dolgusuna göre daha fazla olduğu belirlenmiştir. % 150 GF ilavesi hariç dolgu maddeleri yoğunlukları arttırmıştır. Dolgu maddesi ilavesiyle SR artmıştır. Sonuç olarak atık PS, atık MF ve GF eklenerek yüksek vida tutma direncine sahip bir malzemeye dönüştürülebilir ve ahşap malzeme yerine kullanılabilir.
Kaynakça
- Adeniyi, A. G., Abdulkareem, S. A., Ighalo, J. O., Onifade, D. V., Adeoye, S. A., &
Sampson, A. E. (2022). Morphological and thermal properties of polystyrene
composite reinforced with biochar from elephant grass (Pennisetum
purpureum). Journal of Thermoplastic Composite Materials, 35(10), 1532-1547.
https://doi.org/10.1177/0892705720939169
- Adeniran, A. A., Ayesu-Koranteng, E. & Shakantu, W. (2022). A Review of the Literature
on the Environmental and Health Impact of Plastic Waste Pollutants in Sub-Saharan
Africa. Pollutants, 2(4), 531-545. https://doi.org/10.3390/pollutants2040034
- Adhikary, K. B., Pang, S. & Staiger, M. P. (2008). Dimensional stability and mechanical
behaviour of wood–plastic composites based on recycled and virgin high-density
polyethylene (HDPE). Composites Part B: Engineering, 39(5), 807-815.
https://doi.org/10.1016/j.compositesb.2007.10.005
- Agarwal, S. & Gupta, R. K. (2017). Plastics in Buildings and Construction. In Applied
Plastics Engineering Handbook (pp. 635-649). Elsevier. https://doi.org/10.1016/B978-
0-323-39040-8.00030-4
- Akadiri, P. O., Chinyio, E. A. & Olomolaiye, P. O. (2012). Design of A Sustainable
Building: A Conceptual Framework for Implementing Sustainability in the Building
Sector. Buildings, 2(2), 126-152. https://doi.org/10.3390/buildings2020126
- Al-Thawadi, S. (2020). Microplastics and Nanoplastics in Aquatic Environments:
Challenges and Threats to Aquatic Organisms. Arabian Journal for Science and
Engineering, 45(6), 4419-4440. https://doi.org/10.1007/s13369-020-04402-z
- Birinci, E. (2023). Determination of technological properties of wood plastic
nanocomposites produced by flat press reinforced with nano MgO. Journal of
Composite Materials, 57(9), 1641-1651. https://doi.org/10.1177/00219983231161820
- Chaukura, N., Gwenzi, W., Bunhu, T., Ruziwa, D. T. & Pumure, I. (2016). Potential uses
and value-added products derived from waste polystyrene in developing countries: A
review. Resources, Conservation and Recycling, 107, 157-165.
https://doi.org/10.1016/j.resconrec.2015.10.031
- Chindaprasirt, P., Hiziroglu, S., Waisurasingha, C. & Kasemsiri, P. (2015). Properties of
wood flour/expanded polystyrene waste composites modified with diammonium
phosphate flame retardant. Polymer Composites, 36(4), 604–612.
https://doi.org/10.1002/pc.22977
- Chun, K. S., Muhammad, N., Fahamy, Y., Yeng, C. Y., Choo, H. L., Pang, M. M. & Tshai,
K. Y. (2018). Wood plastic composites made from corn husk fiber and recycled
polystyrene foam. Journal of Engineering Science and Technology, 13(11), 3445–
3456.
- Chun, K. S., Subramaniam, V., Yeng, C. M., Meng, P. M., Ratnam, C. T., Yeow, T. K. &
How, C. K. (2019). Wood plastic composites made from post-used polystyrene foam
and agricultural waste. Journal of Thermoplastic Composite Materials, 32(11), 1455-
1466. https://doi.org/10.1177/0892705718799836
- Eitzen, L., Ruhl, A. S. & Jekel, M. (2020). Particle Size and Pre-Treatment Effects on
Polystyrene Microplastic Settlement in Water: Implications for Environmental
Behavior and Ecotoxicological Tests. Water, 12(12), 3436.
https://doi.org/10.3390/w12123436
- Elsheikh, A. H., Panchal, H., Shanmugan, S., Muthuramalingam, T., El-Kassas, Ahmed. M.
