Akarsu Kirliliğinin Azaltılmasında Fitoremediasyon Yaklaşımının Kullanımı
Yıl 2025,
Cilt: 21 Sayı: 1, 285 - 302, 30.06.2025
Ahmet Ayteğin
,
Mehmet Özcan
Öz
Yeterli ve temiz içme ve sulama suyu temini, dünya genelinde ciddi bir endişe kaynağıdır. Dünya genelinde çeşitli kirletici kaynakları su kalitesinin düşmesine neden olmaktadır. Çevresel ve sucul ekosistemler, bu kirletici maddelerin salınımına maruz kalmaktadır. Ne yazık ki, kirlenmiş ortamların arıtımı için çevre dostu yöntemler sınırlıdır. Ağır metal kirliliği, insan sağlığı üzerinde ciddi hastalıklara neden olan en büyük tehditlerden biridir. Bitkilerin kirleticileri uzaklaştırma kapasitesine dayanan fitoremediasyon, çevre dostu ve ekonomik bir çözüm olarak öne çıkmaktadır. Bu yöntem, toksik elementlerin toprakta birikimini azaltmada etkili olduğu gibi, biyoremediasyon ile entegre edilen sistemlerde su kirleticilerinin giderilmesinde de dikkat çekmektedir. Fitoremediasyonun etkinliğini artırmak için, farklı bitki türlerinin potansiyelini inceleyen mekanik süreçler uygulanmaktadır. Bu süreçte, multidisipliner bir yaklaşım benimsenerek geniş bir bitki yelpazesinin analiz edilmesi önem taşır.
Teşekkür
Ahmet AYTEĞİN, Yükseköğretim Kurulu’nun 100/2000 Doktora Burs Programı kapsamında, 'Sürdürülebilir Ormancılık ve Orman Afetleri' tematik alanında desteklenmiştir.
Kaynakça
-
Abdallah, M.A.M. (2012). Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol., 33, 1609–1614.
-
Acar, B.Ç., ve Acar, M.B. (2022). Kimyasal yöntemlerle atık sulardan ağır metal giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
-
AiniSyuhaida, A.W., Sharifah Norkhadijah, S.I., Emilia, Z.A. & Sarva Mangala, P. (2014). Neptuniaoleracea (water mimosa) as phytoremediation plant and the risk to human health: A review. Adv. Environ. Biol., 8(15), 187-194.
-
Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869-881.
-
Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886.
-
Ay, İ. (2019). Ağır metal şelasyonunda fitoremediasyon tekniği ve uygulamada etkili makrofitler. Mediterranean Fisheries and Aquaculture Research, 2(3), 77-82.
-
Baghırova, F. (2020). ‘Sucul ortamlardan fitoremediasyon yöntemi ile ağır metal giderimi’. Yüksek Lisans Tezi. Pamukkale Üniversitesi, Fen bilimleri Enstitüsü, Denizli.
-
Basile A., Sorbo S., Conte B., Cobianchi R.C., Trinchella F., Capasso C. & Carginale V. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int. J. Phytoremediat., 14, 374–387.
-
Bello, A.O., Tawabini, B.S., Khalil, A.B., Boland, C.R. & Saleh, T.A. (2018). Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng., 120, 126–133.
-
Benaroya, R.O., Tzin, V., Tel-Or, E. & Zamski, E. (2004). Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem., 42, 639–645.
-
Bokhari, S.H., Ahmad, İ., Mahmood-Ul-Hassan, M., Mohammad, A. (2016). Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat, 18, 25–32.
-
Bütünoğlu, A. (2018). ‘Su kaynaklarinda yüzer sulak alan ve sucul bitkiler ile nütrient gideriminin değerlendirilmesi’. Uzmanlık Tezi. T.C Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü, Ankara.
-
Caldelas, C., Araus, J.L., Febrero, A. & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol. Plant., 34, 1217–1228.
-
Chandra R. & Yadav S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, typha angustifolia and Cyperous esculentus, Int. J. Phytoremediat., 13, 580–591.
-
Chen G., Liu X., Brookes P.C. & Xu J. (2015). Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara, Int. J. Phytoremediat., 17, 249–255.
-
Chen, L., Zhou, S., Şi, Y., Wang, C., Li, B., Li, Y. & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of The Total Env., 615, 141–149.
-
Cirik, Ş. ve Cirik, S. (2004). Su bitkileri (deniz bitkilerinin biyolojisi, ekolojisi yetiştirme teknikleri), Bornova–İzmir: Ege Üniversitesi Su Ürünleri Fakültesi Yayınları.
-
Colzi, I., Lastrucci, L., Rangoni, M., Coppi, A. & Gonnelli, C. (2018). Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? J. Environ. Manag., 213, 320–328.
-
Da Silva, A.A., De Oliveira, J.A., De Campos, F.V., Ribeiro, C., Farnese, F.D.S. & Costa, A.C. (2018). Phytoremediation potential of Salvinia molesta for arsenite contaminated water: Role of antioxidant enzymes. Theor. Exp. Plant Physiol., 30, 275–286.
-
Das, S., Goswami, S. & Das Talukdar, A. (2013). A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia stratiotes L. Bull. Environ. Contam. Toxicol., 92, 169–174.
-
Delgado-González, C.R., Madariaga-Navarrete, A., Fernández-Cortés, J.M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M., & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. International Journal of Environmental Research and Public Health, 18(10), 5215.
-
Dhir, B., Sharmila, P. & Pardha Saradhi, P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Crit. Rev. Environ. Sci. Technol., 39, 1-28.
-
Dhir, B. & Srivastava, S. (2011). Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol. Eng., 37, 893–896.
-
Dixit, S. & Dhote, S. (2009). Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ. Monit. Assess., 169, 367–374.
-
Eid, E.M., Shaltout, K.H., El-Sheikh, M.A. & Asaeda, T. (2012). Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): Perspectives for phytoremediation. Flora, 207, 783–794.
-
E.P.A. (Environmental Protection Agency), (1995). Contaminants and Remedial Options at Select Metals – Contaminated Sites, EPA/540/R-95/512.
-
E.P.A. (Environmental Protection Agency). (1998). A citizen's guide to phytoremediation. Washington, DC: EPA. Publication 542-F-98-011.
-
E.P.A. (Environmental Protection Agency). (1999). Phytoremediation resource guide. Washington, DC: EPA. Publication 542-B-99-003.
-
E.P.A. (Environmental Protection Agency). (2000). Introduction of Phytoremediation. epa/600/R-99/107, Cincinati, Ohio, U.S.A.
-
Fritioff, Å. & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.
-
Galal, T.M., Al-Sodany, Y.M. & Al-Yasi, H.M. (2019). Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Int. J. Phytoremediat., 22, 373–382.
-
Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1-18.
-
Glass D.J. (1999), Economic patential of phytoremediation, Phyforemediation of Toxic Metals: Using Plants to Clean Up the Environment, (Raskin I., Ensley B.D., Eds.), John Wiley&Sans, New York, 15-31.
-
Gomes, M.V.T., de Souza, R.R., Teles, V.S. & Mendes, É.A. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.
-
Güneş, A., Kumar, R., Pek, T., Yüksel, M., & Kabay, N. (2017). Yapay Sulak Alanlarda Atıksu RehabilitasyonundaKullanılan Salvinia natans ve Lemna minor Bitki Türlerinin Su Kalitesine Olan Etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi, 74(EK-1), 79-86.
-
Hanif, A. & Bhatti, H.N. (2009). Removal and recovery of Cu (II) and Zn (II) using immobilized Mentha arvensis distillation waste biomass. Ecol. Eng., 35, 1427-1434.
-
Hayta, Ş. ve Erkan, Y. (2019). Ahlat Sazlıklarındaki, Phragmites australis (cav.) Trin. Ex stend, Typha angustifolia L., Lythrum salicaria L. Bitkilerinin ve Bunları Çevreleyen Sedimentlerde Ağır Metal Konsantrasyonlarının Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 795-805.
-
Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A. & Rossi, L. (2020). Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere, 241, 125018.
-
Hoffmann, T.L., Kutter, C. & Santamaria, J.M. (2004). Capacity of Salvinia minima Baker to Tolerate and Accumulate As and Pb. Eng. Life Sci., 4, 61–65.
-
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mat., 211, 317–331.
-
Huang, Z.C., Chen, T.B., Lei, M. & Hu, T.D. (2004). Direct determination of arsenic species in arsenic hyperaccumulator Pteris vittata by EXAFS. Acta Bot., 46, 46–50.
-
Ingole, N.W. & Bhole, A.G. (2003). Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol., 52, 119–128.
-
Kırım, B., Çoban, D., & Güler, M. (2014). Floating aquatic plants and their impact on wetlands in Turkey. In 2 nd International Conference-Water resources and wetlands. Tulcea, Romania.
-
Kumar, J.N., Soni, H., Kumar, R.N. & Bhatt, İ. (2008). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci., 8, 193–200.
-
Kumar, V. & Chopra, A.K. (2018). Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ. Technol., 39, 12–23.
-
Kumar, V., Singh, J., Saini,
-
Bu yanıtı durdurdunuz
-
Abdallah, M.A.M. (2012). Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol., 33, 1609–1614.
