Araştırma Makalesi
BibTex RIS Kaynak Göster

Mavi-Yeşil Altyapının Hidrometerolojik Tehlikeler İçin İklim Direncine Etkisi: İzmir Bayraklı Örneği

Yıl 2024, Cilt: 20 Sayı: 1, 233 - 247, 30.06.2024
https://doi.org/10.58816/duzceod.1413255

Öz

Kentler, iklim değişikliğinden en çok etkilenen sistemlerden biridir. Mavi-yeşil altyapı sistemleri sağladığı ekosistem servisleriyle kentlerde iklim değişikliğinden etkilenebilirliğin ve afet riskinin azaltılmasına, dolayısıyla iklim değişikliğine uyum sağlanmasına önemli katkılarda bulunur. Bu nedenle araştırma sorusu, Bayraklı'nın mevcut mavi-yeşil altyapısının 100 yıl tekerrürlü yağışlar karşısında ne kadar etkilidir? şeklinde tanımlanmıştır. Bu kapsamda mavi-yeşil altyapı bileşenleri tanımlanmış, 100 yıl tekerrürlü yağışın gerçekleşmesi durumunda bu alanlarda yüzey akışa geçecek su miktarları hesaplanmıştır. Araştırmada mavi yeşil altyapının ilçenin % 37`sini kapladığı bu alanların birbiriyle bağlantılı bütüncül bir sistem oluşturmadığı belirlenmiştir. 100 yıl tekerrürlü yağışta mavi yeşil altyapı bileşenlerinde 1269857,30 m3 suyun yüzey akısla tutulamadığı belirlenmiştir. Çalışmada, Bayraklı ilçesinin mevcut mavi-yeşil altyapısının olası ekstrem yağışlara karşı yeterli su tutma kapasitesine sahip olmadığı, bu durumun yeşil altyapı bileşenlerinin özelliklerine göre değişiklik gösterdiği görülmüştür. Bulgular doğrultusunda iklim değişikliği ve ekstrem yağış miktarları göz önünde bulundurularak mevcut mavi-yeşil altyapının ve kentin iklim direncinin artırılmasına yönelik uyum önerileri sunulmuştur.

