Derleme
BibTex RIS Kaynak Göster

Orman Biyokütlelerinin Mikrodalga Destekli Piroliz Sürecindeki Dielektrik Özelliklerinin Rolü

Yıl 2025, Cilt: 21 Sayı: 2, 158 - 170, 30.12.2025
https://doi.org/10.58816/duzceod.1736400

Öz

Mikrodalga Destekli Piroliz (MAP), orman kökenli veya lignoselülozik biyokütlenin daha değerli biyo-bazlı ürünlere dönüştürülmesinde umut vadeden bir termokimyasal dönüşüm yöntemidir. MAP’in verimliliği büyük ölçüde, kullanılan biyokütlenin dielektrik özellikleriyle belirlenmektedir. Özellikle dielektrik sabiti (ε′), dielektrik kayıp faktörü (ε″) ve kayıp teğet değeri (tan δ) gibi parametreler, mikrodalga enerjisinin ısıya ne kadar etkili dönüştürüldüğünü belirleyen temel faktörlerdir. Bu çalışma, farklı orman biyokütlesi türlerinin (sert ağaçlar ve yumuşak ağaçlar) dielektrik özelliklerine odaklanmakta ve bu özelliklerin mikrodalga piroliz verimliliği ile ürün çıktıları üzerindeki etkilerini incelemektedir. Ayrıca çalışmada, katalizör kullanımı, katkı maddeleri ve biyokütle harmanlama yöntemlerinin ürün seçiciliği, ısınma hızı ve ürün verimi üzerindeki etkilerini ortaya koymak da amaçlanmaktadır.

