Derleme
BibTex RIS Kaynak Göster

Ormancılıkta Yapay Zeka: Mevcut Uygulamalar ve Gelecek Perspektifi Üzerine Kapsamlı Bir Analiz

Yıl 2025, Cilt: 21 Sayı: 1, 303 - 334, 30.06.2025
https://doi.org/10.58816/duzceod.1595847

Öz

Bu çalışma, yapay zekâ (YZ) uygulamalarının ormancılık yönetimindeki rolünü sistematik bir şekilde analiz ederek mevcut uygulamaları, zorlukları ve gelecekteki perspektifleri incelemektedir. Web of Science (211) ve Scopus (369) veri tabanlarından (2021-2025) seçilen 580 makalenin incelenmesiyle YZ'nin ormancılık uygulamalarını dönüştürdüğü temel temalar belirlenmiştir. Araştırmaların büyük bir kısmı Orman İzleme ve Yönetim Sistemleri (%30,4) ve Dijital Dönüşüm (%23,6) üzerine yoğunlaşırken, Kaynak Optimizasyonu (%17,1) ve Biyoçeşitliliğin Korunması (%14,6) da önemli alanlar olarak öne çıkmaktadır. YZ kullanımıyla verimliliğin artırılması, risk analizi, biyoçeşitliliğin korunması ve karbon yönetimi gibi alanlarda önemli fırsatlar bulunmaktadır. Ancak, veri kalitesindeki teknik sınırlamalar, kaynak kısıtları, operasyonel karmaşıklıklar ve düzenleyici gereklilikler gibi zorluklar devam etmektedir. İnsan odaklı YZ, dijital ikizler ve entegre sensör ağları gibi yeni trendler umut vaat etmektedir. Bu analiz, ormancılık profesyonelleri, araştırmacılar ve politika yapıcılar için değerli içgörüler sunarak YZ'nin potansiyelini ve sınırlamalarını anlamak için bir çerçeve sağlamakta ve çevresel sürdürülebilirlik ile operasyonel verimliliği dengeli bir şekilde bir arada ele almanın önemini vurgulamaktadır.

Kaynakça

  • Akalın, B., & Veranyurt, Ü. (2021). Sağlık Hizmetleri ve Yönetiminde Yapay Zekâ. *Acta Infologica*, 5(1), 231-240. [https://doi.org/10.26650/acin.750857](https://doi.org/10.26650/acin.750857)
  • Alıcılar, H., & Çöl, M. (2021). Usage of Artificial Intelligence in Public Health. *Uludağ Üniversitesi Tıp Fakültesi Dergisi*, 47(1), 151-158. [https://doi.org/10.32708/uutfd.891274](https://doi.org/10.32708/uutfd.891274)
  • Andersson, Å., Kallio, M., & Seppälä, R. (1984). Systems Analysis for the Forest Sector. *IIASA Working Paper, WP-84-060*. Retrieved from: [https://pure.iiasa.ac.at/id/eprint/2501/7/WP-84-017.pdf](https://pure.iiasa.ac.at/id/eprint/2501/7/WP-84-017.pdf). Access date: 15.11.2024.
  • Araújo Júnior, C.A., Pereira, B.L.C., Oliveira, A.C., & Leite, H.G. (2017). A multi-agent System for Forest Transport Activity Planning. *Cerne*. 23(3) [https://doi.org/10.1590/01047760201723032335](https://doi.org/10.1590/01047760201723032335)
  • Ardıç, M. (2018). Bireysel Kalite Göstergesi Olan Motivasyonu Etkileyen Faktörlerin Orman Yönetiminde İncelenmesi: Gümüşhane Ili Örneği. *Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi*, 19(2), 194-205. [https://doi.org/10.17474/artvinofd.448807](https://doi.org/10.17474/artvinofd.448807)
  • Aspragathos, N., Dogkas, E., Konstantinidis, P., Koutmos, P., Lamprinou, N., Moulianitis, V., & Thanellas, G. (2019). From Pillars to AI Technology-Based Forest Fire Protection Systems. *Intelligent System and Computing, Chapter 5*, 89-112.
  • Back, P. (2021). Real-World Reinforcement Learning: Observations from Two Successful Cases. *34th Bled eConference Digital Support from Crisis to Progressive Change*, 273-285.