Kaynakça

  • Alves, A., Gómez, J.P., Vojinovic, Z., Sánchez, A. & Weesakul, S. (2018). Combining CoBenefits and Stakeholders Perceptions into Green Infrastructure Selection for Flood Risk Reduction. Environment, 5(2), 29.
  • ARCADIS, (2022). The Arcadis Sustainable Cities Index (2022). Arcadis. https://www.arcadis.com/en/knowledge-hub/perspectives/global/sustainable-citiesindex?utm_source=google&utm_medium=Search_ad&utm_campaign=Sci22&gclid=E AIaIQobChMIzN-OsMap-wIVVvhRCh0eOgf4EAAYASAAEgLah_D_BwE. Retrieved: 08.11.2022.
  • Ashley, R.M., Gersonius, B. Digman, C. Horton, B. Bacchin, T. Smith, B. Shaffer P. & Baylis, A. (2018). Demonstrating and Monetizing the Multiple Benefits from Using SuDS. J. Sustain. Water Built Environ., 4(2), 05017008.
  • Berberoğlu, S., Çilek A. & Ünlükaplan, Y. (2019). A Framework for Resilient Cities to Climate Change: Green Revision Guidebook (Ed. Coşkun Hepcan Ç., Alphan H.). Pardus, Ankara, 172pp. ISBN 978-975-18-0268-2.
  • Breuste, J.H. & Artmann, M. (2015). Allotment gardens contribute to urban ecosystem service: Case study Salzburg, Austria. Journal of Urban Planning and Development, 141(3), 77- 88.
  • Cangüzel, A. (2022). İzmir Kenti Kıyı İlçeleri İklim Değişikliği Kırılganlık Analizi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, İzmir, 73pp.
  • Coşkun Hepcan, Ç., Özeren, M., Hepcan Ş. & Özkan, M.B. (2015). İzmir İli Metropol Kıyı İlçelerinin Peyzaj Yapı Analizi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(3):353-362. DOI: 10.20289/euzfd.58229.
  • Coşkun Hepcan, C., (2019). Green Infrastructure Solutions as a part of climate change, Ministry of Environment and Urbanization, Ankara. 32p.
  • Coşkun Hepcan, Ç. & Cangüzel, A. (2021). Bornova üniversite caddesi yol ağaçlarının hava kalitesi üzerine etkisi, Ege Univ. Ziraat Fak. Derg., 58 (2): 245-252, https://doi.org/10.20289/zfdergi.697540.
  • Coşkun Hepcan Ç. & Berberoğlu, S. (2022). Doğa Temelli Çözümler Kataloğu, T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, İklim Değişikliği Başkanlığı, Ankara. 194pp. ISBN: 978-605-06990-8-1.
  • Coşkun Hepcan, C., (2022a). Adaptation to Climate Change in Cities, Grey Solutions, Nature and Ecosystem Based Solutions, Policy, Legal and Administrative Solutions. Efe Academy Publishing.
  • Coşkun Hepcan, C., (2022b). Doğa Temelli Çözümler ve Kentsel Dirençlilik, Çevre Şehir ve İklim Dergisi, 1(2), 19-40.
  • Deksissa, T., H. Trobman, K. Zendehdel & H. Azam, (2021). Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots. Sustainability, 13(15), 82-93.
  • Dhamma, S. & C. Zimmer, (2010). The Low Impact Development Stormwater Management Planning and Design Guide Version 1.0, Toronto and Region Conservation for the Living City. https://cvc.ca/wp-content/uploads/2014/04/LID-SWM-Guide-v1.0_2010_1_noappendices.pdf. Retrieved: 07.12.2022.
  • Drosou N., R. Soetanto, F. Hermawan, K. Chmutina, L. Bosher & J.U.D. Hatmoko, (2019). Key Factors Influencing Wider Adoption of Blue–Green Infrastructure in Developing Cities. Water, 11(6):1234.
  • CRED. (2024). 2023 Disasters in Numbers. Brussels: CRED, 2024. https://files.emdat.be/ reports/2023_EMDAT_report.pdf. Retrieved: 02.02.2024.
  • Firth L.B., L. Airoldi, F. Bulleri, S. Challinor, Chee, S.Y. Evans, A.J. Hanley, M.E. Knights, A.M. O’Shaughnessy, K. Thompson, R.C. & Hawkins, S.J. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology, 57, 1762-1768.
  • Frantzeskaki, N. & N. Tilie, (2014). The Dynamics of Urban Ecosystem Governance in Rotterdam, The Netherlands. Ambio, 43(4), 542-555.
  • Freshwater Society, (2013). Urban Agriculture as a Green Stormwater Management Strategy. https://www.arboretum.umn.edu/UserFiles/File/2012%20Clean%20Water%20Summit/ Freshwater%20Urban%20Ag%20White%20Paper%20Final.pdf. Retrieved: 15.11.2022.
  • Gilroy, K. L. & R.H. McCuen, (2009). Spatio-temporal effects of low impact development practices. Journal of Hydrology, 367,228–236.
  • Gittleman, M., Farmer, C.J.Q., Kreme P. & McPhearson, T. (2017). Estimating stormwater runoff for community gardens in New York City. Urban Ecosystems, 20,129-139.
  • Ghofrani, Z., Sposito, V. & Faggian, R.A. (2017). Comprehensive Review of Blue-Green Infrastructure Concepts. Int. J. Environ. Sustain, 6(1), 15-36.
  • GNDAR, (2022). Global Natural Disaster Assessment Report (2021). https://reliefweb.int/report/world/2021-global-natural-disaster-assessment-report. Retrieved: 05.12.2022.
  • Hepcan, S. (2013). Analyzing the pattern and connectivity of urban green spaces: A case study of İzmir, Turkey. Urban Ecosystems, 16, 279-293.