& Ramesh, B. (2022). Recent progresses in wood-plastic composites: Pre-processing
treatments, manufacturing techniques, recyclability and eco-friendly assessment.
Cleaner Engineering and Technology, 8, 100450.
https://doi.org/10.1016/j.clet.2022.100450
- Eskander, S. B., Tawfik, M. E. & Tawfic, M. L. (2018). Mechanical, flammability and
thermal degradation characteristics of rice straw fiber-recycled polystyrene foam hard
wood composites incorporating fire retardants. Journal of Thermal Analysis and
Calorimetry, 132(2), 1115-1124. https://doi.org/10.1007/s10973-018-6984-6
- Ferah, O. (1995). Studies on the Determination of Nail and Screw Holding Properties of
Some Native Tree Species. In Turkish forestry research institute.
- Friedrich, D. & Luible, A. (2016). Investigations on ageing of wood-plastic composites for
outdoor applications: A meta-analysis using empiric data derived from diverse
weathering trials. Construction and Building Materials, 124, 1142-1152.
https://doi.org/10.1016/j.conbuildmat.2016.08.123
- Heimbs, S. & Pein, M. (2009). Failure behaviour of honeycomb sandwich corner joints and
inserts. Composite Structures, 89(4), 575-588.
https://doi.org/10.1016/j.compstruct.2008.11.013
- Jivkov, V., Simeonova, R., Antov, P., Marinova, A., Petrova, B. & Kristak, L. (2021).
Structural application of lightweight panels made of waste cardboard and beech
veneer. Materials, 14(7), 5064.
Kaho, S. P., Kouadio, K. C., Kouakou, C. H. & Eméruwa, E. (2020). Development of a
Composite Material Based on Wood Waste Stabilized with Recycled Expanded
Polystyrene. Open Journal of Composite Materials, 10(03), 66–76.
https://doi.org/10.4236/ojcm.2020.103005
- Kehinde, O., Ramonu, O. J., Babaremu, K. O. & Justin, L. D. (2020). Plastic wastes:
environmental hazard and instrument for wealth creation in Nigeria. Heliyon, 6(10),
e05131. https://doi.org/10.1016/j.heliyon.2020.e05131
- Kelleci, O., Koksal, S. E., Aydemir, D. & Sancar, S. (2022). Eco-friendly particleboards
with low formaldehyde emission and enhanced mechanical properties produced with
foamed urea-formaldehyde resins. Journal of Cleaner Production, 134785.
- Khojasteh-Khosro, S., Shalbafan, A. & Thoemen, H. (2020). Preferences of furniture
manufacturers for using lightweight wood-based panels as eco-friendly products.
European Journal of Wood and Wood Products, 78(3), 593-603.
https://doi.org/10.1007/s00107-020-01519-8
- Khojasteh-Khosro, S., Shalbafan, A. & Thoemen, H. (2022). Consumer behavior assessment
regarding lightweight furniture as an environmentally-friendly product. Wood
Material Science & Engineering, 17(3), 192-201.
https://doi.org/10.1080/17480272.2020.1847187
- Koay, S. C., Subramanian, V., Chan, M. Y., Pang, M. M., Tsai, K. Y. & Cheah, K. H. (2018).
Preparation and Characterization of Wood Plastic Composite Made Up of Durian
Husk Fiber and Recycled Polystyrene Foam. MATEC Web of Conferences, 152,
02019, EDP Sciences. https://doi.org/10.1051/matecconf/201815202019
- Maharana, T., Negi, Y. S. & Mohanty, B. (2007). Review Article: Recycling of Polystyrene.
Polymer-Plastics Technology and Engineering, 46(7), 729-736.
https://doi.org/10.1080/03602550701273963
- Maldas, D., Kokta, B. V., Raj, R. G. & Daneault, C. (1988). Improvement of the mechanical
properties of sawdust wood fibre-polystyrene composites by chemical treatment.