-
Acar, B.Ç., ve Acar, M.B. (2022). Kimyasal yöntemlerle atık sulardan ağır metal giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
-
AiniSyuhaida, A.W., Sharifah Norkhadijah, S.I., Emilia, Z.A. & Sarva Mangala, P. (2014). Neptuniaoleracea (water mimosa) as phytoremediation plant and the risk to human health: A review. Adv. Environ. Biol., 8(15), 187-194,
-
Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869-881.
-
Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886.
-
Ay, İ. (2019). Ağır metal şelasyonunda fitoremediasyon tekniği ve uygulamada etkili makrofitler. Mediterranean Fisheries and Aquaculture Research, 2(3), 77-82.
-
Baghırova, F. (2020). ‘Sucul ortamlardan fitoremediasyon yöntemi ile ağır metal giderimi’. Yüksek Lisans Tezi. Pamukkale Üniversitesi, Fen bilimleri Enstitüsü, Denizli.
-
Basile A., Sorbo S., Conte B., Cobianchi R.C., Trinchella F., Capasso C. & Carginale V. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int. J. Phytoremediat., 14, 374–387.
-
Bello, A.O., Tawabini, B.S., Khalil, A.B., Boland, C.R. & Saleh, T.A. (2018). Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng., 120, 126–133.
-
Benaroya, R.O., Tzin, V., Tel-Or, E. & Zamski, E. (2004). Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem., 42, 639–645.
-
Bokhari, S.H., Ahmad, I., Mahmood-Ul-Hassan, M., Mohammad, A. (2016). Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat, 18, 25–32.
-
Bütünoğlu, A. (2018). ‘Su kaynaklarinda yüzer sulak alan ve sucul bitkiler ile nütrient gideriminin değerlendirilmesi’. Uzmanlık Tezi. T.C Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü, Ankara.
-
Caldelas, C., Araus, J.L., Febrero, A. & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol. Plant., 34, 1217–1228.
-
Chandra R. & Yadav S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, typha angustifolia and Cyperous esculentus, Int. J. Phytoremediat., 13, 580–591.
-
Chen G., Liu X., Brookes P.C. & Xu J. (2015). Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara, Int. J. Phytoremediat., 17, 249–255.
-
Chen, L., Zhou, S., Şi, Y., Wang, C., Li, B., Li, Y. & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of The Total Env., 615, 141–149.
-
Cirik, Ş. ve Cirik, S. (2004). Su bitkileri (deniz bitkilerinin biyolojisi, ekolojisi yetiştirme teknikleri), Bornova–İzmir: Ege Üniversitesi Su Ürünleri Fakültesi Yayınları.
-
Colzi, I., Lastrucci, L., Rangoni, M., Coppi, A. & Gonnelli, C. (2018). Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? J. Environ. Manag., 213, 320–328.
-
Da Silva, A.A., De Oliveira, J.A., De Campos, F.V., Ribeiro, C., Farnese, F.D.S. & Costa, A.C. (2018). Phytoremediation potential of Salvinia molesta for arsenite contaminated water: Role of antioxidant enzymes. Theor. Exp. Plant Physiol., 30, 275–286.
-
Das, S., Goswami, S. & Das Talukdar, A. (2013). A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia stratiotes L. Bull. Environ. Contam. Toxicol., 92, 169–174.
-
Delgado-González, C.R., Madariaga-Navarrete, A., Fernández-Cortés, J.M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M., & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. International Journal of Environmental Research and Public Health, 18(10), 5215.
-
Dhir, B., Sharmila, P. & Pardha Saradhi, P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Crit. Rev. Environ. Sci. Technol., 39, 1-28,
-
Dhir, B. & Srivastava, S. (2011). Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol. Eng., 37, 893–896.
-
Dixit, S. & Dhote, S. (2009). Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ. Monit. Assess., 169, 367–374.
-
Eid, E.M., Shaltout, K.H., El-Sheikh, M.A. & Asaeda, T. (2012). Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): Perspectives for phytoremediation. Flora, 207, 783–794.
-
E.P.A. (Environmental Protection Agency), (1995). Contaminants and Remedial Options at Select Metals – Contaminated Sites, EPA/540/R-95/512.
-
E.P.A. (Environmental Protection Agency). (1998). A citizen's guide to phytoremediation. Washington, DC: EPA. Publication 542-F-98-011.
-
E.P.A. (Environmental Protection Agency). (1999). Phytoremediation resource guide. Washington, DC: EPA. Publication 542-B-99-003.
-
E.P.A. (Environmental Protection Agency). (2000). Introduction of Phytoremediation. epa/600/R-99/107, Cincinati, Ohio, U.S.A.
-
Fritioff, Å. & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.
-
Galal, T.M., Al-Sodany, Y.M. & Al-Yasi, H.M. (2019). Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Int. J. Phytoremediat., 22, 373–382.
-
Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1-18.
-
Glass D.J. (1999), Economic patential of phytoremediation, Phyforemediation of Toxic Metals: Using Plants to Clean Up the Environment, (Raskin I., Ensley B.D., Eds.), John Wiley&Sans, New York, 15-31.
-
Gomes, M.V.T., de Souza, R.R., Teles, V.S. & Mendes, É.A. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.
-
Güneş, A., Kumar, R., Pek, T., Yüksel, M., & Kabay, N. (2017). Yapay Sulak Alanlarda Atıksu RehabilitasyonundaKullanılan Salvinia natans ve Lemna minor Bitki Türlerinin Su Kalitesine Olan Etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi, 74(EK-1), 79-86.
-
Hanif, A. & Bhatti, H.N. (2009). Removal and recovery of Cu (II) and Zn (II) using immobilized Mentha arvensis distillation waste biomass. Ecol. Eng., 35, 1427-1434.
-
Hayta, Ş. ve Erkan, Y. (2019). Ahlat Sazlıklarındaki, Phragmites australis (cav.) Trin. Ex stend, Typha angustifolia L., Lythrum salicaria L. Bitkilerinin ve Bunları Çevreleyen Sedimentlerde Ağır Metal Konsantrasyonlarının Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 795-805.
-
Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A. & Rossi, L. (2020). Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere, 241, 125018.
-
Hoffmann, T.L., Kutter, C. & Santamaria, J.M. (2004). Capacity of Salvinia minima Baker to Tolerate and Accumulate As and Pb. Eng. Life Sci., 4, 61–65.
-
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mat., 211, 317–331.
-
Huang, Z.C., Chen, T.B., Lei, M. & Hu, T.D. (2004). Direct determination of arsenic species in arsenic hyperaccumulator Pteris vittata by EXAFS. Acta Bot., 46, 46–50.
-
Ingole, N.W. & Bhole, A.G. (2003). Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol., 52, 119–128.
-
Kırım, B., Çoban, D., & Güler, M. (2014). Floating aquatic plants and their impact on wetlands in Turkey. In 2 nd International Conference-Water resources and wetlands. Tulcea, Romania.
-
Kumar, J.N., Soni, H., Kumar, R.N. & Bhatt, I. (2008). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci., 8, 193–200.
-
Kumar, V. & Chopra, A.K. (2018). Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ. Technol., 39, 12–23.
-
Kumar, V., Singh, J., Saini, A. & Kumar, P. (2019). Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ. Sustain., 2, 55–65.
-
Li, B., Gu, B., Yang, Z. & Zhang, T. (2018). The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Ecotoxicol. Environ. Saf., 165, 224–231.
-
Lima L.K.S., Pelosi B.T., Silva M.G.C. & Vieira M.G.A. (2013). Lead and chromium biosorption by Pistia stratiotes biomass. Chem. Eng. Trans., 32, 1045–1050.
-
Loría, K.C., Emiliani, J., Bergara, C.D., Herrero, M.S., Salvatierra, L.M. & Pérez, L.M. (2019). Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquat. Toxicol., 210, 158–166.
-
McGrath, S.P. & Zhao, F.J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277-282.
-
Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M.M. & Azim, M.R. (2010). Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour. Technol., 101, 5815–5819.
-
Mkandawire, M., Taubert, B. & Dudel, E.G. (2004). Capacity of Lemna gibba L. (Duckweed) for Uranium and Arsenic Phytoremediation in Mine Tailing Waters. Int. J. Phytoremediat., 6, 347–362.
-
Mukhtar, S.A.I.M.A., Bhatti, H.N., Khalid, M., Haq, M.A.U. & Shahzad, S.M. (2010). Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pak. J. Bot., 42, 4017–4026.
-
Najeeb, U., Ahmad, W., Zia, M.H., Zaffar, M. & Zhou, W. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arab. J. Chem., 10, 3310–3317.
-
Nurhayati P. (2012). Water Lettuce (Pistia stratiotes, Linn) potency as one of eco- friendly phytoextraction absorbers of zinc heavy metal to solve industrial waste problem in indonesia. International Conerence on Environmental Biomedical and Biotechnology, 41, 151-156,
-
Odjegba, V.J. & Fasidi, I.O. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist, 27, 349–355.
-
Okcu, M., Tozlu, E., Metin Kumlay, A., & Pehluvan, M. (2009). Ağır metallerin bitkiler üzerine etkileri. Alinteri Journal of Agriculture Science, 17(2), 14-26.
-
Özay, C. ve Mammadov, R. (2013). Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanılabilirliği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 68-77.
-
Parzych A., Sobisz Z. & Cymer M. (2016). Preliminary research of heavy metals content in aquatic plants taken from surface water (Northern Poland). Desal. Water Treat., 57, 1451–1461.
