Araştırma Makalesi
BibTex RIS Kaynak Göster

Oxalic Acid’s Impact on the Morphological, Physiological and Biochemical Characteristics of Marigolds under Drought Stress

Yıl 2024, Cilt: 20 Sayı: Özel Sayı, 197 - 219, 23.12.2024
https://doi.org/10.58816/duzceod.1557974

Öz

Due to global climate change, it has become a great necessity to prefer drought-resistant/tolerant species in plant design and to increase plant tolerance. Organic acids can improve plant tolerance to abiotic stress. However, the effectiveness of oxalic acid on seasonal flowers under stress conditions is not fully understood. In this study, the effects of oxalic acid treatment on the morphological, physiological and biochemical characteristics of marigolds under drought stress were investigated. F1 seeds of Tagetes erecta L. 'Bali Orange' variety were used and oxalic acid solution at concentrations of 1 mM, 3 mM and 5 mM was applied by foliar spraying at the seedling stage. Then, the seedlings were kept at 100% (well-watered) and 40% field capacity (limited watering) conditions. The experiment was terminated when drought symptoms were observed in more than 50% of the limited watering plants that had not been treated with oxalic acid. MDA, chlorophyll and proline content, leaf area, flower diameter, plant height, leaf relative water content, membrane damage index parameters were examined. Drought stress generally negatively affected the morphological, physiological and biochemical characteristics of marigolds. On the other hand, oxalic acid treatments improved the physiological and biochemical characteristics of marigolds, reduced the negative effects of drought stress on the morphological characteristics of flowers and enhanced drought stress tolerance. The results showed that oxalic acid has the potential to improve the stress tolerance of seasonal flowers for landscaping.