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535.
  • IPCC, (2022). Climate Change (2022), Mitigation of Climate Change, Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.
  • IPCC, (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6- 9789291691647.001.
  • Mell, I. & Scott, A. (2023). Definitions and context of blue-green infrastructure in ICE Manual of Blue-Green Infrastructure (Ed. Washbourne, C.L. and Wansbury, C.). 3-22. ISBN: 978-0-7277-6543-7. doi/abs/10.1680/icembgi.65420.003.
  • MSRNA, (2022). Pakistan: 2022 Multi-Sector Rapid Needs Assessment in Flood-Affected Areas of Khyber Pakhtunkhwa, Punjab and Sindh, September 2022. https://reliefweb.int/report/pakistan/pakistan-2022-multi-sector-rapid-needs-assessmentflood-affected-areas-khyber-pakhtunkhwa-punjab-and-sindh-september-2022. Retrieved: 02.12.2022.
  • Ncube, S. & Arthur, S. (2021). Influence of Blue-Green and Grey Infrastructure Combinations on Natural and Human-Derived Capital in Urban Drainage Planning. Sustainability, 13(5), 25-71.
  • O’Donnell E.C. & Thorne, C.R. (2020). Drivers of future urban flood risk. Phil. Trans. R. Soc. A 378: 20190216. http://dx.doi.org/10.1098/rsta.2019.0216.
  • Özeren Alkan, M. & Hepcan, Ş. (2022). Water sensitive spatial planning in terms of sustainable stormwater management: The case of Bornova Stream Catchment (İzmir), Turkey. Urban Water Journal, 1-16.
  • Pallathadka, A., Sauer, J. Chang H. & Grimm, N.B. (2022). Urban flood risk and green infrastructure: Who is exposed to risk and who benefits from investment? A case study of three U.S. Cities, Landscape and Urban Planning, 223, 104-417.
  • Pugh, T.A.M., A.R. MacKenzie, J.D. Whyatt & C.N. Hewitt, (2012). Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environ. Sci. Technol., 46(14),7692–7699.
  • Sohn, W., J. Bae & Newman, G. (2021). Green infrastructure for coastal flood protection: The longitudinal impacts of green infrastructure patterns on flood damage. Applied Geography, 135, 102-565.
  • Sørensen, R.H., (2019). Vancouver’s Water Narrative Learning From Copenhagen & Rotterdam.https://act-adapt.org/wp-content/uploads/2020/04/FINAL-REPORT Vancouvers-Water-Narrative-Learning-from-Copenhagen-and-Rotterdam-RonjaS%C3%B8rensen-in-collaboration-with-ACT-and-CoV-jan19.pdf. Retrieved: 01.12.2022.
  • Sörensen, J. & Emilsson, T. (2019). Evaluating Flood Risk Reduction by Urban Blue-Green Infrastructure Using Insurance Data. Journal of Water Resources Planning and Management, 145(2). Sörensen, J., Persson, A. Sternudd, C., Aspegren, H., Nilsson, J., Nordström, J., Jönsson, K., Mottaghi, M., Becker, P., Pilesjö, P., Larsson, R,. Berndtsson, R. & Mobini, S. (2016). Re-thinking urban flood management: Time for a regime shift. Water, 8(8), 332.
  • Thorne, C.R., Lawson, E.C. Ozawa, C. Hamlin, S.L & Smith, L.A. (2015). Overcoming Uncertainty and Barriers to Adoption of Blue-Green Infrastructure for Urban Flood Risk Management. J. Flood Risk Manag., 11(2):960–972.
  • TSMS, (2020). Turkish State Meteorological Service Report.
  • TSMS, (2021). Turkish State Meteorological Service Rainfall and Meterological event Data.
  • TSMS, (2022). Meteorological Disasters Assessment of Türkiye 2010-2021. https://mgm.gov.tr/FILES/genel/raporlar/meteorolojikafetler2010-2021.pdf. Retrieved: 20.10.2022.
  • TSMS, (2024). Turkish State Meteorological Service Rainfall Data for 2022 and 2023.
  • Tong, P., H. Yin, H., Wang, Z.& Trivers, I. (2022). Combining Stormwater Management and Park Services to Mitigate Climate Change and Improve Human Well-Being: A Case Study of Sponge City Parks in Shanghai. Land, 11(9): 1589.
  • WMO, (2022). WMO Provisional State of the Global Climate 2022. https://library.wmo.int/index.php?lvl=notice_display&id=22156#.Y3dtaXZBw2x. Retrieved: 05.11.2022.
  • WRR, (2023). World Risk Report 2023. Bündnis Entwicklung Hilft / IFHV (2023): WeltRisikoBericht 2023. Berlin: Bündnis Entwicklung Hilft.
  • UNEP, (2022). Adaptation Gap Report (2022): Too Little, Too Slow– Climate adaptation failure puts world at risk. Nairobi. https://www.unep.org/adaptation-gap-report-2022. Retrieved: 18.11.2022.
  • USDA, (1989). Natural Resources of Conservation Service (formerly SCS) –Urban Hydrology for Small Watersheds, Technical Release Number 55, Springfield, VA. National Technical In-formation Service.
  • Yuksel, A.T. ve Coskun Hepcan, C. (2023). Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 20(1), 91-98.