-
Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
-
Pilon-Smits, E.A. & Freeman, J.L. (2006). Environmental cleanup using plants: biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment, 4(4), 203-210.
-
Rahman, M.A., Hasegawa, H., Ueda, K., Maki, T. & Okumura, C. (2007). Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere, 69, 493–499.
-
Rai, P.K. (2008). Technical Note: Phytoremediation of Hg and Cd from Industrial Effluents using an Aquatic Free Floating Macrophyte Azolla pinnata. Int. J. Phytoremediat., 10, 430–439.
-
Rai, P.K. (2009). Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), 697–753.
-
Rajakaruna, N., Tompkins, K. M., & Pavicevic, P. G. (2006). Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon Journal of Science, 35(1), 25.
-
Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Science, 180, 169-181.
-
Reeves, R.D. & Baker, A.J.M. (2000). Metal accumulating plants. In: Raskin, I. and Finsley, B.D., Eds., Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, Wiley, New York, 193-229.
-
Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587-599.
-
Romeh, A.A. (2014). Phytoremediation of cyanophos insecticide by Plantago major L. in water. J. Environ. Health Sci. Eng., 12, 38.
-
Rulkens, W.H., Tichy, R. & Grotenhuis, J.T.C. (1998). Remediation of polluted soil and sediment: perspectives and failures. Water Sci. Technol., 37, 27-35,
-
Sakakibara, M., Ohmori, Y., Ha, N.T.H., Sano, S. & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water, 39, 735–741.
-
Salt, D.E., Smith, R.D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643-668.
-
Sheoran, A.S. & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering, 19, 105-116.
-
Sinha, S., Saxena R., & Singh S. (2000). Fluoride Removal from Water by Hydrilla verticillata (l.f.) Royle and Its Toxic Effects. Bull. Environ. Contam. Toxicol., 65, 683–690.
-
Sivaci, E.R., Sivaci, A., & Sökmen, M. (2004). Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere, 56, 1043–1048.
-
Sweta, K. Bauddh, R. Singh, R.P. Singh, (2015). The suitability of Trapa natans for phytoremediation of inorganic contaminants from the aquatic ecosystems. Ecol. Eng., 83, 39–42.
-
Syukor A.A., Sulaiman S., Siddique M.N.I., Zularisam A.W., Said M.I.M., (2016). Integration of phytogreen for heavy metal removal from wastewater. J. Clean. Prod., 112, 3124–3131.
-
T.C. Çevre ve Şehircilik Bakanlığı. (2018). Kirlenmiş saha temizleme/iyileştirme teknolojileri kılavuzu. Ankara: Çevre Yönetimi Genel Müdürlüğü.
-
Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering.
-
Terzi, H., ve Yıldız, M. (2011). Ağır metaller ve fitoremediasyon: fizyolojik ve moleküler mekanizmalar. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(1), 1-22.
-
Toroğlu, E., Toroğlu, S., ve Alaeddinoğlu, F. (2006). Aksu Çayı’nda (Kahramanmaraş) Akarsu Kirliliği. Coğrafi Bilimler Dergisi, 4(1), 93-103.
-
Török A., Gulyás Z., Szalai G., Kocsy G. & Majdik C. (2015). Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J. Hazard. Mater. 299, 371–378.
-
Valderrama, A., Tapia, J., Peñailillo, P. & Carvajal, D.E. (2012). Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water Environ. J., 27, 293–300.
-
Vangronsveld, T. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765-94.
-
Vanlı, Ö. (2007). ‘Pb, Cd, B elementlerinin topraklardan şelat destekli fitoremediasyon yöntemiyle giderilmesi’, Yüksek lisans tezi. İstanbul Teknik Üniversitesi, Çevre Mühendisliği Anabilim Dalı, İstanbul
-
Vernay, P., Gauthier-Moussard, C. & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68, 1563–1575.
-
Watanabe, M.E. (1997). Phytoremediation on the Brink of Commercialization. Environmental Sciences and Technology, 31, 182-186.
-
Xue, P., Li, G., Liu, W. & Yan, C. (2010). Copper uptake and translations in a submerged aquatic plant Hydrilla verticillara (L.f.) Royle. Chemosphere, 81, 1098-1103.
-
Xue, P.Y. & Yan, C.Z. (2011). Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere, 85, 1176–1181.
-
Yadav, S.K., Juwarkar, A.A., Kumar, G.P., Thawale, P.R., Singh, S.K., & Chakrabarti, T. (2011). Bioaccumulation and phytotranslocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy effluent and bioamendment. Bioresource Technology, 102(2), 219-226.
-
Zurayk, R., Sukkariyah, B., Baalbaki, R., & Ghanem, D.A. (2002). Ni Phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut., 139, 355–364.
-
her kaynak arasına 1 satır boşluğu bırakarak yaz italik olan kelimeler italik olarak kalsın
-
Abdallah, M.A.M. (2012). Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol., 33, 1609–1614.
-
Acar, B.Ç., ve Acar, M.B. (2022). Kimyasal yöntemlerle atık sulardan ağır metal giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
-
AiniSyuhaida, A.W., Sharifah Norkhadijah, S.I., Emilia, Z.A. & Sarva Mangala, P. (2014). Neptuniaoleracea (water mimosa) as phytoremediation plant and the risk to human health: A review. Adv. Environ. Biol., 8(15), 187-194.
-
Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869-881.
-
Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886.
-
Ay, İ. (2019). Ağır metal şelasyonunda fitoremediasyon tekniği ve uygulamada etkili makrofitler. Mediterranean Fisheries and Aquaculture Research, 2(3), 77-82.
-
Baghırova, F. (2020). ‘Sucul ortamlardan fitoremediasyon yöntemi ile ağır metal giderimi’. Yüksek Lisans Tezi. Pamukkale Üniversitesi, Fen bilimleri Enstitüsü, Denizli.
-
Basile A., Sorbo S., Conte B., Cobianchi R.C., Trinchella F., Capasso C. & Carginale V. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int. J. Phytoremediat., 14, 374–387.
-
Bello, A.O., Tawabini, B.S., Khalil, A.B., Boland, C.R. & Saleh, T.A. (2018). Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng., 120, 126–133.
-
Benaroya, R.O., Tzin, V., Tel-Or, E. & Zamski, E. (2004). Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem., 42, 639–645.
-
Bokhari, S.H., Ahmad, I., Mahmood-Ul-Hassan, M., Mohammad, A. (2016). Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat, 18, 25–32.
-
Bütünoğlu, A. (2018). ‘Su kaynaklarinda yüzer sulak alan ve sucul bitkiler ile nütrient gideriminin değerlendirilmesi’. Uzmanlık Tezi. T.C Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü, Ankara.
-
Caldelas, C., Araus, J.L., Febrero, A. & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol. Plant., 34, 1217–1228.
-
Chandra R. & Yadav S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, typha angustifolia and Cyperous esculentus, Int. J. Phytoremediat., 13, 580–591.
-
Chen G., Liu X., Brookes P.C. & Xu J. (2015). Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara, Int. J. Phytoremediat., 17, 249–255.
-
Chen, L., Zhou, S., Şi, Y., Wang, C., Li, B., Li, Y. & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of The Total Env., 615, 141–149.
-
Cirik, Ş. ve Cirik, S. (2004). Su bitkileri (deniz bitkilerinin biyolojisi, ekolojisi yetiştirme teknikleri), Bornova–İzmir: Ege Üniversitesi Su Ürünleri Fakültesi Yayınları.
-
Colzi, I., Lastrucci, L., Rangoni, M., Coppi, A. & Gonnelli, C. (2018). Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? J. Environ. Manag., 213, 320–328.
-
Da Silva, A.A., De Oliveira, J.A., De Campos, F.V., Ribeiro, C., Farnese, F.D.S. & Costa, A.C. (2018). Phytoremediation potential of Salvinia molesta for arsenite contaminated water: Role of antioxidant enzymes. Theor. Exp. Plant Physiol., 30, 275–286.
-
Das, S., Goswami, S. & Das Talukdar, A. (2013). A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia stratiotes L. Bull. Environ. Contam. Toxicol., 92, 169–174.
-
Delgado-González, C.R., Madariaga-Navarrete, A., Fernández-Cortés, J.M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M., & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. International Journal of Environmental Research and Public Health, 18(10), 5215.
-
Dhir, B., Sharmila, P. & Pardha Saradhi, P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Crit. Rev. Environ. Sci. Technol., 39, 1-28.
-
Dhir, B. & Srivastava, S. (2011). Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol. Eng., 37, 893–896.
-
Dixit, S. & Dhote, S. (2009). Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ. Monit. Assess., 169, 367–374.
-
Eid, E.M., Shaltout, K.H., El-Sheikh, M.A. & Asaeda, T. (2012). Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): Perspectives for phytoremediation. Flora, 207, 783–794.
-
E.P.A. (Environmental Protection Agency), (1995). Contaminants and Remedial Options at Select Metals – Contaminated Sites, EPA/540/R-95/512.
-
E.P.A. (Environmental Protection Agency). (1998). A citizen's guide to phytoremediation. Washington, DC: EPA. Publication 542-F-98-011.
-
E.P.A. (Environmental Protection Agency). (1999). Phytoremediation resource guide. Washington, DC: EPA. Publication 542-B-99-003.