Kaynakça

  • Anonymous. (2024a). https://www.google.com.tr/maps/place. Erişim Tarihi: 21.06.2024.
  • Anonymous. (2024b). https://www.bioinformatics.com.cn/en. Erişim Tarihi: 21.06.2024.
  • Ahmad, B., Zaid, A., Sadiq, Y., Bashir, S., & Wani, S. H. (2019). Role of selective exogenous elicitors in plant responses to abiotic stress tolerance. In Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds), Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches (pp. 273-290). Springer, Cham.
  • Amnan, M. A. M., Aizat, W. M., Khaidizar, F. D., & Tan, B. C. (2022). Drought stress induces morpho-physiological and proteome changes of Pandanus amaryllifolius. Plants, 11(2), 221. https://doi.org/10.3390/plants11020221.
  • Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Nazir, U., & Tabassum T. (2017). Growth and development responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267-276. https://doi.org/10.13080/z-a.2017.104.034.
  • Anwar, R., Gull, S., Nafees, M., Amin, M., Hussain, Z., Khan, A. S., & Malik, A. U. (2018). Pre-harvest foliar application of oxalic acid improves strawberry plant growth and fruit quality. Journal of Horticultural Science and Technology, 1(1), 35-41. https://doi.org/10.46653/jhst180101035.
  • Arbani, M. R., Jari, S. K., Fatehi, F., Khalighi, A. (2020). The effect of humi-forthi and L-arginine amino acid on growth, physiological and biochemical characteristics of Marigold (Tagetes erecta) under drought stress. Iranian Journal of Horticultural Science, 51(2), 365-373. https://doi.org/10.22059/ijhs.2019.262454.1483.
  • Asghari, J., Mahdavikia, H., Rezaei-Chiyaneh, E., Banaei-Asl, F., Amani Machiani, M., Harrison, M. T. (2023). Selenium nanoparticles improve physiological and phytochemical properties of basil (Ocimum basilicum L.) under drought stress conditions. Land, 12(1), 164. https://doi.org/10.3390/land12010164.
  • Çoban, G. A., & Aras, S. (2023). Effects of ascorbic and oxalic acids on cucumber seedling growth and quality under mildly limey soil conditions. Gesunde Pflanzen, 75(5), 1925-1932. https://doi.org/10.1007/s10343-022-00809-w.
  • Azizi, F., Moghaddam, M., Farsaraei, S., & Moshfegh, D. M. (2021). The effect of azomite application on reducing the damage of salinity stress in Mexican marigold (Tagetes minuta L.). Plant Productions, 44(2), 247-258. https://doi.org/10.22055/ppd.2019.29933.1778.
  • Baenas, N., García-Viguera, C., & Moreno, D. A. (2014). Elicitation: a tool for enriching the bioactive composition of foods. Molecules, 19(9), 13541-13563. https://doi.org/10.3390/molecules190913541.
  • Babaei, K., Moghaddam, M., Farhadi, N., & Pirbalouti, A. G. (2021). Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Scientia Horticulturae, 284, 110116. https://doi.org/10.1016/j.scienta.2021.110116.
  • Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413-428. http://dx.doi.org/10.1071/BI9620413.
  • Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060.
  • Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., Rodrigues, M. L., & Lopes, C. M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661-676. https://doi.org/10.1093/aob/mcq030.
  • Chen, J., Tang, L., Guo, W., Wang, D., Sun, Y., & Guo, C. (2024). Oxalic acid secretion alleviates saline-alkali stress in alfalfa by improving photosynthetic characteristics and antioxidant activity. Plant Physiology and Biochemistry, 208, 108475. https://doi.org/10.1016/j.plaphy.2024.108475.
  • Daler, S., Korkmaz, N., Kılıç, T., Hatterman-Valenti, H., Karadağ, A., & Kaya, O. (2024). Modulatory effects of selenium nanoparticles against drought stress in some grapevine rootstock/scion combinations. Chemical and Biological Technologies in Agriculture, 11(1), 108. https://doi.org/10.1186/s40538-024-00609-6.
  • Daler, S., & Uygun, E. (2024). Effects of putrescine application against drought stress on the morphological and physiological characteristics of grapevines. Applied Fruit Science, 66(2), 1-10. https://doi.org/10.1007/s10341-024-01109-5.
  • Earl, H. J. (2003). A precise gravimetric method for simulating drought stress in pot experiments. Crop Science, 43(5), 1868-1873. https://doi.org/10.2135/cropsci2003.1868.
  • Farieri, E., Toscano, S., Ferrante, A., & Romano, D. (2016). Identification of ornamental shrubs tolerant to saline aerosol for coastal urban and peri-urban greening. Urban Forestry & Urban Greening, 18, 9-18. https://doi.org/10.1016/j.ufug.2016.02.014.
  • Flexas, J., Niinemets, Ü., Gallé, A., Barbour, M. M., Centritto, M., Diaz-Espejo, A., Douthe, C., Galmes, J., Ribas-Carbo, M., Rodriguez, P. L., Rosello, F., Soolanayakanahally, R., Tomas, M., Wright, I. J., Farquhar, G. D. & Medrano, H. (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research, 117, 45-59. https://doi.org/10.1007/s11120-013-9844-z.
  • Gupta, M., Kumar, S., Dwivedi, V., Gupta, D. G., Ali, D., Alarifi, S., Patel, A., & Yadav, V. K. (2024). Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in Zea mays L.. Plant Signaling & Behavior, 19(1), 2400451. https://doi.org/10.1080/15592324.2024.2400451.
  • Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., Saqib M., & Rafiq, M. (2019). Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4), 389-402. https://doi.org/10.14719/pst.2019.6.4.578.
  • Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy, 10(2), 173. https://doi.org/10.3390/agronomy10020173.
  • Karamian, R., Ghasemlou, F., & Amiri, H. (2020). Physiological evaluation of drought stress tolerance and recovery in Verbascum sinuatum plants treated with methyl jasmonate, salicylic acid and titanium dioxide nanoparticles. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(3), 277-287. https://doi.org/10.1080/11263504.2019.1591535.