The impact of blue-green infrastructure on climate resilience for hydrometerological hazards: The case of Bayraklı, İzmir

Yıl 2024, Cilt: 20 Sayı: 1, 233 - 247, 30.06.2024
https://doi.org/10.58816/duzceod.1413255

Öz

Urban areas are one of the most affected systems by climate change. Blue-green infrastructure systems make significant contributions to the reduction of the vulnerability against climate change and disaster risks in urban areas and to adaptation to climate with the ecosystem services they provide. This study aims to determine the blue-green infrastructure (BGI) and its water related disaster mitigation functions in Bayraklı, İzmir. Therefore, the research question is defined as: how effective the existing BGI of Bayraklı is to handle a 100-year frequency storm. In this context, the components of BGI were defined, and their runoff values were calculated by considering a 100-year frequency storm event and by taking the ecological characteristics of these areas, such as vegetation, and surface permeability into account. The findings showed that BGI is inadequate to remove 1.269.857,30 m3 stormwater runoff from the city in the events of a 100–year of rainfall. Potential water retention capacity of BGI varies according to the characteristics of the green infrastructure components. Based on the outcomes of the study, recommendations were presented to increase climate resilience of Bayraklı district by the existing BGI.

Kaynakça

  • Alves, A., Gómez, J.P., Vojinovic, Z., Sánchez, A. & Weesakul, S. (2018). Combining CoBenefits and Stakeholders Perceptions into Green Infrastructure Selection for Flood Risk Reduction. Environment, 5(2), 29.
  • ARCADIS, (2022). The Arcadis Sustainable Cities Index (2022). Arcadis. https://www.arcadis.com/en/knowledge-hub/perspectives/global/sustainable-citiesindex?utm_source=google&utm_medium=Search_ad&utm_campaign=Sci22&gclid=E AIaIQobChMIzN-OsMap-wIVVvhRCh0eOgf4EAAYASAAEgLah_D_BwE. Retrieved: 08.11.2022.
  • Ashley, R.M., Gersonius, B. Digman, C. Horton, B. Bacchin, T. Smith, B. Shaffer P. & Baylis, A. (2018). Demonstrating and Monetizing the Multiple Benefits from Using SuDS. J. Sustain. Water Built Environ., 4(2), 05017008.
  • Berberoğlu, S., Çilek A. & Ünlükaplan, Y. (2019). A Framework for Resilient Cities to Climate Change: Green Revision Guidebook (Ed. Coşkun Hepcan Ç., Alphan H.). Pardus, Ankara, 172pp. ISBN 978-975-18-0268-2.
  • Breuste, J.H. & Artmann, M. (2015). Allotment gardens contribute to urban ecosystem service: Case study Salzburg, Austria. Journal of Urban Planning and Development, 141(3), 77- 88.
  • Cangüzel, A. (2022). İzmir Kenti Kıyı İlçeleri İklim Değişikliği Kırılganlık Analizi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, İzmir, 73pp.
  • Coşkun Hepcan, Ç., Özeren, M., Hepcan Ş. & Özkan, M.B. (2015). İzmir İli Metropol Kıyı İlçelerinin Peyzaj Yapı Analizi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(3):353-362. DOI: 10.20289/euzfd.58229.
  • Coşkun Hepcan, C., (2019). Green Infrastructure Solutions as a part of climate change, Ministry of Environment and Urbanization, Ankara. 32p.
  • Coşkun Hepcan, Ç. & Cangüzel, A. (2021). Bornova üniversite caddesi yol ağaçlarının hava kalitesi üzerine etkisi, Ege Univ. Ziraat Fak. Derg., 58 (2): 245-252, https://doi.org/10.20289/zfdergi.697540.
  • Coşkun Hepcan Ç. & Berberoğlu, S. (2022). Doğa Temelli Çözümler Kataloğu, T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, İklim Değişikliği Başkanlığı, Ankara. 194pp. ISBN: 978-605-06990-8-1.
  • Coşkun Hepcan, C., (2022a). Adaptation to Climate Change in Cities, Grey Solutions, Nature and Ecosystem Based Solutions, Policy, Legal and Administrative Solutions. Efe Academy Publishing.