Kaynakça

  • Afsar, M. N., Ding, H., & Tourshan, K. (1999). A new 60 GHz open-resonator technique for precision permittivity and loss-tangent measurement. IEEE Transactions on Instrumentation and Measurement, 48, 626–630. https://doi.org/10.1109/19.769673
  • Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139, 110691. https://doi.org/10.1016/j.rser.2020.110691
  • Bigelow, W., & Farr, E. (2022). Impulse propagation measurements of the dielectric properties of several polymer resins. Farr Research Inc. http://www.farr-research.com/Papers/mn55.pdf
  • Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2–3), 87–102. https://doi.org/10.1016/s1385-8947(02)00142-0
  • Bur, A. J. (1985). Dielectric properties of polymers at microwave frequencies: A review. Polymer, 26(7), 963–977. https://doi.org/10.1016/0032-3861(85)90216-2
  • Catalá-Civera, J. M., Canós, A. J., Plaza-González, P., Gutiérrez, J. D., García-Baños, B., & Peñaranda-Foix, F. L. (2015). Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2905–2914. https://doi.org/10.1109/TMTT.2015.2453263
  • Dominguez, A., Menéndez, J., Fernández, Y., Pis, J., Nabais, J. V., Carrott, P., & Carrott, M. R. (2007). Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 79(1–2), 128–135. https://doi.org/10.1016/j.jaap.2006.08.00
  • Elhawil, A., Zhang, L., Stiens, J., De Tandt, C., Gotzen, N. A., Assche, G. V., & Vounckx, R. (2007). A quasi-optical free-space method for dielectric constant characterization of polymer materials in mm-wave band. In: Proceedings Symposium IEEE/LEOS Benelux Chapter, 2007 (pp. 197-200).
  • Ellison, C., McKeown, M. S., Trabelsi, S., & Boldor, D. (2017). Dielectric properties of biomass/biochar mixtures at microwave frequencies. Energies, 10(4), 502. https://doi.org/10.3390/en10040502
  • Ellison, C. R., Hoff, R., Mărculescu, C., & Boldor, D. (2020). Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting. Applied Energy, 259, 114217. https://doi.org/10.1016/j.apenergy.2019.114217
  • Erbulut, D. U., Masood, S. H., Tran, V. N., & Sbarski, I. (2008). A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding. Journal of Applied Polymer Science, 109(5), 3196–3203. https://doi.org/10.1002/app.28378
  • Fan, L., Su, Z., Wu, J., Xiao, Z., Huang, P., Liu, L., Jiang, H., Zhou, W., Liu, S., & Ruan, R. (2021). Integrating continuous-stirred microwave pyrolysis with ex-situ catalytic upgrading for linear low-density polyethylene conversion: Effects of parameter conditions. Journal of Analytical and Applied Pyrolysis, 157, 105213. https://doi.org/10.1016/j.jaap.2021.105213
  • Fang, Z., Li, C., Sun, J., Zhang, H., & Zhang, J. (2007). The electromagnetic characteristics of carbon foams. Carbon, 45(15), 2873–2879. https://doi.org/10.1016/j.carbon.2007.10.013
  • Fernández Diez, Y., Arenillas, A., & Menéndez, J. A. (2011). Microwave heating applied to pyrolysis. In S. Grundas (Ed.), Advances in induction and microwave heating of mineral and organic materials (pp. 723–752). https://doi.org/10.5772/13548
  • Fernández, I., Pérez, S. F., Fernández-Ferreras, J., & Llano, T. (2024). Microwave-assisted pyrolysis of forest biomass. Energies, 17(19). https://doi.org/10.3390/en17194852
  • Gamit, D. N., & Chudasama, M. K. (2020). Size-effect in microwave processing of engineering materials-A review. Journal of Mechanical Engineering and Sciences, 14(2), 6770–6788. https://doi.org/10.15282/jmes.14.2.2020.18.0530
  • Geyer, R. (1990, April 1). Dielectric characterization and reference materials (Issue 1338). Technical Note (NIST TN), National Institute of Standards and Technology.