  • Kapluhan, E. (2013). Türkiye’de kuraklık ve kuraklığın tarıma etkisi. Marmara Coğrafya Dergisi, 27, 487-510. Kılıç, T. (2023). Seed treatments with salicylic and succinic acid to mitigate drought stress in flowering kale cv. 'Red Pigeon F1'. Scientia Horticulturae, 313, 111939. https://doi.org/10.1016/j.scienta.2023.111939
  • Lawlor, D. W. (2002). Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany, 89(7), 871-885. https://doi.org/10.1093/aob/mcf110.
  • Lehner, A., Meimoun, P., Errakhi, R., Madiona, K., Barakate, M., & Bouteau, F. (2008). Toxic and signalling effects of oxalic acid: Oxalic acid-natural born killer or natural born protector?. Plant Signaling & Behavior, 3(9), 746-748. https://doi.org/10.4161/psb.3.9.6634.
  • Li, A., Sun, X., & Liu, L. (2022). Action of salicylic acid on plant growth. Frontiers in Plant Science, 13, 878076. https://doi.org/10.3389/fpls.2022.878076.
  • Liang, Y., Strelkov, S. E., & Kav, N. N. (2009). Oxalic acid-mediated stress responses in Brassica napus L.. Proteomics, 9(11), 3156-3173. https://doi.org/10.1002/pmic.200800966.
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134. OIV & International Plant Genetic Resources Institute. (1997). Descriptors for grapevine (Vitis spp.) (Vol. 19). Bioversity International.
  • Pan, F., Liang, Y., Zhang, W., Zhao, J., & Wang, K. (2016). Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere. Frontiers in Plant Science, 7, 687. https://doi.org/10.3389/fpls.2016.00687.
  • Panchal, P., Miller, A. J., & Giri, J. (2021). Organic acids: versatile stress-response roles in plants. Journal of Experimental Botany, 72(11), 4038-4052. https://doi.org/10.1093/jxb/erab019.
  • Pichakum, N., & Pichakum, A. (2021). Evaluating the drought endurance of landscaping ground cover plants in a roof top model. Horticulturae, 7(2), 31. https://doi.org/10.3390/horticulturae7020031.
  • Procházková, D., Jan, S., Abd-Allah, E. F., & Ahmad, P. (2016). Water stress in grapevine (Vitis vinifera L.). In Ahmad, P. (ed.), Water Stress and Crop Plants: A Sustainable Approach (pp. 412-421). Wiley.
  • Ramashala, T., (2024). Marigold flower production guideline. Erişim adresi: www.dalrrd.gov.za, Erişim Tarihi: 20.08.2024.
  • Sadak, M. S., & Orabi, S. A. (2015). Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. International Journal of ChemTech Research, 8(1), 111-123.
  • Soukht saraei, N., Varasteh, F., & Alizadeh, M. (2024). The effect of foliar application of ascorbic acid and oxalic acid on the physiological responses of strawberry cv. Camarosa. Journal of Horticultural Science, 37(4), 1073-1086. https://doi.org/10.22067/jhs.2023.81120.1240.
  • Savé, R. (2007). What is stress and how to deal with it in ornamental plants?. VI International Symposium on New Floricultural Crops, Acta Horticulturae, 813, 241-254. https://doi.org/10.17660/ActaHortic.2009.813.31.
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroğlu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259.
  • Taylor, L. H. (2020). Reasons to consider drought-tolerant landscaping. https://www.th espruce.com/drought-tolerant-landscaping-what-to-know-2736660.
  • Toscano, S., Ferrante, A., & Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5(1), 6. https://doi.org/10.3390/horticulturae5010006.
  • Wach, D., & Skowron, P. (2022). An overview of plant responses to the drought stress at morphological, physiological and biochemical levels. Polish Journal of Agronomy, 50, 25-34. https://doi.org/10.26114/pja.iung.435.2022.04.
  • Wang, H. Y., Tong, H. Y., Huang, S. Z., & Yuan, H. Y. (2010). Effects of citric acid and oxalic acid on the growth and physiology of Iris lactea var. chinensis under Pb stress. Chinese Journal of Ecology, 29(07), 1340-1346.
  • Webb, M. A., Cavaletto, J. M., Carpita, N. C., Lopez, L. E., & Arnott, H. J. (1995). The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis. The Plant Journal, 7(4), 633-648. https://doi.org/10.1046/j.1365-313X.1995.7040633.x.
  • Umar, S., Sharma, M. P., Khan, W., & Ahmad, S. (2017). Variation in ornamental traits, physiological responses of Tagetes erecta L. and T. patula L. in relation to antioxidant and metabolic profile under deficit irrigation strategies. Scientia Horticulturae, 214, 200-208. https://doi.org/10.1016/j.scienta.2016.11.037.
  • Yamasaki, S., & Dillenburg, L. R. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasilleira de Fisiologia Vegetal, 11(2), 69-75.
  • Yildirim, E., Ekinci, M., Yüce, M., Turan, M., & Ors, S. (2022). Drought and biostimulant treatments affected organic acid content of tomato seedlings. Proceedings of the International Conference on Agriculture, 7(1), 21-28. https://doi.org/10.17501/26827018.2022.7103.
  • Zahedi, S. M., Moharrami, F., Sarikhani, S., & Padervand, M. (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports, 10(1), 17672. https://doi.org/10.1038/s41598-020-74273-9.
  • Zahedi, S. M., Hosseini, M. S., Hoveizeh, N. F., Kadkhodaei, S., & Vaculík, M. (2023). Comparative morphological, physiological and molecular analyses of drought-stressed strawberry plants affected by SiO2 and SiO2-NPs foliar spray. Scientia Horticulturae, 309, 111686. https://doi.org/10.1016/j.scienta.2022.111686.
  • Lei, Z., Mingyu, S., Chao, L., Liang, C., Hao, H., Xiao, W., Xiaoqing, L., Fan, Y., Fengqing, G., & Fashui, H. (2007). Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research, 119, 68-76. https://doi.org/10.1007/s12011-007-0047-3.
  • Zhao, B., Wu, F., Cai, G., Xi, P., Guo, Y., & Li, A. (2024). Physiological response mechanism and drought resistance evaluation of Passiflora edulis Sims under drought stress. Phyton International Journal of Experimental Botany, 93(6), 1345-1363. https://doi.org/10.32604/phyton.2024.050950.