  • Coşkun Hepcan, C., (2022b). Doğa Temelli Çözümler ve Kentsel Dirençlilik, Çevre Şehir ve İklim Dergisi, 1(2), 19-40.
  • Deksissa, T., H. Trobman, K. Zendehdel & H. Azam, (2021). Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots. Sustainability, 13(15), 82-93.
  • Dhamma, S. & C. Zimmer, (2010). The Low Impact Development Stormwater Management Planning and Design Guide Version 1.0, Toronto and Region Conservation for the Living City. https://cvc.ca/wp-content/uploads/2014/04/LID-SWM-Guide-v1.0_2010_1_noappendices.pdf. Retrieved: 07.12.2022.
  • Drosou N., R. Soetanto, F. Hermawan, K. Chmutina, L. Bosher & J.U.D. Hatmoko, (2019). Key Factors Influencing Wider Adoption of Blue–Green Infrastructure in Developing Cities. Water, 11(6):1234.
  • CRED. (2024). 2023 Disasters in Numbers. Brussels: CRED, 2024. https://files.emdat.be/ reports/2023_EMDAT_report.pdf. Retrieved: 02.02.2024.
  • Firth L.B., L. Airoldi, F. Bulleri, S. Challinor, Chee, S.Y. Evans, A.J. Hanley, M.E. Knights, A.M. O’Shaughnessy, K. Thompson, R.C. & Hawkins, S.J. (2020). Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. Journal of Applied Ecology, 57, 1762-1768.
  • Frantzeskaki, N. & N. Tilie, (2014). The Dynamics of Urban Ecosystem Governance in Rotterdam, The Netherlands. Ambio, 43(4), 542-555.
  • Freshwater Society, (2013). Urban Agriculture as a Green Stormwater Management Strategy. https://www.arboretum.umn.edu/UserFiles/File/2012%20Clean%20Water%20Summit/ Freshwater%20Urban%20Ag%20White%20Paper%20Final.pdf. Retrieved: 15.11.2022.
  • Gilroy, K. L. & R.H. McCuen, (2009). Spatio-temporal effects of low impact development practices. Journal of Hydrology, 367,228–236.
  • Gittleman, M., Farmer, C.J.Q., Kreme P. & McPhearson, T. (2017). Estimating stormwater runoff for community gardens in New York City. Urban Ecosystems, 20,129-139.
  • Ghofrani, Z., Sposito, V. & Faggian, R.A. (2017). Comprehensive Review of Blue-Green Infrastructure Concepts. Int. J. Environ. Sustain, 6(1), 15-36.
  • GNDAR, (2022). Global Natural Disaster Assessment Report (2021). https://reliefweb.int/report/world/2021-global-natural-disaster-assessment-report. Retrieved: 05.12.2022.
  • Hepcan, S. (2013). Analyzing the pattern and connectivity of urban green spaces: A case study of İzmir, Turkey. Urban Ecosystems, 16, 279-293.
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535.
  • IPCC, (2022). Climate Change (2022), Mitigation of Climate Change, Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.
  • IPCC, (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6- 9789291691647.001.
  • Mell, I. & Scott, A. (2023). Definitions and context of blue-green infrastructure in ICE Manual of Blue-Green Infrastructure (Ed. Washbourne, C.L. and Wansbury, C.). 3-22. ISBN: 978-0-7277-6543-7. doi/abs/10.1680/icembgi.65420.003.
  • MSRNA, (2022). Pakistan: 2022 Multi-Sector Rapid Needs Assessment in Flood-Affected Areas of Khyber Pakhtunkhwa, Punjab and Sindh, September 2022. https://reliefweb.int/report/pakistan/pakistan-2022-multi-sector-rapid-needs-assessmentflood-affected-areas-khyber-pakhtunkhwa-punjab-and-sindh-september-2022. Retrieved: 02.12.2022.
  • Ncube, S. & Arthur, S. (2021). Influence of Blue-Green and Grey Infrastructure Combinations on Natural and Human-Derived Capital in Urban Drainage Planning. Sustainability, 13(5), 25-71.
  • O’Donnell E.C. & Thorne, C.R. (2020). Drivers of future urban flood risk. Phil. Trans. R. Soc. A 378: 20190216. http://dx.doi.org/10.1098/rsta.2019.0216.
  • Özeren Alkan, M. & Hepcan, Ş. (2022). Water sensitive spatial planning in terms of sustainable stormwater management: The case of Bornova Stream Catchment (İzmir), Turkey. Urban Water Journal, 1-16.