Polymer, 29(7), 1255–1265. https://doi.org/10.1016/0032-3861(88)90053-5
- Morrell, J. J., Stark, N. M., Pendleton, D. E. & Mcdonald, A. G. (2006). Durability of WoodPlastic Composites. Wood Design Focus, 16(3), 7-10.
Najafi, S. K., Kiaefar, A., Hamidina, E. & Tajvidi, M. (2007). Water Absorption Behavior
of Composites from Sawdust and Recycled Plastics. Journal of Reinforced Plastics
and Composites, 26(3), 341-348. https://doi.org/10.1177/0731684407072519
- Nelson, J., Pickering, K. L. & Beg, M. D. H. (2023). Assessment of the Potential of Waste
Copper Chromium and Arsenic (CCA)-Treated Timber Fibre Reinforced
Polypropylene Composites for Construction. Journal of Composites Science, 7(2), 48.
https://doi.org/10.3390/jcs7020048
- Noguchi, T., Tomita, H., Satake, K. & Watanabe, H. (1998). A new recycling system for
expanded polystyrene using a natural solvent. Part 3. Life cycle assessment. Packaging
Technology and Science, 11(1), 39-44. https://doi.org/10.1002/(SICI)1099-
1522(199802)11:1<39:AID PTS416>3.0.CO;2-Y
- Ogundipe, K. E., Ogunbayo, B. F., Olofinnade, O. M., Amusan, L. M. & Aigbavboa, C. O.
(2021). Affordable housing issue: Experimental investigation on properties of ecofriendly lightweight concrete produced from incorporating periwinkle and palm kernel
shells. Results in Engineering, 9, 100193.
https://doi.org/10.1016/j.rineng.2020.100193
- Osburg, V.-S., Strack, M. & Toporowski, W. (2016). Consumer acceptance of WoodPolymer Composites: a conjoint analytical approach with a focus on innovative and
environmentally concerned consumers. Journal of Cleaner Production, 110, 180-190.
https://doi.org/10.1016/j.jclepro.2015.04.086
- Osemeahon, S. A., Barminas, J. T. & Jang, A. L. (2013). Development of Waste Polystyrene
as a binder for emulsion paint formulation I: Effect of polystyrene Concentration. The
International Journal of Engineering and Science (IJES), 2(8), 30-35.
- Osemeahon, S. A., Reuben, U. & Emmanuel, E. (2022). Development of adhesive from
polystyrene waste. BIOMED Natural and Applied Science, 02(01), 13-24.
https://doi.org/10.53858/bnas02011324
- Palomba, G., Epasto, G., Sutherland, L. & Crupi, V. (2022). Aluminium honeycomb
sandwich as a design alternative for lightweight marine structures. Ships and Offshore
Structures, 17(10), 2355-2366. https://doi.org/10.1080/17445302.2021.1996109
- Partanen, A. & Carus, M. (2019). Biocomposites, find the real alternative to plastic – An
examination of biocomposites in the market. Reinforced Plastics, 63(6), 317-321.
https://doi.org/10.1016/j.repl.2019.04.065
- Patel, V. K. & Rawat, N. (2017). Physico-mechanical properties of sustainable Sagwan-Teak
Wood Flour/Polyester Composites with/without gum rosin. Sustainable Materials and
Technologies, 13, 1-8. https://doi.org/10.1016/j.susmat.2017.05.002
- Penjumras, P., Rahman, R. A., Talib, R. A. & Abdan, K. (2015). Mechanical properties and
water absorption behaviour of durian rind cellulose reinforced poly (lactic acid)
biocomposites. International Journal on Advanced Science, Engineering and
Information Technology, 5(5), 343–349.