Oksalik Asidin Kuraklık Stresindeki Kadife Çiçeklerinin Morfolojik, Fizyolojik ve Biyokimyasal Özellikleri Üzerine Etkisi

Yıl 2024, Cilt: 20 Sayı: Özel Sayı, 197 - 219, 23.12.2024
https://doi.org/10.58816/duzceod.1557974

Öz

Küresel iklim değişikliği nedeniyle bitkisel tasarımda kuraklığa dayanıklı/toleranslı türlerin tercih edilmesi ve bitki toleransının artırılması büyük bir gereklilik haline gelmiştir. Organik asitlerin abiyotik strese karşı bitki toleransını artırabildiği bilinmektedir. Ancak oksalik asidin stres koşullarına maruz kalan mevsimlik çiçekler üzerindeki etkinliği tam olarak anlaşılmamıştır. Bu çalışmada, oksalik asit uygulamasının kuraklık stresi altındaki kadife çiçeklerinin morfolojik, fizyolojik ve biyokimyasal özellikleri üzerindeki etkileri incelenmiştir. Tagetes erecta L. 'Bali Orange' çeşidine ait F1 tohumlar kullanılmış ve fide aşamasında yapraktan püskürtme yöntemiyle 1 mM, 3 mM ve 5 mM konsantrasyonlarındaki oksalik asit çözeltisi uygulanmıştır. Ardından fideler, %100 (optimal sulama) ve %40 tarla kapasitesi (kısıtlı sulama) koşullarında tutulmuştur. Deneme, oksalik asit uygulanmamış kısıtlı sulanan bitkilerin %50'den fazlasında kuraklık belirtileri görüldüğünde sonlandırılmıştır. MDA, klorofil ve prolin içeriği, yaprak alanı, çiçek çapı, bitki boyu, yaprak oransal su içeriği, membran zararlanma indeksi parametreleri incelenmiştir. Kuraklık stresi genel olarak kadife çiçeklerinin morfolojik, fizyolojik ve biyokimyasal özelliklerini olumsuz yönde etkilemiştir. Buna karşın oksalik asit uygulamaları, kadife çiçeklerinin fizyolojik ve biyokimyasal özelliklerini iyileştirerek kuraklık stresinin çiçeklerin morfolojik özellikleri üzerindeki olumsuz etkilerini azaltmış ve kuraklık stresine toleransı arttırmıştır. Elde edilen sonuçlar, oksalik asidin peyzaj düzenlemelerinde kullanılacak mevsimlik çiçeklerin stres toleransını artırma potansiyeline sahip olduğunu göstermektedir.