-
E.P.A. (Environmental Protection Agency). (2000). Introduction of Phytoremediation. epa/600/R-99/107, Cincinati, Ohio, U.S.A.
-
Fritioff, Å. & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.
-
Galal, T.M., Al-Sodany, Y.M. & Al-Yasi, H.M. (2019). Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Int. J. Phytoremediat., 22, 373–382.
-
Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1-18.
-
Glass D.J. (1999), Economic patential of phytoremediation, Phyforemediation of Toxic Metals: Using Plants to Clean Up the Environment, (Raskin I., Ensley B.D., Eds.), John Wiley&Sans, New York, 15-31.
-
Gomes, M.V.T., de Souza, R.R., Teles, V.S. & Mendes, É.A. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.
-
Güneş, A., Kumar, R., Pek, T., Yüksel, M., & Kabay, N. (2017). Yapay Sulak Alanlarda Atıksu RehabilitasyonundaKullanılan Salvinia natans ve Lemna minor Bitki Türlerinin Su Kalitesine Olan Etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi, 74(EK-1), 79-86.
-
Hanif, A. & Bhatti, H.N. (2009). Removal and recovery of Cu (II) and Zn (II) using immobilized Mentha arvensis distillation waste biomass. Ecol. Eng., 35, 1427-1434.
-
Hayta, Ş. ve Erkan, Y. (2019). Ahlat Sazlıklarındaki, Phragmites australis (cav.) Trin. Ex stend, Typha angustifolia L., Lythrum salicaria L. Bitkilerinin ve Bunları Çevreleyen Sedimentlerde Ağır Metal Konsantrasyonlarının Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 795-805.
-
Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A. & Rossi, L. (2020). Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere, 241, 125018.
-
Hoffmann, T.L., Kutter, C. & Santamaria, J.M. (2004). Capacity of Salvinia minima Baker to Tolerate and Accumulate As and Pb. Eng. Life Sci., 4, 61–65.
-
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mat., 211, 317–331.
-
Huang, Z.C., Chen, T.B., Lei, M. & Hu, T.D. (2004). Direct determination of arsenic species in arsenic hyperaccumulator Pteris vittata by EXAFS. Acta Bot., 46, 46–50.
-
Ingole, N.W. & Bhole, A.G. (2003). Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol., 52, 119–128.
-
Kırım, B., Çoban, D., & Güler, M. (2014). Floating aquatic plants and their impact on wetlands in Turkey. In 2nd International Conference-Water resources and wetlands. Tulcea, Romania.
-
Kumar, J.N., Soni, H., Kumar, R.N. & Bhatt, I. (2008). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci., 8, 193–200.
-
Kumar, V. & Chopra, A.K. (2018). Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ. Technol., 39, 12–23.
-
Kumar, V., Singh, J., Saini, A. & Kumar, P. (2019). Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ. Sustain., 2, 55–65.
-
Li, B., Gu, B., Yang, Z. & Zhang, T. (2018). The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Ecotoxicol. Environ. Saf., 165, 224–231.
-
Lima L.K.S., Pelosi B.T., Silva M.G.C. & Vieira M.G.A. (2013). Lead and chromium biosorption by Pistia stratiotes biomass. Chem. Eng. Trans., 32, 1045–1050.
-
Loría, K.C., Emiliani, J., Bergara, C.D., Herrero, M.S., Salvatierra, L.M. & Pérez, L.M. (2019). Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquat. Toxicol., 210, 158–166.
-
McGrath, S.P. & Zhao, F.J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277-282.
-
Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M.M. & Azim, M.R. (2010). Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour. Technol., 101, 5815–5819.
-
Mkandawire, M., Taubert, B. & Dudel, E.G. (2004). Capacity of Lemna gibba L. (Duckweed) for Uranium and Arsenic Phytoremediation in Mine Tailing Waters. Int. J. Phytoremediat., 6, 347–362.
-
Mukhtar, S.A.I.M.A., Bhatti, H.N., Khalid, M., Haq, M.A.U. & Shahzad, S.M. (2010). Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pak. J. Bot., 42, 4017–4026.
-
Najeeb, U., Ahmad, W., Zia, M.H., Zaffar, M. & Zhou, W. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arab. J. Chem., 10, 3310–3317.
-
Nurhayati P. (2012). Water Lettuce (Pistia stratiotes, Linn) potency as one of eco- friendly phytoextraction absorbers of zinc heavy metal to solve industrial waste problem in indonesia. International Conerence on Environmental Biomedical and Biotechnology, 41, 151-156.
-
Odjegba, V.J. & Fasidi, I.O. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist, 27, 349–355.
-
Okcu, M., Tozlu, E., Metin Kumlay, A., & Pehluvan, M. (2009). Ağır metallerin bitkiler üzerine etkileri. Alinteri Journal of Agriculture Science, 17(2), 14-26.
-
Özay, C. ve Mammadov, R. (2013). Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanılabilirliği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 68-77.
-
Parzych A., Sobisz Z. & Cymer M. (2016). Preliminary research of heavy metals content in aquatic plants taken from surface water (Northern Poland). Desal. Water Treat., 57, 1451–1461.
-
Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
-
Pilon-Smits, E.A. & Freeman, J.L. (2006). Environmental cleanup using plants: biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment, 4(4), 203-210.
-
Rahman, M.A., Hasegawa, H., Ueda, K., Maki, T. & Okumura, C. (2007). Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere, 69, 493–499.
-
Rai, P.K. (2008). Technical Note: Phytoremediation of Hg and Cd from Industrial Effluents using an Aquatic Free Floating Macrophyte Azolla pinnata. Int. J. Phytoremediat., 10, 430–439.
-
Rai, P.K. (2009). Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), 697–753.
-
Rajakaruna, N., Tompkins, K. M., & Pavicevic, P. G. (2006). Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon Journal of Science, 35(1), 25.
-
Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Science, 180, 169-181.
-
Reeves, R.D. & Baker, A.J.M. (2000). Metal accumulating plants. In: Raskin, I. and Finsley, B.D., Eds., Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, Wiley, New York, 193-229.
-
Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587-599.
-
Romeh, A.A. (2014). Phytoremediation of cyanophos insecticide by Plantago major L. in water. J. Environ. Health Sci. Eng., 12, 38.
-
Rulkens, W.H., Tichy, R. & Grotenhuis, J.T.C. (1998). Remediation of polluted soil and sediment: perspectives and failures. Water Sci. Technol., 37, 27-35.
-
Sakakibara, M., Ohmori, Y., Ha, N.T.H., Sano, S. & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water, 39, 735–741.
-
Salt, D.E., Smith, R.D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643-668.
-
Sheoran, A.S. & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering, 19, 105-116.
-
Sinha, S., Saxena R., & Singh S. (2000). Fluoride Removal from Water by Hydrilla verticillata (l.f.) Royle and Its Toxic Effects. Bull. Environ. Contam. Toxicol., 65, 683–690.
-
Sivaci, E.R., Sivaci, A., & Sökmen, M. (2004). Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere, 56, 1043–1048.
-
Sweta, K. Bauddh, R. Singh, R.P. Singh, (2015). The suitability of Trapa natans for phytoremediation of inorganic contaminants from the aquatic ecosystems. Ecol. Eng., 83, 39–42.
-
Syukor A.A., Sulaiman S., Siddique M.N.I., Zularisam A.W., Said M.I.M., (2016). Integration of phytogreen for heavy metal removal from wastewater. J. Clean. Prod., 112, 3124–3131.
-
T.C. Çevre ve Şehircilik Bakanlığı. (2018). Kirlenmiş saha temizleme/iyileştirme teknolojileri kılavuzu. Ankara: Çevre Yönetimi Genel Müdürlüğü.
-
Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering.
-
Terzi, H., ve Yıldız, M. (2011). Ağır metaller ve fitoremediasyon: fizyolojik ve moleküler mekanizmalar. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(1), 1-22.
-
Toroğlu, E., Toroğlu, S., ve Alaeddinoğlu, F. (2006). Aksu Çayı’nda (Kahramanmaraş) Akarsu Kirliliği. Coğrafi Bilimler Dergisi, 4(1), 93-103.
-
Török A., Gulyás Z., Szalai G., Kocsy G. & Majdik C. (2015). Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J. Hazard. Mater. 299, 371–378.
-
Valderrama, A., Tapia, J., Peñailillo, P. & Carvajal, D.E. (2012). Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water Environ. J., 27, 293–300.
-
Vangronsveld, T. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765-94.
-
Vanlı, Ö. (2007). ‘Pb, Cd, B elementlerinin topraklardan şelat destekli fitoremediasyon yöntemiyle giderilmesi’, Yüksek lisans tezi. İstanbul Teknik Üniversitesi, Çevre Mühendisliği Anabilim Dalı, İstanbul.
-
Vernay, P., Gauthier-Moussard, C. & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68, 1563–1575.
-
Watanabe, M.E. (1997). Phytoremediation on the Brink of Commercialization. Environmental Sciences and Technology, 31, 182-186.
-
Xue, P., Li, G., Liu, W. & Yan, C. (2010). Copper uptake and translations in a submerged aquatic plant Hydrilla verticillara (L.f.) Royle. Chemosphere, 81, 1098-1103.
-
Xue, P.Y. & Yan, C.Z. (2011). Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere, 85, 1176–1181.