  • Back, P., Suominen, A., Malo, P., Tahvonen, O., Blank, J., & Deb, K. (2022). Towards Sustainable Forest Management Strategies with MOEAs. *Genetic and Evolutionary Computation Conference*, 1046-1054, Cancun, Mexico.
  • Banu, T., Borlea, G.F., & Banu, C. (2016). The Use of Drones in Forestry. *Journal of Forest Science*, 62(1), 533-540.
  • Başcıllar, M., Karataş, M., & Pak, M. (2022). Social Algorithms in The Digital Age: Artificial Intelligence and Social Work. *Sosyal Politika Çalışmaları Dergisi*, 22(56), 539-565. [https://doi.org/10.21560/spcd.vi.1081060](https://doi.org/10.21560/spcd.vi.1081060)
  • Bell, K.L.C., Chow, J.S., Hope, A., & Quinzin, M.C. (2022). Low-Cost, Deep-Sea Imaging and Analysis Tools for Deep-Sea Exploration: A Collaborative Design Study. *Frontiers in Marine Science*, 9, 873700.
  • Bellucci, E., Aguilar, O.M., & Alseekh, S. (2021). The INCREASE project: Intelligent Collections of Food-Legume Genetic Resources for European Agrofood Systems. *Plant Journal*, 108(3), 646-660.
  • Bonet-Jover, A., Sepúlveda-Torres, R., Saquete, E., & Martínez-Barco, P. (2023). A Semi-Automatic Annotation Methodology that Combines Summarization And Human-In-The-Loop to Create Disinformation Detection Resources. *Knowledge-Based Systems*, 275, 110723.
  • Boroujeni, S.P.H., Razi, A., Khoshdel, S., & Afghah, F. (2024). A Comprehensive Survey Of Research Towards AI-Enabled Unmanned Aerial Systems in Pre-, Active-, And Post-Wildfire Management. *Information Fusion*, 108, 102369.
  • Borz, S.A., Talagai, N., Cheţa, M., Chiriloiu, D., & Montoya, A.V.G. (2022). Electronics, Close-Range Sensors and Artificial Intelligence in Forestry. *Forests*, 13(10), 1669.
  • Bostrom, N. (2014). *Superintelligence: Paths, Dangers, Strategies*. UK: Oxford University Press.
  • Buchelt, A., Grabska, E., Baumann, S., Zielonka, A., Stelmaszczuk-Górska, M.A., & Lausch, A. (2024). Exploring Artificial Intelligence for Applications of Drones In Forest Ecology and Management. *Forest Ecology and Management*, 545, 121530.
  • Byrtek, J., Kałuża, M., & Niemiec, W. (2023). AI-Accelerated Decision Making in Forest Management. *XXII Conference of PhD Students and Young Scientists*, 1755-1315, Wrocław, Poland [https://doi.org/10.1088/1755-1315/1189/1/012030](https://doi.org/10.1088/1755-1315/1189/1/012030)
  • Causevic, A., Aljedaani, W., Menouer, T., Kumar, N., & Lybeck, E. (2024). Artificial Intelligence for Sustainability: Opportunities And Risks of Utilizing Earth Observation Technologies to Protect Forests. *Sustainability 1*, 2. [https://doi.org/10.1007/s44353-024-00002-2](https://doi.org/10.1007/s44353-024-00002-2)
  • Chiarello, F., Oliveira Netto, S.B., Almeida, W.P., & Pezzopane, J.E.M. (2019). Artificial Neural Networks Applied in Forest Biometrics and Modeling: State of the Art. *Journal of Forest Engineering*, 30(3), 223-234.
  • Copernicus EU. (2023). *Sentinel-2: Forest Monitoring with Artificial Intelligence*. Retrieved from: [https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2](https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2). Access date: 11/11/2024.
  • Corona, C., Chirici, G., McRoberts, R.E., Winter, S., & Barbati, A. (2017). Precision Forestry: Riferimenti Concettuali, Strumenti e Prospettive Di Diffusione In Italia. *Forest@*, 14(1), 1-21.
  • Crevier, D. (1993). *AI: The Tumultuous History of the Search for Artificial Intelligence*. USA: Basic Books.