Kaynakça

  • Anonymous. (2024a). https://www.google.com.tr/maps/place. Erişim Tarihi: 21.06.2024.
  • Anonymous. (2024b). https://www.bioinformatics.com.cn/en. Erişim Tarihi: 21.06.2024.
  • Ahmad, B., Zaid, A., Sadiq, Y., Bashir, S., & Wani, S. H. (2019). Role of selective exogenous elicitors in plant responses to abiotic stress tolerance. In Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds), Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches (pp. 273-290). Springer, Cham.
  • Amnan, M. A. M., Aizat, W. M., Khaidizar, F. D., & Tan, B. C. (2022). Drought stress induces morpho-physiological and proteome changes of Pandanus amaryllifolius. Plants, 11(2), 221. https://doi.org/10.3390/plants11020221.
  • Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Nazir, U., & Tabassum T. (2017). Growth and development responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267-276. https://doi.org/10.13080/z-a.2017.104.034.
  • Anwar, R., Gull, S., Nafees, M., Amin, M., Hussain, Z., Khan, A. S., & Malik, A. U. (2018). Pre-harvest foliar application of oxalic acid improves strawberry plant growth and fruit quality. Journal of Horticultural Science and Technology, 1(1), 35-41. https://doi.org/10.46653/jhst180101035.
  • Arbani, M. R., Jari, S. K., Fatehi, F., Khalighi, A. (2020). The effect of humi-forthi and L-arginine amino acid on growth, physiological and biochemical characteristics of Marigold (Tagetes erecta) under drought stress. Iranian Journal of Horticultural Science, 51(2), 365-373. https://doi.org/10.22059/ijhs.2019.262454.1483.
  • Asghari, J., Mahdavikia, H., Rezaei-Chiyaneh, E., Banaei-Asl, F., Amani Machiani, M., Harrison, M. T. (2023). Selenium nanoparticles improve physiological and phytochemical properties of basil (Ocimum basilicum L.) under drought stress conditions. Land, 12(1), 164. https://doi.org/10.3390/land12010164.
  • Çoban, G. A., & Aras, S. (2023). Effects of ascorbic and oxalic acids on cucumber seedling growth and quality under mildly limey soil conditions. Gesunde Pflanzen, 75(5), 1925-1932. https://doi.org/10.1007/s10343-022-00809-w.
  • Azizi, F., Moghaddam, M., Farsaraei, S., & Moshfegh, D. M. (2021). The effect of azomite application on reducing the damage of salinity stress in Mexican marigold (Tagetes minuta L.). Plant Productions, 44(2), 247-258. https://doi.org/10.22055/ppd.2019.29933.1778.
  • Baenas, N., García-Viguera, C., & Moreno, D. A. (2014). Elicitation: a tool for enriching the bioactive composition of foods. Molecules, 19(9), 13541-13563. https://doi.org/10.3390/molecules190913541.
  • Babaei, K., Moghaddam, M., Farhadi, N., & Pirbalouti, A. G. (2021). Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Scientia Horticulturae, 284, 110116. https://doi.org/10.1016/j.scienta.2021.110116.
  • Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413-428. http://dx.doi.org/10.1071/BI9620413.
  • Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060.
  • Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., Rodrigues, M. L., & Lopes, C. M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661-676. https://doi.org/10.1093/aob/mcq030.
  • Chen, J., Tang, L., Guo, W., Wang, D., Sun, Y., & Guo, C. (2024). Oxalic acid secretion alleviates saline-alkali stress in alfalfa by improving photosynthetic characteristics and antioxidant activity. Plant Physiology and Biochemistry, 208, 108475. https://doi.org/10.1016/j.plaphy.2024.108475.
  • Daler, S., Korkmaz, N., Kılıç, T., Hatterman-Valenti, H., Karadağ, A., & Kaya, O. (2024). Modulatory effects of selenium nanoparticles against drought stress in some grapevine rootstock/scion combinations. Chemical and Biological Technologies in Agriculture, 11(1), 108. https://doi.org/10.1186/s40538-024-00609-6.
  • Daler, S., & Uygun, E. (2024). Effects of putrescine application against drought stress on the morphological and physiological characteristics of grapevines. Applied Fruit Science, 66(2), 1-10. https://doi.org/10.1007/s10341-024-01109-5.