-
Yadav, S.K., Juwarkar, A.A., Kumar, G.P., Thawale, P.R., Singh, S.K., & Chakrabarti, T. (2011). Bioaccumulation and phytotranslocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy effluent and bioamendment. Bioresource Technology, 102(2), 219-226.
-
Zurayk, R., Sukkariyah, B., Baalbaki, R., & Ghanem, D.A. (2002). Ni Phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut., 139, 355–364.
Use of Phytoremediation Approach to Decrease Streamwater Pollution
Yıl 2025,
Cilt: 21 Sayı: 1, 285 - 302, 30.06.2025
Ahmet Ayteğin
,
Mehmet Özcan
Öz
The supply of adequate and clean drinking and irrigation water is a serious concern worldwide. Various sources of pollutants around the world are causing water quality degradation. Environmental and aquatic ecosystems are exposed to the release of these pollutants. Unfortunately, environmentally friendly methods for the treatment of contaminated environments are limited. Heavy metal pollution is one of the biggest threats to human health, causing serious illnesses. Phytoremediation, based on the capacity of plants to remove pollutants, stands out as an environmentally friendly and economical solution. This method is effective in reducing the accumulation of toxic elements in soil, as well as in the removal of water pollutants in systems integrated with bioremediation. In order to increase the efficiency of phytoremediation, mechanistic processes that examine the potential of different plant species are applied. In this process, it is important to analyze a wide range of plants by adopting a multidisciplinary approach.
Kaynakça
-
Abdallah, M.A.M. (2012). Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol., 33, 1609–1614.
-
Acar, B.Ç., ve Acar, M.B. (2022). Kimyasal yöntemlerle atık sulardan ağır metal giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
-
AiniSyuhaida, A.W., Sharifah Norkhadijah, S.I., Emilia, Z.A. & Sarva Mangala, P. (2014). Neptuniaoleracea (water mimosa) as phytoremediation plant and the risk to human health: A review. Adv. Environ. Biol., 8(15), 187-194.
-
Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869-881.
-
Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886.
-
Ay, İ. (2019). Ağır metal şelasyonunda fitoremediasyon tekniği ve uygulamada etkili makrofitler. Mediterranean Fisheries and Aquaculture Research, 2(3), 77-82.
-
Baghırova, F. (2020). ‘Sucul ortamlardan fitoremediasyon yöntemi ile ağır metal giderimi’. Yüksek Lisans Tezi. Pamukkale Üniversitesi, Fen bilimleri Enstitüsü, Denizli.
-
Basile A., Sorbo S., Conte B., Cobianchi R.C., Trinchella F., Capasso C. & Carginale V. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int. J. Phytoremediat., 14, 374–387.
-
Bello, A.O., Tawabini, B.S., Khalil, A.B., Boland, C.R. & Saleh, T.A. (2018). Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng., 120, 126–133.
-
Benaroya, R.O., Tzin, V., Tel-Or, E. & Zamski, E. (2004). Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem., 42, 639–645.
-
Bokhari, S.H., Ahmad, İ., Mahmood-Ul-Hassan, M., Mohammad, A. (2016). Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat, 18, 25–32.
-
Bütünoğlu, A. (2018). ‘Su kaynaklarinda yüzer sulak alan ve sucul bitkiler ile nütrient gideriminin değerlendirilmesi’. Uzmanlık Tezi. T.C Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü, Ankara.
-
Caldelas, C., Araus, J.L., Febrero, A. & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol. Plant., 34, 1217–1228.
-
Chandra R. & Yadav S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, typha angustifolia and Cyperous esculentus, Int. J. Phytoremediat., 13, 580–591.
-
Chen G., Liu X., Brookes P.C. & Xu J. (2015). Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara, Int. J. Phytoremediat., 17, 249–255.
-
Chen, L., Zhou, S., Şi, Y., Wang, C., Li, B., Li, Y. & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of The Total Env., 615, 141–149.
-
Cirik, Ş. ve Cirik, S. (2004). Su bitkileri (deniz bitkilerinin biyolojisi, ekolojisi yetiştirme teknikleri), Bornova–İzmir: Ege Üniversitesi Su Ürünleri Fakültesi Yayınları.
-
Colzi, I., Lastrucci, L., Rangoni, M., Coppi, A. & Gonnelli, C. (2018). Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? J. Environ. Manag., 213, 320–328.
-
Da Silva, A.A., De Oliveira, J.A., De Campos, F.V., Ribeiro, C., Farnese, F.D.S. & Costa, A.C. (2018). Phytoremediation potential of Salvinia molesta for arsenite contaminated water: Role of antioxidant enzymes. Theor. Exp. Plant Physiol., 30, 275–286.
-
Das, S., Goswami, S. & Das Talukdar, A. (2013). A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia stratiotes L. Bull. Environ. Contam. Toxicol., 92, 169–174.
-
Delgado-González, C.R., Madariaga-Navarrete, A., Fernández-Cortés, J.M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M., & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. International Journal of Environmental Research and Public Health, 18(10), 5215.
-
Dhir, B., Sharmila, P. & Pardha Saradhi, P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Crit. Rev. Environ. Sci. Technol., 39, 1-28.
-
Dhir, B. & Srivastava, S. (2011). Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol. Eng., 37, 893–896.
-
Dixit, S. & Dhote, S. (2009). Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ. Monit. Assess., 169, 367–374.
-
Eid, E.M., Shaltout, K.H., El-Sheikh, M.A. & Asaeda, T. (2012). Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): Perspectives for phytoremediation. Flora, 207, 783–794.
-
E.P.A. (Environmental Protection Agency), (1995). Contaminants and Remedial Options at Select Metals – Contaminated Sites, EPA/540/R-95/512.
-
E.P.A. (Environmental Protection Agency). (1998). A citizen's guide to phytoremediation. Washington, DC: EPA. Publication 542-F-98-011.
-
E.P.A. (Environmental Protection Agency). (1999). Phytoremediation resource guide. Washington, DC: EPA. Publication 542-B-99-003.
-
E.P.A. (Environmental Protection Agency). (2000). Introduction of Phytoremediation. epa/600/R-99/107, Cincinati, Ohio, U.S.A.
-
Fritioff, Å. & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.
-
Galal, T.M., Al-Sodany, Y.M. & Al-Yasi, H.M. (2019). Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Int. J. Phytoremediat., 22, 373–382.
-
Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1-18.
-
Glass D.J. (1999), Economic patential of phytoremediation, Phyforemediation of Toxic Metals: Using Plants to Clean Up the Environment, (Raskin I., Ensley B.D., Eds.), John Wiley&Sans, New York, 15-31.
-
Gomes, M.V.T., de Souza, R.R., Teles, V.S. & Mendes, É.A. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.
-
Güneş, A., Kumar, R., Pek, T., Yüksel, M., & Kabay, N. (2017). Yapay Sulak Alanlarda Atıksu RehabilitasyonundaKullanılan Salvinia natans ve Lemna minor Bitki Türlerinin Su Kalitesine Olan Etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi, 74(EK-1), 79-86.
-
Hanif, A. & Bhatti, H.N. (2009). Removal and recovery of Cu (II) and Zn (II) using immobilized Mentha arvensis distillation waste biomass. Ecol. Eng., 35, 1427-1434.
-
Hayta, Ş. ve Erkan, Y. (2019). Ahlat Sazlıklarındaki, Phragmites australis (cav.) Trin. Ex stend, Typha angustifolia L., Lythrum salicaria L. Bitkilerinin ve Bunları Çevreleyen Sedimentlerde Ağır Metal Konsantrasyonlarının Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 795-805.
-
Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A. & Rossi, L. (2020). Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere, 241, 125018.
-
Hoffmann, T.L., Kutter, C. & Santamaria, J.M. (2004). Capacity of Salvinia minima Baker to Tolerate and Accumulate As and Pb. Eng. Life Sci., 4, 61–65.
-
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mat., 211, 317–331.
-
Huang, Z.C., Chen, T.B., Lei, M. & Hu, T.D. (2004). Direct determination of arsenic species in arsenic hyperaccumulator Pteris vittata by EXAFS. Acta Bot., 46, 46–50.
-
Ingole, N.W. & Bhole, A.G. (2003). Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol., 52, 119–128.
-
Kırım, B., Çoban, D., & Güler, M. (2014). Floating aquatic plants and their impact on wetlands in Turkey. In 2 nd International Conference-Water resources and wetlands. Tulcea, Romania.
-
Kumar, J.N., Soni, H., Kumar, R.N. & Bhatt, İ. (2008). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci., 8, 193–200.
-
Kumar, V. & Chopra, A.K. (2018). Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ. Technol., 39, 12–23.
-
Kumar, V., Singh, J., Saini,
-
Bu yanıtı durdurdunuz
-
Abdallah, M.A.M. (2012). Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol., 33, 1609–1614.
-
Acar, B.Ç., ve Acar, M.B. (2022). Kimyasal yöntemlerle atık sulardan ağır metal giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
-
AiniSyuhaida, A.W., Sharifah Norkhadijah, S.I., Emilia, Z.A. & Sarva Mangala, P. (2014). Neptuniaoleracea (water mimosa) as phytoremediation plant and the risk to human health: A review. Adv. Environ. Biol., 8(15), 187-194,
-
Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869-881.
-
Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886.