  • Haiyan, L., Hong, Z., Hongfan, G., & Liufang, Y. (2008). Microwave-absorbing properties of Co-filled carbon nanotubes. Materials Research Bulletin, 43(10), 2697–2702. https://doi.org/10.1016/j.materresbull.2007.10.016
  • Huang, Y.-F., Chiueh, P.-T., & Lo, S.-L. (2016). A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research, 26(3), 103–109. https://doi.org/10.1016/j.serj.2016.04.012
  • James, W. L. (1975). Dielectric properties of wood and hardboard: Variation with temperature, frequency, moisture content, and grain orientation (Vol. 245). Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2002). Microwave heating applications in environmental engineering–A review. Resources, Conservation and Recycling, 34(2), 75–90. https://doi.org/10.1016/s0921-3449(01)00088-x
  • Kandhola, G., Djioleu, A., Carrier, D. J., & Kim, J.-W. (2017). Pretreatments for enhanced enzymatic hydrolysis of pinewood: A review. BioEnergy Research, 10, 1138–1154. https://doi.org/10.1007/s12155-017-9862-3
  • Kashif, M., Ahmad, F., Cao, W., Zhao, W., Mostafa, E., & Zhang, Y. (2024). Experimental study on microwave pyrolysis of eucalyptus camaldulensis leaves: A promising approach for bio-oil recovery. Frontiers of Chemical Science and Engineering, 18(10), 115. https://doi.org/10.1007/s11705-024-2466-5
  • Khelfa, A., Rodrigues, F. A., Koubaa, M., & Vorobiev, E. (2020). Microwave-Assisted Pyrolysis of Pine Wood Sawdust Mixed with Activated Carbon for Bio-Oil and Bio-Char Production. Processes, 8(11). https://doi.org/10.3390/pr8111437
  • Lam, S.S., & Chase, H.A. (2012) A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies, 5, 4209-4232. https://doi.org/10.3390/en5104209
  • Li, M., Yu, Z., Bin, Y., Huang, Z., He, H., Liao, Y., Zheng, A., & Ma, X. (2022). Microwave-assisted pyrolysis of eucalyptus wood with MoO3 and different nitrogen sources for coproducing nitrogen-rich bio-oil and char. Journal of Analytical and Applied Pyrolysis, 167, 105666. https://doi.org/10.1016/j.jaap.2022.105666
  • Lin, Y.-C., Wu, T.-Y., Liu, W.-Y., & Hsiao, Y.-H. (2014). Production of hydrogen from rice straw using microwave-induced pyrolysis. Fuel, 119, 21–26. https://doi.org/10.1016/j.fuel.2013.11.046
  • Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 1–8. https://doi.org/10.1016/j.fuproc.2009.08.021
  • Meredith, R. J. (1998). Engineers’ handbook of industrial microwave heating. The Institution of Electrical Engineers.
  • Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035
  • Mohan, D., Pittman, C. U. Jr., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20(3), 848–889. https://doi.org/10.1021/ef0502397
  • Pardé, J. D. (1980). Forest biomass. Forest Abstracts, 41, 343-362.
  • Ramasamy, S., & Moghtaderi, B. (2010). Dielectric Properties of Typical Australian Wood-Based Biomass Materials at Microwave Frequency. Energy & Fuels, 24(8), 4534–4548. https://doi.org/10.1021/ef100623e
  • Robinson, J., Binner, E., Vallejo, D. B., Perez, N. D., Al Mughairi, K., Ryan, J., Shepherd, B., Adam, M., Budarin, V., & Fan, J. (2022). Unravelling the mechanisms of microwave pyrolysis of biomass. Chemical Engineering Journal, 430, 132975. https://doi.org/10.1016/j.cej.2021.132975
  • Sahin, H., & Ay, N. (2004). Dielectric properties of hardwood species at microwave frequencies. Journal of Wood Science, 50, 375–380. https://doi.org/10.1007/s10086-003-0575-1
  • Saidur, R., Abdelaziz, E., Demirbas, A., Hossain, M. S., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15(5), 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015