  • Earl, H. J. (2003). A precise gravimetric method for simulating drought stress in pot experiments. Crop Science, 43(5), 1868-1873. https://doi.org/10.2135/cropsci2003.1868.
  • Farieri, E., Toscano, S., Ferrante, A., & Romano, D. (2016). Identification of ornamental shrubs tolerant to saline aerosol for coastal urban and peri-urban greening. Urban Forestry & Urban Greening, 18, 9-18. https://doi.org/10.1016/j.ufug.2016.02.014.
  • Flexas, J., Niinemets, Ü., Gallé, A., Barbour, M. M., Centritto, M., Diaz-Espejo, A., Douthe, C., Galmes, J., Ribas-Carbo, M., Rodriguez, P. L., Rosello, F., Soolanayakanahally, R., Tomas, M., Wright, I. J., Farquhar, G. D. & Medrano, H. (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research, 117, 45-59. https://doi.org/10.1007/s11120-013-9844-z.
  • Gupta, M., Kumar, S., Dwivedi, V., Gupta, D. G., Ali, D., Alarifi, S., Patel, A., & Yadav, V. K. (2024). Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in Zea mays L.. Plant Signaling & Behavior, 19(1), 2400451. https://doi.org/10.1080/15592324.2024.2400451.
  • Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., Saqib M., & Rafiq, M. (2019). Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4), 389-402. https://doi.org/10.14719/pst.2019.6.4.578.
  • Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy, 10(2), 173. https://doi.org/10.3390/agronomy10020173.
  • Karamian, R., Ghasemlou, F., & Amiri, H. (2020). Physiological evaluation of drought stress tolerance and recovery in Verbascum sinuatum plants treated with methyl jasmonate, salicylic acid and titanium dioxide nanoparticles. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(3), 277-287. https://doi.org/10.1080/11263504.2019.1591535.
  • Kapluhan, E. (2013). Türkiye’de kuraklık ve kuraklığın tarıma etkisi. Marmara Coğrafya Dergisi, 27, 487-510. Kılıç, T. (2023). Seed treatments with salicylic and succinic acid to mitigate drought stress in flowering kale cv. 'Red Pigeon F1'. Scientia Horticulturae, 313, 111939. https://doi.org/10.1016/j.scienta.2023.111939
  • Lawlor, D. W. (2002). Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany, 89(7), 871-885. https://doi.org/10.1093/aob/mcf110.
  • Lehner, A., Meimoun, P., Errakhi, R., Madiona, K., Barakate, M., & Bouteau, F. (2008). Toxic and signalling effects of oxalic acid: Oxalic acid-natural born killer or natural born protector?. Plant Signaling & Behavior, 3(9), 746-748. https://doi.org/10.4161/psb.3.9.6634.
  • Li, A., Sun, X., & Liu, L. (2022). Action of salicylic acid on plant growth. Frontiers in Plant Science, 13, 878076. https://doi.org/10.3389/fpls.2022.878076.
  • Liang, Y., Strelkov, S. E., & Kav, N. N. (2009). Oxalic acid-mediated stress responses in Brassica napus L.. Proteomics, 9(11), 3156-3173. https://doi.org/10.1002/pmic.200800966.
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134. OIV & International Plant Genetic Resources Institute. (1997). Descriptors for grapevine (Vitis spp.) (Vol. 19). Bioversity International.
  • Pan, F., Liang, Y., Zhang, W., Zhao, J., & Wang, K. (2016). Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere. Frontiers in Plant Science, 7, 687. https://doi.org/10.3389/fpls.2016.00687.
  • Panchal, P., Miller, A. J., & Giri, J. (2021). Organic acids: versatile stress-response roles in plants. Journal of Experimental Botany, 72(11), 4038-4052. https://doi.org/10.1093/jxb/erab019.
  • Pichakum, N., & Pichakum, A. (2021). Evaluating the drought endurance of landscaping ground cover plants in a roof top model. Horticulturae, 7(2), 31. https://doi.org/10.3390/horticulturae7020031.
  • Procházková, D., Jan, S., Abd-Allah, E. F., & Ahmad, P. (2016). Water stress in grapevine (Vitis vinifera L.). In Ahmad, P. (ed.), Water Stress and Crop Plants: A Sustainable Approach (pp. 412-421). Wiley.
  • Ramashala, T., (2024). Marigold flower production guideline. Erişim adresi: www.dalrrd.gov.za, Erişim Tarihi: 20.08.2024.
  • Sadak, M. S., & Orabi, S. A. (2015). Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. International Journal of ChemTech Research, 8(1), 111-123.