  • Çelik, İ., Arslan, F., Tunç, R., & Yildiz, I. (2021). İlaç Keşfi̇ ve Geli̇şti̇ri̇lmesi̇nde Yapay Zekâ. *Ankara Universitesi Eczacilik Fakultesi Dergisi*, 17-17. [https://doi.org/10.33483/jfpau.878041](https://doi.org/10.33483/jfpau.878041)
  • Çiçekdemir, R., Bayrakçı, H., & Özkahraman, M. (2021). Tarım Arazilerinde Harcanan Su Miktarını Yapay Zekâ Teknikleri Kullanarak Belirlenmesi1. *Düzce Üniversitesi Bilim Ve Teknoloji Dergisi*, 9(6), 237-250. [https://doi.org/10.29130/dubited.1015690](https://doi.org/10.29130/dubited.1015690)
  • Çivilibal, S., Çevik, K., & Bozkurt, A. (2023). Derin Öğrenme Yardımıyla Aktif Termogramlar Üzerinden Meme Lezyonlarının Sınıflandırması. *Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi*, 18(2), 140-156. [https://doi.org/10.29233/sdufeffd.1141226](https://doi.org/10.29233/sdufeffd.1141226)
  • Çoşkun, F., & Gülleroğlu, H. (2021). Geçmişten Günümüze Yapay Zekanın Gelişimi ve Eğitim Alanında Kullanılması. *Ankara Universitesi Egitim Bilimleri Fakultesi Dergisi*, 54(3), 947-966. [https://doi.org/10.30964/auebfd.916220](https://doi.org/10.30964/auebfd.916220)
  • Dainelli, R., Toscano, P., Di Gennaro, S.F., & Matese, A. (2021). Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing—A Systematic Review. Part I: A General Framework. *Forests*, 12(3), 327.
  • Damaševičius, R., Maskeliūnas, R., Paulikas, Š., Połap, D., & Woźniak, M. (2024). Digital Transformation of the Future of Forestry: An Exploration of Key Concepts In The Principles Behind Forest 4.0. *Frontiers in Forests and Global Change*, 7. [https://doi.org/10.3389/ffgc.2024.1424327](https://doi.org/10.3389/ffgc.2024.1424327)
  • de Lima Araújo, H.C., Polizel, J.L., Martins, F.R., da Silva Filho, D.F., & Cardil, A. (2021). Artificial Intelligence in Urban Forestry—A Systematic Review. *Urban Forestry and Urban Greening*, 64, 127293.
  • Dey, B., Ahmed, R., Ferdous, J., Haque, M. M. U., Khatun, R., Hasan, F. E. & Uddin, S. N. (2023). Automated Plant Species Identification From The Stomata Images Using Deep Neural Network: A Study of Selected Mangrove and Freshwater Swamp Forest Tree Species of Bangladesh. *Ecological Informatics*, 75, Article 102128. doi: [https://doi.org/10.1016/j.ecoinf.2023.102128](https://doi.org/10.1016/j.ecoinf.2023.102128)
  • Diamantopoulou, M.J., Özçelik, R., & Yılmaz, E. (2023). Artificial Intelligence As an Alternative Modelling Strategy for Reliable Height-Diameter Predictions of Mixed-Oaks Species. *Turkish Journal of Agriculture and Forestry*, 47(2), 228-241. [https://doi.org/10.55730/1300-011x.3081](https://doi.org/10.55730/1300-011x.3081)
  • Diez, Y., Kentsch, S., Fukuda, M., Caceres, M.L.L., Moritake, K., & Cabezas, M. (2021). Deep Learning in Forestry Using UAV-Acquired RGB Data: A Practical Review. *Remote Sensing*, 13(14), 2874.
  • Dost, S. (2023). Yapay Zekâ ve Uluslararası Hukukun Geleceği. *Süleyman Demirel Üniversitesi Hukuk Fakültesi Dergisi*, 13(2), 1271-1313. [https://doi.org/10.52273/sduhfd.1375673](https://doi.org/10.52273/sduhfd.1375673)
  • e Domingo, M., Ortigosa, N., Sevilla, J., & Roger, S. (2021). Cluster-Based Relocation of Stations for Efficient Forest Fire Management in the Province of Valencia (Spain). *Sensors*, 21(3), 797.