- Petutschnigg, A. J. & Ebner, M. (2007). Lightweight paper materials for furniture – A design
study to develop and evaluate materials and joints. Materials & Design, 28(2), 408-
413. https://doi.org/10.1016/j.matdes.2005.09.017
- Petutschnigg, A. J., Koblinger, R., Pristovnik, M., Truskaller, M., Dermouz, H. & Zimmer,
B. (2004). Leichtbauplatten aus Holzwerkstoffen-Teil I: Eckverbindungen. Holz Als
Roh- Und Werkstoff, 62(6), 405-410. https://doi.org/10.1007/s00107-004-0526-6
- Pham Van, T., Schöpper, C., Klüppel, A. & Mai, C. (2021). Effect of wood and panel density
on the properties of lightweight strand boards. Wood Material Science & Engineering,
16(4), 237–245. https://doi.org/10.1080/17480272.2019.1705906
- Ponomarenko, O., Yevtushenko, N., Lysenko, T., Solonenko, L. & Shynsky, V. (2020). A
New Technology for Producing the Polystyrene Foam Molds Including Implants at
Foundry Industry. In Advances in Design, Simulation and Manufacturing II (pp. 430–
437). Springer. https://doi.org/10.1007/978-3-030-22365-6_43
- Rahimi, A. & García, J. M. (2017). Chemical recycling of waste plastics for new materials
production. Nature Reviews Chemistry, 1(6), 0046. https://doi.org/10.1038/s41570-
017-0046
- Roziņš, R., Iejavs, J., Jakovļevs, V. & Spulle, U. (2020). The properties of lightweight
stabilised blockboard panels. Drewno, 2020(206), 1-17.
https://doi.org/10.12841/wood.1644-3985.334.02
- Rubino, F., Nisticò, A., Tucci, F. & Carlone, P. (2020). Marine Application of Fiber
Reinforced Composites: A Review. Journal of Marine Science and Engineering, 8(1),
26. https://doi.org/10.3390/jmse8010026
- Saba, N., Jawaid, M., Sultan, M. T. H. & Alothman, O. Y. (2017). Green Biocomposites for
Structural Applications. In M. Jawaid, M. Salit, & O. Alothman (Eds.), Green
Biocomposites. Green Energy and Technology (pp. 1-27). Springer.
https://doi.org/10.1007/978-3-319-49382-4_1
- Şahin, S. (2020). Geçmiş,Günümüz ve Gelecekte Nüfus Gerçeği (5th ed.). Ankara Pegem
Akademi Yayıncılık. https://doi.org/10.14527/9786053180173
- Santoni, A., Bonfiglio, P., Mollica, F., Fausti, P., Pompoli, F. & Mazzanti, V. (2018). Vibroacoustic optimisation of Wood Plastic Composite systems. Construction and Building
Materials, 174, 730-740. https://doi.org/10.1016/j.conbuildmat.2018.04.155
- Schirp, A., Ibach, R. E., Pendleton, D. E. & Wolcott, M. P. (2008). Biological Degradation
of Wood-Plastic Composites (WPC) and strategies for Improving the Resistance of
WPC against Biological Decay; Chapter 29. In P. S. Tor, M. Holger, H. F. Michael,
- G. Barry, & D. N. Darrel (Eds.), Development of Commercial Wood Preservatives
Efficacy, Environmental, and Health Issues (pp. 480-507). American Chemical
Society.
- Schwarzkopf, M. J. & Burnard, M. D. (2016). Wood-Plastic Composites-Performance and
Environmental Impacts. In A. Kutnar & S. Muthu (Eds.), Environmental Impacts of
Traditional and Innovative Forest-based Bioproducts. Environmental Footprints and
Eco-design of Products and Processes (pp. 19-43). Springer.
https://doi.org/10.1007/978-981-10-0655-5_2
- Schyns, Z. O. G. & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A
Review. Macromolecular Rapid Communications, 42(3), 2000415.
https://doi.org/10.1002/marc.202000415
- Šernek, M., Turičnik, V., Repič, R. & Šega, B. (2020). Use of waste plastics for the
preparation of adhesives for wood bonding. Les/Wood, 69(2), 107-116.
https://doi.org/10.26614/les-wood.2020.v69n02a08
- Shao, X., Yang, Q., Liu, Y. & Cao, L. (2021). Advantage analysis of aluminum honeycomb
composite used in motorhomes. E3S Web of Conferences, 290, 01038.
https://doi.org/10.1051/e3sconf/202129001038
- Silva, H. S. N. (2013). Characterisation of polymer-based wood-substitute for sustainable
building and construction (Order No. 27826588) [Dissertation]. Faculty of Computing,
Engineering and Science.