  • Soukht saraei, N., Varasteh, F., & Alizadeh, M. (2024). The effect of foliar application of ascorbic acid and oxalic acid on the physiological responses of strawberry cv. Camarosa. Journal of Horticultural Science, 37(4), 1073-1086. https://doi.org/10.22067/jhs.2023.81120.1240.
  • Savé, R. (2007). What is stress and how to deal with it in ornamental plants?. VI International Symposium on New Floricultural Crops, Acta Horticulturae, 813, 241-254. https://doi.org/10.17660/ActaHortic.2009.813.31.
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroğlu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259.
  • Taylor, L. H. (2020). Reasons to consider drought-tolerant landscaping. https://www.th espruce.com/drought-tolerant-landscaping-what-to-know-2736660.
  • Toscano, S., Ferrante, A., & Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5(1), 6. https://doi.org/10.3390/horticulturae5010006.
  • Wach, D., & Skowron, P. (2022). An overview of plant responses to the drought stress at morphological, physiological and biochemical levels. Polish Journal of Agronomy, 50, 25-34. https://doi.org/10.26114/pja.iung.435.2022.04.
  • Wang, H. Y., Tong, H. Y., Huang, S. Z., & Yuan, H. Y. (2010). Effects of citric acid and oxalic acid on the growth and physiology of Iris lactea var. chinensis under Pb stress. Chinese Journal of Ecology, 29(07), 1340-1346.
  • Webb, M. A., Cavaletto, J. M., Carpita, N. C., Lopez, L. E., & Arnott, H. J. (1995). The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis. The Plant Journal, 7(4), 633-648. https://doi.org/10.1046/j.1365-313X.1995.7040633.x.
  • Umar, S., Sharma, M. P., Khan, W., & Ahmad, S. (2017). Variation in ornamental traits, physiological responses of Tagetes erecta L. and T. patula L. in relation to antioxidant and metabolic profile under deficit irrigation strategies. Scientia Horticulturae, 214, 200-208. https://doi.org/10.1016/j.scienta.2016.11.037.
  • Yamasaki, S., & Dillenburg, L. R. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasilleira de Fisiologia Vegetal, 11(2), 69-75.
  • Yildirim, E., Ekinci, M., Yüce, M., Turan, M., & Ors, S. (2022). Drought and biostimulant treatments affected organic acid content of tomato seedlings. Proceedings of the International Conference on Agriculture, 7(1), 21-28. https://doi.org/10.17501/26827018.2022.7103.
  • Zahedi, S. M., Moharrami, F., Sarikhani, S., & Padervand, M. (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports, 10(1), 17672. https://doi.org/10.1038/s41598-020-74273-9.
  • Zahedi, S. M., Hosseini, M. S., Hoveizeh, N. F., Kadkhodaei, S., & Vaculík, M. (2023). Comparative morphological, physiological and molecular analyses of drought-stressed strawberry plants affected by SiO2 and SiO2-NPs foliar spray. Scientia Horticulturae, 309, 111686. https://doi.org/10.1016/j.scienta.2022.111686.
  • Lei, Z., Mingyu, S., Chao, L., Liang, C., Hao, H., Xiao, W., Xiaoqing, L., Fan, Y., Fengqing, G., & Fashui, H. (2007). Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research, 119, 68-76. https://doi.org/10.1007/s12011-007-0047-3.
  • Zhao, B., Wu, F., Cai, G., Xi, P., Guo, Y., & Li, A. (2024). Physiological response mechanism and drought resistance evaluation of Passiflora edulis Sims under drought stress. Phyton International Journal of Experimental Botany, 93(6), 1345-1363. https://doi.org/10.32604/phyton.2024.050950.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Materyali ve Yetiştiriciliği
Bölüm Özel Sayı
Yazarlar

Tuğba Kılıç 0000-0002-0528-7552

Ezgi Doğan Meral 0000-0003-0854-7134

Emine Kırbay 0000-0002-0343-0829

Hilal Dursun 0000-0002-7869-655X

Soner Kazaz 0000-0002-6644-9690

Yayımlanma Tarihi 23 Aralık 2024
Gönderilme Tarihi 29 Eylül 2024
Kabul Tarihi 28 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 20 Sayı: Özel Sayı

Kaynak Göster

APA Kılıç, T., Doğan Meral, E., Kırbay, E., Dursun, H., vd. (2024). Oksalik Asidin Kuraklık Stresindeki Kadife Çiçeklerinin Morfolojik, Fizyolojik ve Biyokimyasal Özellikleri Üzerine Etkisi. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 20(Özel Sayı), 197-219. https://doi.org/10.58816/duzceod.1557974

........