  • Elbasi, E., Ozdemir, S., & Polat, K. (2023). Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. *IEEE Access*, 11, 12345-12367.
  • Erbaş, S. (2023). Reklamcılıkta ve Pazarlamada Yeni̇ Aktör: Sosyal Robotlar. *Erciyes Akademi*, 37(3), 919-942. [https://doi.org/10.48070/erciyesakademi.1309995](https://doi.org/10.48070/erciyesakademi.1309995)
  • Erdönmez, C. (2020). 50 Days in The Burning Forests: Forestry Lessons in the Observation Of Yaşar Kemal. *Bartın Orman Fakültesi Dergisi*, 22(2), 614-632. [https://doi.org/10.24011/barofd.744987](https://doi.org/10.24011/barofd.744987)
  • Erkutlu, H. (2023). Yapay Zekâ Ve Örgütsel Davraniş. *Nevşehir Hacı Bektaş Veli Üniversitesi Sbe Dergisi*, 13(3), 1403-1417. [https://doi.org/10.30783/nevsosbilen.1246678](https://doi.org/10.30783/nevsosbilen.1246678)
  • Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., & Thrun, S. (2017). Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. *Nature*, 542(7639), 115-118.
  • Eugenio, F.C., Silva, K.G., Batista, J.L.F., Drescher, R., Péllico Netto, S., & Rex, F.E. (2020). Remotely Piloted Aircraft Systems and Forests: A Global State of the Art and Future Challenges. *Canadian Journal of Forest Research*, 50(6), 705-716.
  • FAO. (2020). *The State of the World’s Forests 2020*. Food and Agriculture Organization. Retrieved from: [https://www.fao.org/state-of-forests/en/](https://www.fao.org/state-of-forests/en/). Access date: 12/11/2024.
  • FAO. (2021). *The Role of Technology in Sustainable Forestry Management*. Food and Agriculture Organization of the United Nations. Retrieved from: [https://www.fao.org/platforms/green-agriculture/areas-of-work/natural-resources-biodiversity-green-production/forestry/sustainable-forest-management/en](https://www.fao.org/platforms/green-agriculture/areas-of-work/natural-resources-biodiversity-green-production/forestry/sustainable-forest-management/en). Access date: 24/11/2024.
  • Fardusi, M.J., Chianucci, F., & Barbati, A. (2017). Concept to Practice of Geospatial-Information Tools to Assist Forest Management and Planning under Precision Forestry Framework: a review. *Journal of Forest Science*, 63(3), 108-116.
  • Fernandez, A., Garcia, D., & Lopez, R. (2019). Optimization of Forest Harvest Planning Using Genetic Algorithms. *Journal Of Forest Science*, 65(7), 123-136.
  • Ferreira, J.F., Pereira, A.I., & Santos, L. (2023). Sensing and Artificial Perception for Robots in Precision Forestry: A Survey. *Robotics*, 12(5), 139.
  • Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. (2018). AI4People—An Ethical Framework for A Good AI Society: Opportunities, Risks, Principles, And Recommendations. *Minds And Machines*, 28(4), 689-707.
  • Fransson, J., Rosengren, M., Thierfelder, T., Ulander, L.M.H., & Persson, H.J. (2023). ForestMap: Mapping Forest Attributes Across the Globe - First Case Study. *IEEE International Geoscience and Remote Sensing Symposium*, 3891-3894, Pasadena, USA.
  • Gairola, S.U., Kumar, M., Sharma, J., & Kumar, A. (2023). Significance of artificial intelligence in forest land management and biodiversity conservation. *International Conference on Green Energy, Computing and Intelligent Technology (GEn-CITy 2023)*, Iskandar Puteri, Malaysia. [https://doi.org/10.1049/icp.2023.1808](https://doi.org/10.1049/icp.2023.1808)
  • Galaz, V., Centeno, M.A., Callahan, P.W., Causevic, A., Patterson, T., Brass, I., & Baum, S. (2021). Artificial Intelligence, Systemic Risks, And Sustainability. *Technology and Society*, 68, 101741.