-
Ay, İ. (2019). Ağır metal şelasyonunda fitoremediasyon tekniği ve uygulamada etkili makrofitler. Mediterranean Fisheries and Aquaculture Research, 2(3), 77-82.
-
Baghırova, F. (2020). ‘Sucul ortamlardan fitoremediasyon yöntemi ile ağır metal giderimi’. Yüksek Lisans Tezi. Pamukkale Üniversitesi, Fen bilimleri Enstitüsü, Denizli.
-
Basile A., Sorbo S., Conte B., Cobianchi R.C., Trinchella F., Capasso C. & Carginale V. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int. J. Phytoremediat., 14, 374–387.
-
Bello, A.O., Tawabini, B.S., Khalil, A.B., Boland, C.R. & Saleh, T.A. (2018). Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng., 120, 126–133.
-
Benaroya, R.O., Tzin, V., Tel-Or, E. & Zamski, E. (2004). Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem., 42, 639–645.
-
Bokhari, S.H., Ahmad, I., Mahmood-Ul-Hassan, M., Mohammad, A. (2016). Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat, 18, 25–32.
-
Bütünoğlu, A. (2018). ‘Su kaynaklarinda yüzer sulak alan ve sucul bitkiler ile nütrient gideriminin değerlendirilmesi’. Uzmanlık Tezi. T.C Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü, Ankara.
-
Caldelas, C., Araus, J.L., Febrero, A. & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol. Plant., 34, 1217–1228.
-
Chandra R. & Yadav S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, typha angustifolia and Cyperous esculentus, Int. J. Phytoremediat., 13, 580–591.
-
Chen G., Liu X., Brookes P.C. & Xu J. (2015). Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara, Int. J. Phytoremediat., 17, 249–255.
-
Chen, L., Zhou, S., Şi, Y., Wang, C., Li, B., Li, Y. & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of The Total Env., 615, 141–149.
-
Cirik, Ş. ve Cirik, S. (2004). Su bitkileri (deniz bitkilerinin biyolojisi, ekolojisi yetiştirme teknikleri), Bornova–İzmir: Ege Üniversitesi Su Ürünleri Fakültesi Yayınları.
-
Colzi, I., Lastrucci, L., Rangoni, M., Coppi, A. & Gonnelli, C. (2018). Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? J. Environ. Manag., 213, 320–328.
-
Da Silva, A.A., De Oliveira, J.A., De Campos, F.V., Ribeiro, C., Farnese, F.D.S. & Costa, A.C. (2018). Phytoremediation potential of Salvinia molesta for arsenite contaminated water: Role of antioxidant enzymes. Theor. Exp. Plant Physiol., 30, 275–286.
-
Das, S., Goswami, S. & Das Talukdar, A. (2013). A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia stratiotes L. Bull. Environ. Contam. Toxicol., 92, 169–174.
-
Delgado-González, C.R., Madariaga-Navarrete, A., Fernández-Cortés, J.M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M., & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. International Journal of Environmental Research and Public Health, 18(10), 5215.
-
Dhir, B., Sharmila, P. & Pardha Saradhi, P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Crit. Rev. Environ. Sci. Technol., 39, 1-28,
-
Dhir, B. & Srivastava, S. (2011). Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol. Eng., 37, 893–896.
-
Dixit, S. & Dhote, S. (2009). Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ. Monit. Assess., 169, 367–374.
-
Eid, E.M., Shaltout, K.H., El-Sheikh, M.A. & Asaeda, T. (2012). Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): Perspectives for phytoremediation. Flora, 207, 783–794.
-
E.P.A. (Environmental Protection Agency), (1995). Contaminants and Remedial Options at Select Metals – Contaminated Sites, EPA/540/R-95/512.
-
E.P.A. (Environmental Protection Agency). (1998). A citizen's guide to phytoremediation. Washington, DC: EPA. Publication 542-F-98-011.
-
E.P.A. (Environmental Protection Agency). (1999). Phytoremediation resource guide. Washington, DC: EPA. Publication 542-B-99-003.
-
E.P.A. (Environmental Protection Agency). (2000). Introduction of Phytoremediation. epa/600/R-99/107, Cincinati, Ohio, U.S.A.
-
Fritioff, Å. & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.
-
Galal, T.M., Al-Sodany, Y.M. & Al-Yasi, H.M. (2019). Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Int. J. Phytoremediat., 22, 373–382.
-
Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1-18.
-
Glass D.J. (1999), Economic patential of phytoremediation, Phyforemediation of Toxic Metals: Using Plants to Clean Up the Environment, (Raskin I., Ensley B.D., Eds.), John Wiley&Sans, New York, 15-31.
-
Gomes, M.V.T., de Souza, R.R., Teles, V.S. & Mendes, É.A. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.
-
Güneş, A., Kumar, R., Pek, T., Yüksel, M., & Kabay, N. (2017). Yapay Sulak Alanlarda Atıksu RehabilitasyonundaKullanılan Salvinia natans ve Lemna minor Bitki Türlerinin Su Kalitesine Olan Etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi, 74(EK-1), 79-86.
-
Hanif, A. & Bhatti, H.N. (2009). Removal and recovery of Cu (II) and Zn (II) using immobilized Mentha arvensis distillation waste biomass. Ecol. Eng., 35, 1427-1434.
-
Hayta, Ş. ve Erkan, Y. (2019). Ahlat Sazlıklarındaki, Phragmites australis (cav.) Trin. Ex stend, Typha angustifolia L., Lythrum salicaria L. Bitkilerinin ve Bunları Çevreleyen Sedimentlerde Ağır Metal Konsantrasyonlarının Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 795-805.
-
Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A. & Rossi, L. (2020). Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere, 241, 125018.
-
Hoffmann, T.L., Kutter, C. & Santamaria, J.M. (2004). Capacity of Salvinia minima Baker to Tolerate and Accumulate As and Pb. Eng. Life Sci., 4, 61–65.
-
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mat., 211, 317–331.
-
Huang, Z.C., Chen, T.B., Lei, M. & Hu, T.D. (2004). Direct determination of arsenic species in arsenic hyperaccumulator Pteris vittata by EXAFS. Acta Bot., 46, 46–50.
-
Ingole, N.W. & Bhole, A.G. (2003). Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol., 52, 119–128.
-
Kırım, B., Çoban, D., & Güler, M. (2014). Floating aquatic plants and their impact on wetlands in Turkey. In 2 nd International Conference-Water resources and wetlands. Tulcea, Romania.
-
Kumar, J.N., Soni, H., Kumar, R.N. & Bhatt, I. (2008). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci., 8, 193–200.
-
Kumar, V. & Chopra, A.K. (2018). Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ. Technol., 39, 12–23.
-
Kumar, V., Singh, J., Saini, A. & Kumar, P. (2019). Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ. Sustain., 2, 55–65.
-
Li, B., Gu, B., Yang, Z. & Zhang, T. (2018). The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Ecotoxicol. Environ. Saf., 165, 224–231.
-
Lima L.K.S., Pelosi B.T., Silva M.G.C. & Vieira M.G.A. (2013). Lead and chromium biosorption by Pistia stratiotes biomass. Chem. Eng. Trans., 32, 1045–1050.
-
Loría, K.C., Emiliani, J., Bergara, C.D., Herrero, M.S., Salvatierra, L.M. & Pérez, L.M. (2019). Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquat. Toxicol., 210, 158–166.
-
McGrath, S.P. & Zhao, F.J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277-282.
-
Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M.M. & Azim, M.R. (2010). Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour. Technol., 101, 5815–5819.
-
Mkandawire, M., Taubert, B. & Dudel, E.G. (2004). Capacity of Lemna gibba L. (Duckweed) for Uranium and Arsenic Phytoremediation in Mine Tailing Waters. Int. J. Phytoremediat., 6, 347–362.
-
Mukhtar, S.A.I.M.A., Bhatti, H.N., Khalid, M., Haq, M.A.U. & Shahzad, S.M. (2010). Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pak. J. Bot., 42, 4017–4026.
-
Najeeb, U., Ahmad, W., Zia, M.H., Zaffar, M. & Zhou, W. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arab. J. Chem., 10, 3310–3317.
-
Nurhayati P. (2012). Water Lettuce (Pistia stratiotes, Linn) potency as one of eco- friendly phytoextraction absorbers of zinc heavy metal to solve industrial waste problem in indonesia. International Conerence on Environmental Biomedical and Biotechnology, 41, 151-156,
-
Odjegba, V.J. & Fasidi, I.O. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist, 27, 349–355.
-
Okcu, M., Tozlu, E., Metin Kumlay, A., & Pehluvan, M. (2009). Ağır metallerin bitkiler üzerine etkileri. Alinteri Journal of Agriculture Science, 17(2), 14-26.
-
Özay, C. ve Mammadov, R. (2013). Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanılabilirliği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 68-77.
-
Parzych A., Sobisz Z. & Cymer M. (2016). Preliminary research of heavy metals content in aquatic plants taken from surface water (Northern Poland). Desal. Water Treat., 57, 1451–1461.
-
Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
-
Pilon-Smits, E.A. & Freeman, J.L. (2006). Environmental cleanup using plants: biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment, 4(4), 203-210.
-
Rahman, M.A., Hasegawa, H., Ueda, K., Maki, T. & Okumura, C. (2007). Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere, 69, 493–499.