  • Salema, A. A., & Ani, F. N. (2012). Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. Journal of Analytical and Applied Pyrolysis, 96, 162–172. https://doi.org/10.1016/j.jaap.2012.03.018
  • Salema, A. A., Yeow, Y. K., Ishaque, K., Ani, F. N., Afzal, M. T., & Hassan, A. (2013). Dielectric properties and microwave heating of oil palm biomass and biochar. Industrial Crops and Products, 50, 366–374. https://doi.org/10.1016/j.indcrop.2013.08.007
  • Shi, K., Yan, J., Menéndez, J. A., Luo, X., Yang, G., Chen, Y., Lester, E., & Wu, T. (2020). Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Frontiers in Chemistry, 8-2020. https://doi.org/10.3389/fchem.2020.00003
  • Shivashankar, H., Mathias, K. A., Sondar, P. R., Shrishail, M. H., & Kulkarni, S. M. (2021). Study on low-frequency dielectric behavior of the carbon black/polymer nanocomposite. Journal of Materials Science: Materials in Electronics, 32(24), 28674–28686. https://doi.org/10.1007/s10854-021-07242-1
  • Sun, J., Wang, W., & Yue, Q. (2016). Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials (Basel, Switzerland), 9(4), 231. https://doi.org/10.3390/ma9040231
  • Tan, Q., Irwin, P., & Cao, Y. (2006). Advanced Dielectrics for Capacitors. IEEJ Transactions on Fundamentals and Materials, 126, 1153–1159. https://doi.org/10.1541/ieejfms.126.1153
  • Teng, W., Yu, Z., Shen, G., Ni, H., Zhang, X., & Ma, X. (2025). Microwave-assisted co-pyrolysis of eucalyptus wood and polypropylene for hydrocarbon-rich bio-oil based on multilayer MFI nanosheets catalysis. Energy, 134635.
  • Thostenson, E. T., & Chou, T.-W. (1999). Microwave processing: Fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30(9), 1055–1071. https://doi.org/10.1016/S1359-835X(99)00020-2
  • Torgovnikov, G. I. (1993). Dielectric properties of wood-based materials. Springer Verlag. https://doi.org/10.1007/978-3-642-77453-9
  • Vollmer, M. (2004). Physics of the microwave oven. Physics Education, 39, 74–81.
  • Wang, J., Lan, Y., Zhang, H., Zhang, Y., Wen, S., Yao, W., & Deng, J. (2018). Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. International Journal of Agricultural and Biological Engineering, 11(6), 5–12. https://doi.org/10.25165/j.ijabe.20181106.4038
  • Xian-Hua, W., Han-Ping, C., Xue-Jun, D., Hai-Ping, Y., Shi-Hong, Z., & Ying-Qiang, S. (2009). Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources, 4. https://doi.org/10.15376/biores.4.3.946-959
  • Yang, J.-K., & Wu, Y.-M. (1987). Relation between dielectric property and desulphurization of coal by microwaves. Fuel, 66(12), 1745–1747. https://doi.org/10.1016/0016-2361(87)90377-2
  • Yao, H., Xiong, Y., Pickles, C., Hutcheon, R., Pahnila, M., Hagström, A., Fabritius, T., & Omran, M. (2025). Dielectric properties of biomass by-products generated from wood and agricultural industries in Finland. Bioresource Technology, 426, 132319. https://doi.org/10.1016/j.biortech.2025.132319
  • Zhang, Y., Chen, P., Liu, S., Fan, L., Zhou, N., Min Min, Cheng, Y., Peng, P., Anderson, E., Wang, Y., Yiqin Wan, Liu, Y., Li, B., & Ruan, R. (2017). Microwave‐assisted pyrolysis of biomass for bio‐oil production. In M. Samer (Ed.), Pyrolysis (pp. 129-166). https://doi.org/10.5772/67442
  • Zhao, X., Song, Z., Liu, H., Li, Z., Li, L., & Ma, C. (2010). Microwave pyrolysis of corn stalk bale: A promising method for direct utilization of large-sized biomass and syngas production. Journal of Analytical and Applied Pyrolysis, 89(1), 87–94. https://doi.org/10.1016/j.jaap.2010.06.001