  • Pallathadka, A., Sauer, J. Chang H. & Grimm, N.B. (2022). Urban flood risk and green infrastructure: Who is exposed to risk and who benefits from investment? A case study of three U.S. Cities, Landscape and Urban Planning, 223, 104-417.
  • Pugh, T.A.M., A.R. MacKenzie, J.D. Whyatt & C.N. Hewitt, (2012). Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environ. Sci. Technol., 46(14),7692–7699.
  • Sohn, W., J. Bae & Newman, G. (2021). Green infrastructure for coastal flood protection: The longitudinal impacts of green infrastructure patterns on flood damage. Applied Geography, 135, 102-565.
  • Sørensen, R.H., (2019). Vancouver’s Water Narrative Learning From Copenhagen & Rotterdam.https://act-adapt.org/wp-content/uploads/2020/04/FINAL-REPORT Vancouvers-Water-Narrative-Learning-from-Copenhagen-and-Rotterdam-RonjaS%C3%B8rensen-in-collaboration-with-ACT-and-CoV-jan19.pdf. Retrieved: 01.12.2022.
  • Sörensen, J. & Emilsson, T. (2019). Evaluating Flood Risk Reduction by Urban Blue-Green Infrastructure Using Insurance Data. Journal of Water Resources Planning and Management, 145(2). Sörensen, J., Persson, A. Sternudd, C., Aspegren, H., Nilsson, J., Nordström, J., Jönsson, K., Mottaghi, M., Becker, P., Pilesjö, P., Larsson, R,. Berndtsson, R. & Mobini, S. (2016). Re-thinking urban flood management: Time for a regime shift. Water, 8(8), 332.
  • Thorne, C.R., Lawson, E.C. Ozawa, C. Hamlin, S.L & Smith, L.A. (2015). Overcoming Uncertainty and Barriers to Adoption of Blue-Green Infrastructure for Urban Flood Risk Management. J. Flood Risk Manag., 11(2):960–972.
  • TSMS, (2020). Turkish State Meteorological Service Report.
  • TSMS, (2021). Turkish State Meteorological Service Rainfall and Meterological event Data.
  • TSMS, (2022). Meteorological Disasters Assessment of Türkiye 2010-2021. https://mgm.gov.tr/FILES/genel/raporlar/meteorolojikafetler2010-2021.pdf. Retrieved: 20.10.2022.
  • TSMS, (2024). Turkish State Meteorological Service Rainfall Data for 2022 and 2023.
  • Tong, P., H. Yin, H., Wang, Z.& Trivers, I. (2022). Combining Stormwater Management and Park Services to Mitigate Climate Change and Improve Human Well-Being: A Case Study of Sponge City Parks in Shanghai. Land, 11(9): 1589.
  • WMO, (2022). WMO Provisional State of the Global Climate 2022. https://library.wmo.int/index.php?lvl=notice_display&id=22156#.Y3dtaXZBw2x. Retrieved: 05.11.2022.
  • WRR, (2023). World Risk Report 2023. Bündnis Entwicklung Hilft / IFHV (2023): WeltRisikoBericht 2023. Berlin: Bündnis Entwicklung Hilft.
  • UNEP, (2022). Adaptation Gap Report (2022): Too Little, Too Slow– Climate adaptation failure puts world at risk. Nairobi. https://www.unep.org/adaptation-gap-report-2022. Retrieved: 18.11.2022.
  • USDA, (1989). Natural Resources of Conservation Service (formerly SCS) –Urban Hydrology for Small Watersheds, Technical Release Number 55, Springfield, VA. National Technical In-formation Service.
  • Yuksel, A.T. ve Coskun Hepcan, C. (2023). Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 20(1), 91-98.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Çevre Kontrolü
Bölüm Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi 20(1)
Yazarlar

Çiğdem Coşkun Hepcan 0000-0002-8287-0506

Aybuke Canguzel 0000-0003-1325-9786

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 1 Ocak 2024
Kabul Tarihi 4 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 20 Sayı: 1

Kaynak Göster

APA Coşkun Hepcan, Ç., & Canguzel, A. (2024). The impact of blue-green infrastructure on climate resilience for hydrometerological hazards: The case of Bayraklı, İzmir. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 20(1), 233-247. https://doi.org/10.58816/duzceod.1413255

........