-
Rai, P.K. (2008). Technical Note: Phytoremediation of Hg and Cd from Industrial Effluents using an Aquatic Free Floating Macrophyte Azolla pinnata. Int. J. Phytoremediat., 10, 430–439.
-
Rai, P.K. (2009). Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), 697–753.
-
Rajakaruna, N., Tompkins, K. M., & Pavicevic, P. G. (2006). Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon Journal of Science, 35(1), 25.
-
Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Science, 180, 169-181.
-
Reeves, R.D. & Baker, A.J.M. (2000). Metal accumulating plants. In: Raskin, I. and Finsley, B.D., Eds., Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, Wiley, New York, 193-229.
-
Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587-599.
-
Romeh, A.A. (2014). Phytoremediation of cyanophos insecticide by Plantago major L. in water. J. Environ. Health Sci. Eng., 12, 38.
-
Rulkens, W.H., Tichy, R. & Grotenhuis, J.T.C. (1998). Remediation of polluted soil and sediment: perspectives and failures. Water Sci. Technol., 37, 27-35,
-
Sakakibara, M., Ohmori, Y., Ha, N.T.H., Sano, S. & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water, 39, 735–741.
-
Salt, D.E., Smith, R.D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643-668.
-
Sheoran, A.S. & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering, 19, 105-116.
-
Sinha, S., Saxena R., & Singh S. (2000). Fluoride Removal from Water by Hydrilla verticillata (l.f.) Royle and Its Toxic Effects. Bull. Environ. Contam. Toxicol., 65, 683–690.
-
Sivaci, E.R., Sivaci, A., & Sökmen, M. (2004). Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere, 56, 1043–1048.
-
Sweta, K. Bauddh, R. Singh, R.P. Singh, (2015). The suitability of Trapa natans for phytoremediation of inorganic contaminants from the aquatic ecosystems. Ecol. Eng., 83, 39–42.
-
Syukor A.A., Sulaiman S., Siddique M.N.I., Zularisam A.W., Said M.I.M., (2016). Integration of phytogreen for heavy metal removal from wastewater. J. Clean. Prod., 112, 3124–3131.
-
T.C. Çevre ve Şehircilik Bakanlığı. (2018). Kirlenmiş saha temizleme/iyileştirme teknolojileri kılavuzu. Ankara: Çevre Yönetimi Genel Müdürlüğü.
-
Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering.
-
Terzi, H., ve Yıldız, M. (2011). Ağır metaller ve fitoremediasyon: fizyolojik ve moleküler mekanizmalar. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(1), 1-22.
-
Toroğlu, E., Toroğlu, S., ve Alaeddinoğlu, F. (2006). Aksu Çayı’nda (Kahramanmaraş) Akarsu Kirliliği. Coğrafi Bilimler Dergisi, 4(1), 93-103.
-
Török A., Gulyás Z., Szalai G., Kocsy G. & Majdik C. (2015). Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J. Hazard. Mater. 299, 371–378.
-
Valderrama, A., Tapia, J., Peñailillo, P. & Carvajal, D.E. (2012). Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water Environ. J., 27, 293–300.
-
Vangronsveld, T. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765-94.
-
Vanlı, Ö. (2007). ‘Pb, Cd, B elementlerinin topraklardan şelat destekli fitoremediasyon yöntemiyle giderilmesi’, Yüksek lisans tezi. İstanbul Teknik Üniversitesi, Çevre Mühendisliği Anabilim Dalı, İstanbul
-
Vernay, P., Gauthier-Moussard, C. & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68, 1563–1575.
-
Watanabe, M.E. (1997). Phytoremediation on the Brink of Commercialization. Environmental Sciences and Technology, 31, 182-186.
-
Xue, P., Li, G., Liu, W. & Yan, C. (2010). Copper uptake and translations in a submerged aquatic plant Hydrilla verticillara (L.f.) Royle. Chemosphere, 81, 1098-1103.
-
Xue, P.Y. & Yan, C.Z. (2011). Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere, 85, 1176–1181.
-
Yadav, S.K., Juwarkar, A.A., Kumar, G.P., Thawale, P.R., Singh, S.K., & Chakrabarti, T. (2011). Bioaccumulation and phytotranslocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy effluent and bioamendment. Bioresource Technology, 102(2), 219-226.
-
Zurayk, R., Sukkariyah, B., Baalbaki, R., & Ghanem, D.A. (2002). Ni Phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut., 139, 355–364.
-
her kaynak arasına 1 satır boşluğu bırakarak yaz italik olan kelimeler italik olarak kalsın
-
Abdallah, M.A.M. (2012). Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol., 33, 1609–1614.
-
Acar, B.Ç., ve Acar, M.B. (2022). Kimyasal yöntemlerle atık sulardan ağır metal giderimi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 1-13.
-
AiniSyuhaida, A.W., Sharifah Norkhadijah, S.I., Emilia, Z.A. & Sarva Mangala, P. (2014). Neptuniaoleracea (water mimosa) as phytoremediation plant and the risk to human health: A review. Adv. Environ. Biol., 8(15), 187-194.
-
Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869-881.
-
Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886.
-
Ay, İ. (2019). Ağır metal şelasyonunda fitoremediasyon tekniği ve uygulamada etkili makrofitler. Mediterranean Fisheries and Aquaculture Research, 2(3), 77-82.
-
Baghırova, F. (2020). ‘Sucul ortamlardan fitoremediasyon yöntemi ile ağır metal giderimi’. Yüksek Lisans Tezi. Pamukkale Üniversitesi, Fen bilimleri Enstitüsü, Denizli.
-
Basile A., Sorbo S., Conte B., Cobianchi R.C., Trinchella F., Capasso C. & Carginale V. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int. J. Phytoremediat., 14, 374–387.
-
Bello, A.O., Tawabini, B.S., Khalil, A.B., Boland, C.R. & Saleh, T.A. (2018). Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng., 120, 126–133.
-
Benaroya, R.O., Tzin, V., Tel-Or, E. & Zamski, E. (2004). Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem., 42, 639–645.
-
Bokhari, S.H., Ahmad, I., Mahmood-Ul-Hassan, M., Mohammad, A. (2016). Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat, 18, 25–32.
-
Bütünoğlu, A. (2018). ‘Su kaynaklarinda yüzer sulak alan ve sucul bitkiler ile nütrient gideriminin değerlendirilmesi’. Uzmanlık Tezi. T.C Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü, Ankara.
-
Caldelas, C., Araus, J.L., Febrero, A. & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol. Plant., 34, 1217–1228.
-
Chandra R. & Yadav S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, typha angustifolia and Cyperous esculentus, Int. J. Phytoremediat., 13, 580–591.
-
Chen G., Liu X., Brookes P.C. & Xu J. (2015). Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara, Int. J. Phytoremediat., 17, 249–255.
-
Chen, L., Zhou, S., Şi, Y., Wang, C., Li, B., Li, Y. & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of The Total Env., 615, 141–149.
-
Cirik, Ş. ve Cirik, S. (2004). Su bitkileri (deniz bitkilerinin biyolojisi, ekolojisi yetiştirme teknikleri), Bornova–İzmir: Ege Üniversitesi Su Ürünleri Fakültesi Yayınları.
-
Colzi, I., Lastrucci, L., Rangoni, M., Coppi, A. & Gonnelli, C. (2018). Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? J. Environ. Manag., 213, 320–328.
-
Da Silva, A.A., De Oliveira, J.A., De Campos, F.V., Ribeiro, C., Farnese, F.D.S. & Costa, A.C. (2018). Phytoremediation potential of Salvinia molesta for arsenite contaminated water: Role of antioxidant enzymes. Theor. Exp. Plant Physiol., 30, 275–286.
-
Das, S., Goswami, S. & Das Talukdar, A. (2013). A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia stratiotes L. Bull. Environ. Contam. Toxicol., 92, 169–174.
-
Delgado-González, C.R., Madariaga-Navarrete, A., Fernández-Cortés, J.M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M., & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. International Journal of Environmental Research and Public Health, 18(10), 5215.
-
Dhir, B., Sharmila, P. & Pardha Saradhi, P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Crit. Rev. Environ. Sci. Technol., 39, 1-28.
-
Dhir, B. & Srivastava, S. (2011). Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol. Eng., 37, 893–896.
-
Dixit, S. & Dhote, S. (2009). Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ. Monit. Assess., 169, 367–374.
-
Eid, E.M., Shaltout, K.H., El-Sheikh, M.A. & Asaeda, T. (2012). Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): Perspectives for phytoremediation. Flora, 207, 783–794.
-
E.P.A. (Environmental Protection Agency), (1995). Contaminants and Remedial Options at Select Metals – Contaminated Sites, EPA/540/R-95/512.
-
E.P.A. (Environmental Protection Agency). (1998). A citizen's guide to phytoremediation. Washington, DC: EPA. Publication 542-F-98-011.
-
E.P.A. (Environmental Protection Agency). (1999). Phytoremediation resource guide. Washington, DC: EPA. Publication 542-B-99-003.
-
E.P.A. (Environmental Protection Agency). (2000). Introduction of Phytoremediation. epa/600/R-99/107, Cincinati, Ohio, U.S.A.
-
Fritioff, Å. & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.
-
Galal, T.M., Al-Sodany, Y.M. & Al-Yasi, H.M. (2019). Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Int. J. Phytoremediat., 22, 373–382.
-
Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1-18.