The Role of Dielectric Properties in Microwave-Assisted Pyrolysis of Forest Biomass

Yıl 2025, Cilt: 21 Sayı: 2, 158 - 170, 30.12.2025
https://doi.org/10.58816/duzceod.1736400

Öz

Microwave-assisted pyrolysis (MAP) is a promising thermochemical conversion method for converting forest/lignocellulosic biomass into valuable bio-based products. The efficiency of MAP strongly is governed by the dielectric properties of the feedstock, particularly the dielectric constant (ε′), dielectric loss factor (ε″), and loss tangent (tan δ), which govern how effectively microwave energy is converted into heat. This study focuses on the dielectric properties of different types of forest biomass (hardwoods, softwoods) and their effects on microwave pyrolysis efficiency and yield. The study also aims to show how the usage of catalysts, additives, and feedstock blending affects product selectivity, heating rates, and product yield.

Kaynakça

  • Afsar, M. N., Ding, H., & Tourshan, K. (1999). A new 60 GHz open-resonator technique for precision permittivity and loss-tangent measurement. IEEE Transactions on Instrumentation and Measurement, 48, 626–630. https://doi.org/10.1109/19.769673
  • Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139, 110691. https://doi.org/10.1016/j.rser.2020.110691
  • Bigelow, W., & Farr, E. (2022). Impulse propagation measurements of the dielectric properties of several polymer resins. Farr Research Inc. http://www.farr-research.com/Papers/mn55.pdf
  • Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2–3), 87–102. https://doi.org/10.1016/s1385-8947(02)00142-0
  • Bur, A. J. (1985). Dielectric properties of polymers at microwave frequencies: A review. Polymer, 26(7), 963–977. https://doi.org/10.1016/0032-3861(85)90216-2
  • Catalá-Civera, J. M., Canós, A. J., Plaza-González, P., Gutiérrez, J. D., García-Baños, B., & Peñaranda-Foix, F. L. (2015). Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2905–2914. https://doi.org/10.1109/TMTT.2015.2453263
  • Dominguez, A., Menéndez, J., Fernández, Y., Pis, J., Nabais, J. V., Carrott, P., & Carrott, M. R. (2007). Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 79(1–2), 128–135. https://doi.org/10.1016/j.jaap.2006.08.00
  • Elhawil, A., Zhang, L., Stiens, J., De Tandt, C., Gotzen, N. A., Assche, G. V., & Vounckx, R. (2007). A quasi-optical free-space method for dielectric constant characterization of polymer materials in mm-wave band. In: Proceedings Symposium IEEE/LEOS Benelux Chapter, 2007 (pp. 197-200).
  • Ellison, C., McKeown, M. S., Trabelsi, S., & Boldor, D. (2017). Dielectric properties of biomass/biochar mixtures at microwave frequencies. Energies, 10(4), 502. https://doi.org/10.3390/en10040502
  • Ellison, C. R., Hoff, R., Mărculescu, C., & Boldor, D. (2020). Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting. Applied Energy, 259, 114217. https://doi.org/10.1016/j.apenergy.2019.114217
  • Erbulut, D. U., Masood, S. H., Tran, V. N., & Sbarski, I. (2008). A novel approach of measuring the dielectric properties of PET preforms for stretch blow moulding. Journal of Applied Polymer Science, 109(5), 3196–3203. https://doi.org/10.1002/app.28378
  • Fan, L., Su, Z., Wu, J., Xiao, Z., Huang, P., Liu, L., Jiang, H., Zhou, W., Liu, S., & Ruan, R. (2021). Integrating continuous-stirred microwave pyrolysis with ex-situ catalytic upgrading for linear low-density polyethylene conversion: Effects of parameter conditions. Journal of Analytical and Applied Pyrolysis, 157, 105213. https://doi.org/10.1016/j.jaap.2021.105213
  • Fang, Z., Li, C., Sun, J., Zhang, H., & Zhang, J. (2007). The electromagnetic characteristics of carbon foams. Carbon, 45(15), 2873–2879. https://doi.org/10.1016/j.carbon.2007.10.013
  • Fernández Diez, Y., Arenillas, A., & Menéndez, J. A. (2011). Microwave heating applied to pyrolysis. In S. Grundas (Ed.), Advances in induction and microwave heating of mineral and organic materials (pp. 723–752). https://doi.org/10.5772/13548
  • Fernández, I., Pérez, S. F., Fernández-Ferreras, J., & Llano, T. (2024). Microwave-assisted pyrolysis of forest biomass. Energies, 17(19). https://doi.org/10.3390/en17194852