- Sitorus, R., Wirjosentono, B., Tamrin, T., Siregar, A. H., & Nasution, D. A. (2020,
September). Characteristics of maleic anhydride-modified polystyrene and natural
rubber blends containing “Talang” bamboo powder as sound damping material.
020050. In AIP Conference Proceedings. AIP Publishing.
https://doi.org/10.1063/5.0015749
- Smardzewski, J. & Kramski, D. (2019). Modelling stiffness of furniture manufactured from
honeycomb panels depending on changing climate conditions. Thin-Walled
Structures, 137, 295-302. https://doi.org/10.1016/j.tws.2019.01.019
- Smardzewski, J., Słonina, M. & Maslej, M. (2017). Stiffness and failure behaviour of wood
based honeycomb sandwich corner joints in different climates. Composite Structures,
168, 153-163. https://doi.org/10.1016/j.compstruct.2017.02.047
- Sriprom, W., Sirivallop, A., Choodum, A., Limsakul, W. & Wongniramaikul, W. (2022).
Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam
Waste. Polymers, 14(11), 2241. https://doi.org/10.3390/polym14112241
- Tapia-Blácido, D. R., Aguilar, G. J., de Andrade, M. T., Rodrigues-Júnior, M. F. &
Guareschi-Martins, F. C. (2022). Trends and challenges of starch-based foams for use
as food packaging and food container. Trends in Food Science & Technology, 119,
257-271. https://doi.org/10.1016/j.tifs.2021.12.005
- Teuber, L., Osburg, V.-S., Toporowski, W., Militz, H. & Krause, A. (2016). Wood polymer
composites and their contribution to cascading utilisation. Journal of Cleaner
Production, 110, 9-15. https://doi.org/10.1016/j.jclepro.2015.04.009
- Uddin, M. N., Desai, F. J., & Asmatulu, E. (2020). Biomimetic electrospun nanocomposite
fibers from recycled polystyrene foams exhibiting superhydrophobicity. Energy,
Ecology and Environment, 5(1), 1-11. https://doi.org/10.1007/s40974-019-00140-7
- Uğur, L., Duzcukoglu, H., Sahin, O. S. & Akkuş, H. (2020). Investigation of impact force
on aluminium honeycomb structures by finite element analysis. Journal of Sandwich
Structures & Materials, 22(1), 87-103. https://doi.org/10.1177/1099636217733235
- Ugwu, S. C. & Obele, C. M. (2023). A mini-review on expanded polystyrene waste recycling
and its applications. World Journal of Advanced Engineering Technology and
Sciences, 8(1), 315-329. https://doi.org/10.30574/wjaets.2023.8.1.0057
- Uysal, M., & Güntekin, E. (2024). Prediction of screw withdrawal resistance for plywood
laminated panels and sandwich panels. Turkish Journal of Forestry, 25(1), 81-88.
https://doi.org/10.18182/tjf.1375273
- Vilaplana, F., Ribes-Greus, A. & Karlsson, S. (2007). Analytical strategies for the quality
assessment of recycled high-impact polystyrene: A combination of thermal analysis,
vibrational spectroscopy, and chromatography. Analytica Chimica Acta, 604(1), 18-
28. https://doi.org/10.1016/j.aca.2007.04.046
- Wang, H.-M., Yuan, T.-Q., Song, G.-Y. & Sun, R.-C. (2021). Advanced and versatile ligninderived biodegradable composite film materials toward a sustainable world. Green
Chemistry, 23(11), 3790-3817. https://doi.org/10.1039/D1GC00790D
- Wang, J., Huang, T., Lei, F., Song, L., Luan, J. & Tang, Z. (2022). Investigation of the
physical and mechanical properties of lightweight particleboard bonded by foamable
polyurethane adhesive. European Journal of Wood and Wood Products, 80(1), 213-
222. https://doi.org/10.1007/s00107-021-01744-9