-
Glass D.J. (1999), Economic patential of phytoremediation, Phyforemediation of Toxic Metals: Using Plants to Clean Up the Environment, (Raskin I., Ensley B.D., Eds.), John Wiley&Sans, New York, 15-31.
-
Gomes, M.V.T., de Souza, R.R., Teles, V.S. & Mendes, É.A. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.
-
Güneş, A., Kumar, R., Pek, T., Yüksel, M., & Kabay, N. (2017). Yapay Sulak Alanlarda Atıksu RehabilitasyonundaKullanılan Salvinia natans ve Lemna minor Bitki Türlerinin Su Kalitesine Olan Etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi, 74(EK-1), 79-86.
-
Hanif, A. & Bhatti, H.N. (2009). Removal and recovery of Cu (II) and Zn (II) using immobilized Mentha arvensis distillation waste biomass. Ecol. Eng., 35, 1427-1434.
-
Hayta, Ş. ve Erkan, Y. (2019). Ahlat Sazlıklarındaki, Phragmites australis (cav.) Trin. Ex stend, Typha angustifolia L., Lythrum salicaria L. Bitkilerinin ve Bunları Çevreleyen Sedimentlerde Ağır Metal Konsantrasyonlarının Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 795-805.
-
Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A. & Rossi, L. (2020). Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere, 241, 125018.
-
Hoffmann, T.L., Kutter, C. & Santamaria, J.M. (2004). Capacity of Salvinia minima Baker to Tolerate and Accumulate As and Pb. Eng. Life Sci., 4, 61–65.
-
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mat., 211, 317–331.
-
Huang, Z.C., Chen, T.B., Lei, M. & Hu, T.D. (2004). Direct determination of arsenic species in arsenic hyperaccumulator Pteris vittata by EXAFS. Acta Bot., 46, 46–50.
-
Ingole, N.W. & Bhole, A.G. (2003). Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol., 52, 119–128.
-
Kırım, B., Çoban, D., & Güler, M. (2014). Floating aquatic plants and their impact on wetlands in Turkey. In 2nd International Conference-Water resources and wetlands. Tulcea, Romania.
-
Kumar, J.N., Soni, H., Kumar, R.N. & Bhatt, I. (2008). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci., 8, 193–200.
-
Kumar, V. & Chopra, A.K. (2018). Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ. Technol., 39, 12–23.
-
Kumar, V., Singh, J., Saini, A. & Kumar, P. (2019). Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ. Sustain., 2, 55–65.
-
Li, B., Gu, B., Yang, Z. & Zhang, T. (2018). The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Ecotoxicol. Environ. Saf., 165, 224–231.
-
Lima L.K.S., Pelosi B.T., Silva M.G.C. & Vieira M.G.A. (2013). Lead and chromium biosorption by Pistia stratiotes biomass. Chem. Eng. Trans., 32, 1045–1050.
-
Loría, K.C., Emiliani, J., Bergara, C.D., Herrero, M.S., Salvatierra, L.M. & Pérez, L.M. (2019). Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquat. Toxicol., 210, 158–166.
-
McGrath, S.P. & Zhao, F.J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277-282.
-
Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M.M. & Azim, M.R. (2010). Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour. Technol., 101, 5815–5819.
-
Mkandawire, M., Taubert, B. & Dudel, E.G. (2004). Capacity of Lemna gibba L. (Duckweed) for Uranium and Arsenic Phytoremediation in Mine Tailing Waters. Int. J. Phytoremediat., 6, 347–362.
-
Mukhtar, S.A.I.M.A., Bhatti, H.N., Khalid, M., Haq, M.A.U. & Shahzad, S.M. (2010). Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pak. J. Bot., 42, 4017–4026.
-
Najeeb, U., Ahmad, W., Zia, M.H., Zaffar, M. & Zhou, W. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arab. J. Chem., 10, 3310–3317.
-
Nurhayati P. (2012). Water Lettuce (Pistia stratiotes, Linn) potency as one of eco- friendly phytoextraction absorbers of zinc heavy metal to solve industrial waste problem in indonesia. International Conerence on Environmental Biomedical and Biotechnology, 41, 151-156.
-
Odjegba, V.J. & Fasidi, I.O. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist, 27, 349–355.
-
Okcu, M., Tozlu, E., Metin Kumlay, A., & Pehluvan, M. (2009). Ağır metallerin bitkiler üzerine etkileri. Alinteri Journal of Agriculture Science, 17(2), 14-26.
-
Özay, C. ve Mammadov, R. (2013). Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanılabilirliği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 68-77.
-
Parzych A., Sobisz Z. & Cymer M. (2016). Preliminary research of heavy metals content in aquatic plants taken from surface water (Northern Poland). Desal. Water Treat., 57, 1451–1461.
-
Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
-
Pilon-Smits, E.A. & Freeman, J.L. (2006). Environmental cleanup using plants: biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment, 4(4), 203-210.
-
Rahman, M.A., Hasegawa, H., Ueda, K., Maki, T. & Okumura, C. (2007). Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere, 69, 493–499.
-
Rai, P.K. (2008). Technical Note: Phytoremediation of Hg and Cd from Industrial Effluents using an Aquatic Free Floating Macrophyte Azolla pinnata. Int. J. Phytoremediat., 10, 430–439.
-
Rai, P.K. (2009). Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), 697–753.
-
Rajakaruna, N., Tompkins, K. M., & Pavicevic, P. G. (2006). Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon Journal of Science, 35(1), 25.
-
Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Science, 180, 169-181.
-
Reeves, R.D. & Baker, A.J.M. (2000). Metal accumulating plants. In: Raskin, I. and Finsley, B.D., Eds., Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, Wiley, New York, 193-229.
-
Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587-599.
-
Romeh, A.A. (2014). Phytoremediation of cyanophos insecticide by Plantago major L. in water. J. Environ. Health Sci. Eng., 12, 38.
-
Rulkens, W.H., Tichy, R. & Grotenhuis, J.T.C. (1998). Remediation of polluted soil and sediment: perspectives and failures. Water Sci. Technol., 37, 27-35.
-
Sakakibara, M., Ohmori, Y., Ha, N.T.H., Sano, S. & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water, 39, 735–741.
-
Salt, D.E., Smith, R.D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643-668.
-
Sheoran, A.S. & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering, 19, 105-116.
-
Sinha, S., Saxena R., & Singh S. (2000). Fluoride Removal from Water by Hydrilla verticillata (l.f.) Royle and Its Toxic Effects. Bull. Environ. Contam. Toxicol., 65, 683–690.
-
Sivaci, E.R., Sivaci, A., & Sökmen, M. (2004). Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere, 56, 1043–1048.
-
Sweta, K. Bauddh, R. Singh, R.P. Singh, (2015). The suitability of Trapa natans for phytoremediation of inorganic contaminants from the aquatic ecosystems. Ecol. Eng., 83, 39–42.
-
Syukor A.A., Sulaiman S., Siddique M.N.I., Zularisam A.W., Said M.I.M., (2016). Integration of phytogreen for heavy metal removal from wastewater. J. Clean. Prod., 112, 3124–3131.
-
T.C. Çevre ve Şehircilik Bakanlığı. (2018). Kirlenmiş saha temizleme/iyileştirme teknolojileri kılavuzu. Ankara: Çevre Yönetimi Genel Müdürlüğü.
-
Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering.
-
Terzi, H., ve Yıldız, M. (2011). Ağır metaller ve fitoremediasyon: fizyolojik ve moleküler mekanizmalar. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(1), 1-22.
-
Toroğlu, E., Toroğlu, S., ve Alaeddinoğlu, F. (2006). Aksu Çayı’nda (Kahramanmaraş) Akarsu Kirliliği. Coğrafi Bilimler Dergisi, 4(1), 93-103.
-
Török A., Gulyás Z., Szalai G., Kocsy G. & Majdik C. (2015). Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J. Hazard. Mater. 299, 371–378.
-
Valderrama, A., Tapia, J., Peñailillo, P. & Carvajal, D.E. (2012). Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water Environ. J., 27, 293–300.
-
Vangronsveld, T. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765-94.
-
Vanlı, Ö. (2007). ‘Pb, Cd, B elementlerinin topraklardan şelat destekli fitoremediasyon yöntemiyle giderilmesi’, Yüksek lisans tezi. İstanbul Teknik Üniversitesi, Çevre Mühendisliği Anabilim Dalı, İstanbul.
-
Vernay, P., Gauthier-Moussard, C. & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68, 1563–1575.
-
Watanabe, M.E. (1997). Phytoremediation on the Brink of Commercialization. Environmental Sciences and Technology, 31, 182-186.
-
Xue, P., Li, G., Liu, W. & Yan, C. (2010). Copper uptake and translations in a submerged aquatic plant Hydrilla verticillara (L.f.) Royle. Chemosphere, 81, 1098-1103.
-
Xue, P.Y. & Yan, C.Z. (2011). Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere, 85, 1176–1181.
-
Yadav, S.K., Juwarkar, A.A., Kumar, G.P., Thawale, P.R., Singh, S.K., & Chakrabarti, T. (2011). Bioaccumulation and phytotranslocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy effluent and bioamendment. Bioresource Technology, 102(2), 219-226.
-
Zurayk, R., Sukkariyah, B., Baalbaki, R., & Ghanem, D.A. (2002). Ni Phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut., 139, 355–364.