  • Gamit, D. N., & Chudasama, M. K. (2020). Size-effect in microwave processing of engineering materials-A review. Journal of Mechanical Engineering and Sciences, 14(2), 6770–6788. https://doi.org/10.15282/jmes.14.2.2020.18.0530
  • Geyer, R. (1990, April 1). Dielectric characterization and reference materials (Issue 1338). Technical Note (NIST TN), National Institute of Standards and Technology.
  • Haiyan, L., Hong, Z., Hongfan, G., & Liufang, Y. (2008). Microwave-absorbing properties of Co-filled carbon nanotubes. Materials Research Bulletin, 43(10), 2697–2702. https://doi.org/10.1016/j.materresbull.2007.10.016
  • Huang, Y.-F., Chiueh, P.-T., & Lo, S.-L. (2016). A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research, 26(3), 103–109. https://doi.org/10.1016/j.serj.2016.04.012
  • James, W. L. (1975). Dielectric properties of wood and hardboard: Variation with temperature, frequency, moisture content, and grain orientation (Vol. 245). Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2002). Microwave heating applications in environmental engineering–A review. Resources, Conservation and Recycling, 34(2), 75–90. https://doi.org/10.1016/s0921-3449(01)00088-x
  • Kandhola, G., Djioleu, A., Carrier, D. J., & Kim, J.-W. (2017). Pretreatments for enhanced enzymatic hydrolysis of pinewood: A review. BioEnergy Research, 10, 1138–1154. https://doi.org/10.1007/s12155-017-9862-3
  • Kashif, M., Ahmad, F., Cao, W., Zhao, W., Mostafa, E., & Zhang, Y. (2024). Experimental study on microwave pyrolysis of eucalyptus camaldulensis leaves: A promising approach for bio-oil recovery. Frontiers of Chemical Science and Engineering, 18(10), 115. https://doi.org/10.1007/s11705-024-2466-5
  • Khelfa, A., Rodrigues, F. A., Koubaa, M., & Vorobiev, E. (2020). Microwave-Assisted Pyrolysis of Pine Wood Sawdust Mixed with Activated Carbon for Bio-Oil and Bio-Char Production. Processes, 8(11). https://doi.org/10.3390/pr8111437
  • Lam, S.S., & Chase, H.A. (2012) A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies, 5, 4209-4232. https://doi.org/10.3390/en5104209
  • Li, M., Yu, Z., Bin, Y., Huang, Z., He, H., Liao, Y., Zheng, A., & Ma, X. (2022). Microwave-assisted pyrolysis of eucalyptus wood with MoO3 and different nitrogen sources for coproducing nitrogen-rich bio-oil and char. Journal of Analytical and Applied Pyrolysis, 167, 105666. https://doi.org/10.1016/j.jaap.2022.105666
  • Lin, Y.-C., Wu, T.-Y., Liu, W.-Y., & Hsiao, Y.-H. (2014). Production of hydrogen from rice straw using microwave-induced pyrolysis. Fuel, 119, 21–26. https://doi.org/10.1016/j.fuel.2013.11.046
  • Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 1–8. https://doi.org/10.1016/j.fuproc.2009.08.021
  • Meredith, R. J. (1998). Engineers’ handbook of industrial microwave heating. The Institution of Electrical Engineers.
  • Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035
  • Mohan, D., Pittman, C. U. Jr., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20(3), 848–889. https://doi.org/10.1021/ef0502397
  • Pardé, J. D. (1980). Forest biomass. Forest Abstracts, 41, 343-362.
  • Ramasamy, S., & Moghtaderi, B. (2010). Dielectric Properties of Typical Australian Wood-Based Biomass Materials at Microwave Frequency. Energy & Fuels, 24(8), 4534–4548. https://doi.org/10.1021/ef100623e
  • Robinson, J., Binner, E., Vallejo, D. B., Perez, N. D., Al Mughairi, K., Ryan, J., Shepherd, B., Adam, M., Budarin, V., & Fan, J. (2022). Unravelling the mechanisms of microwave pyrolysis of biomass. Chemical Engineering Journal, 430, 132975. https://doi.org/10.1016/j.cej.2021.132975
  • Sahin, H., & Ay, N. (2004). Dielectric properties of hardwood species at microwave frequencies. Journal of Wood Science, 50, 375–380. https://doi.org/10.1007/s10086-003-0575-1
  • Saidur, R., Abdelaziz, E., Demirbas, A., Hossain, M. S., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15(5), 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015
  • Salema, A. A., & Ani, F. N. (2012). Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. Journal of Analytical and Applied Pyrolysis, 96, 162–172. https://doi.org/10.1016/j.jaap.2012.03.018
  • Salema, A. A., Yeow, Y. K., Ishaque, K., Ani, F. N., Afzal, M. T., & Hassan, A. (2013). Dielectric properties and microwave heating of oil palm biomass and biochar. Industrial Crops and Products, 50, 366–374. https://doi.org/10.1016/j.indcrop.2013.08.007
  • Shi, K., Yan, J., Menéndez, J. A., Luo, X., Yang, G., Chen, Y., Lester, E., & Wu, T. (2020). Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Frontiers in Chemistry, 8-2020. https://doi.org/10.3389/fchem.2020.00003
  • Shivashankar, H., Mathias, K. A., Sondar, P. R., Shrishail, M. H., & Kulkarni, S. M. (2021). Study on low-frequency dielectric behavior of the carbon black/polymer nanocomposite. Journal of Materials Science: Materials in Electronics, 32(24), 28674–28686. https://doi.org/10.1007/s10854-021-07242-1
  • Sun, J., Wang, W., & Yue, Q. (2016). Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials (Basel, Switzerland), 9(4), 231. https://doi.org/10.3390/ma9040231
  • Tan, Q., Irwin, P., & Cao, Y. (2006). Advanced Dielectrics for Capacitors. IEEJ Transactions on Fundamentals and Materials, 126, 1153–1159. https://doi.org/10.1541/ieejfms.126.1153
  • Teng, W., Yu, Z., Shen, G., Ni, H., Zhang, X., & Ma, X. (2025). Microwave-assisted co-pyrolysis of eucalyptus wood and polypropylene for hydrocarbon-rich bio-oil based on multilayer MFI nanosheets catalysis. Energy, 134635.
  • Thostenson, E. T., & Chou, T.-W. (1999). Microwave processing: Fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30(9), 1055–1071. https://doi.org/10.1016/S1359-835X(99)00020-2
  • Torgovnikov, G. I. (1993). Dielectric properties of wood-based materials. Springer Verlag. https://doi.org/10.1007/978-3-642-77453-9
  • Vollmer, M. (2004). Physics of the microwave oven. Physics Education, 39, 74–81.
  • Wang, J., Lan, Y., Zhang, H., Zhang, Y., Wen, S., Yao, W., & Deng, J. (2018). Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. International Journal of Agricultural and Biological Engineering, 11(6), 5–12. https://doi.org/10.25165/j.ijabe.20181106.4038
  • Xian-Hua, W., Han-Ping, C., Xue-Jun, D., Hai-Ping, Y., Shi-Hong, Z., & Ying-Qiang, S. (2009). Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources, 4. https://doi.org/10.15376/biores.4.3.946-959
  • Yang, J.-K., & Wu, Y.-M. (1987). Relation between dielectric property and desulphurization of coal by microwaves. Fuel, 66(12), 1745–1747. https://doi.org/10.1016/0016-2361(87)90377-2
  • Yao, H., Xiong, Y., Pickles, C., Hutcheon, R., Pahnila, M., Hagström, A., Fabritius, T., & Omran, M. (2025). Dielectric properties of biomass by-products generated from wood and agricultural industries in Finland. Bioresource Technology, 426, 132319. https://doi.org/10.1016/j.biortech.2025.132319
  • Zhang, Y., Chen, P., Liu, S., Fan, L., Zhou, N., Min Min, Cheng, Y., Peng, P., Anderson, E., Wang, Y., Yiqin Wan, Liu, Y., Li, B., & Ruan, R. (2017). Microwave‐assisted pyrolysis of biomass for bio‐oil production. In M. Samer (Ed.), Pyrolysis (pp. 129-166). https://doi.org/10.5772/67442
  • Zhao, X., Song, Z., Liu, H., Li, Z., Li, L., & Ma, C. (2010). Microwave pyrolysis of corn stalk bale: A promising method for direct utilization of large-sized biomass and syngas production. Journal of Analytical and Applied Pyrolysis, 89(1), 87–94. https://doi.org/10.1016/j.jaap.2010.06.001
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Biyokütlesi ve Biyoürünleri
Bölüm Derleme
Yazarlar

Özlem Akça 0000-0003-0909-2514

Mehmet Akgül 0009-0000-5024-6517

Gönderilme Tarihi 7 Temmuz 2025
Kabul Tarihi 24 Eylül 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 2

Kaynak Göster

APA Akça, Ö., & Akgül, M. (2025). The Role of Dielectric Properties in Microwave-Assisted Pyrolysis of Forest Biomass. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 21(2), 158-170. https://doi.org/10.58816/duzceod.1736400

 DÜOD'da yayımlanan makaleler Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC) kapsamında lisanslanmıştır.