  • Gandikota, D., Dutta, S., Mukherjee, A., & Das, P. (2022). AI Augmentation to Remote Sensing Imagery in Forestry Conservation and Restoration for Increased Responsive Capabilities. *IEEE Applied Imagery Pattern Recognition Workshop (AIPR)*, 1-16, DC, USA. [https://doi.org/10.1109/AIPR57179.2022.10092215](https://doi.org/10.1109/AIPR57179.2022.10092215)
  • Gaudreault, J., Forget, P., Frayret, J.M., Rousseau, A., & D'Amours, S. (2019). L'intelligence Artificielle Au Service De L'industrie Forestière. *Gestion*, 44(4), 68-71.
  • Giannakidou, S., Koutroumpogiannis, N., Karachalios, S., Tsakanikas, P., & Sarimveis, H. (2024). Leveraging The Power of Internet of Things and Artificial Intelligence in Forest Fire Prevention, Detection, and Restoration: A Comprehensive Survey. *Internet of Things*, 25, 101171. [https://doi.org/10.1016/j.iot.2024.101171](https://doi.org/10.1016/j.iot.2024.101171)
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. USA: MIT Press.
  • Grazhdani, H., David, E., Spagnolo, O. V., Buemi, F., Perri, A., Orsogna, N., & Chimenz, R. (2018). Quality Assurance of Ultrasound Systems: Current Status and Review of Literature. *Journal of Ultrasound*, 21(3), 173-182. [https://doi.org/10.1007/s40477-018-0304-7](https://doi.org/10.1007/s40477-018-0304-7)
  • Güler, S. (2024). The Role of Artificial Intelligence and Remote Sensing Technologies in Forest Ecosystems and Their Importance in Determining Carbon Capture Potential. *Silva World*, 3(1). [https://doi.org/10.61326/silvaworld.v3i1.248](https://doi.org/10.61326/silvaworld.v3i1.248)
  • Güzel, Ş., Dömbekci, H., & Eren, F. (2022). The Use of Artificial Intelligence in The Health Institutions: A Qualitative Research. *Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi*, 9(4), 509-519. [https://doi.org/10.34087/cbusbed.1140122](https://doi.org/10.34087/cbusbed.1140122)
  • Hamedianfar, A., Shafri, H.Z.M., Mansor, S., & Ahmad, N. (2022). Deep Learning for Forest Inventory and Planning: A Critical Review. *Forestry*, 95(5), 599-619.
  • Hang, H.T., Ahmed, G.B., Magsi, H., Kumar, S., & Chakraborty, S. (2024). Exploring Forest Fire Susceptibility and Management Strategies in Western Himalaya: Integrating Ensemble Machine Learning and eXplainable AI for Accurate Prediction and Comprehensive Analysis. *Environmental Technology and Innovation*, 25. [https://doi.org/10.1016/j.eti.2024.103655](https://doi.org/10.1016/j.eti.2024.103655)
  • Hasan, R., Khan, M.A., & Singh, V.K. (2024). AI-Driven Strategies for Reducing Deforestation. *The American Journal of Engineering and Technology*, 6(06), 6–20. [https://doi.org/10.37547/tajet/volume06issue06-02](https://doi.org/10.37547/tajet/volume06issue06-02)
  • Hokans, R.H. (1984). An Artificial Intelligence Application to Timber Harvest Schedule Implementation. *Forest Science*, 30(1), 183-191.
  • Holzinger, A., Malle, B., Saranti, A., & Pfeifer, B. (2024). From Industry 5.0 To Forestry 5.0: Bridging the Gap with Human-Centered Artificial Intelligence. *Current Forestry Reports*, 10, 442–455. [https://doi.org/10.1007/s40725-024-00231-7](https://doi.org/10.1007/s40725-024-00231-7)
  • Hsieh, Y.C., Lin, Y.C., & Yang, K.C. (2021). Solving Forest Harvesting Problem with Artificial Intelligence Approaches: An Example in Taiwan. *Journal of Intelligent and Fuzzy Systems*, 40(4), 7763-7774. 10.3233/JIFS-189597
  • Huang, J., Wang, X., & Li, Y. (2012). Forest Growth Simulation Based on Artificial Neural Network. In: Qian, Z., Cao, L., Su, W., Wang, T., Yang, H. (eds) *Recent Advances in Computer Science and Information Engineering. Lecture Notes in Electrical Engineering*, vol. 124. Springer, Berlin, Heidelberg. [https://doi.org/10.1007/978-3-642-25781-0_96](https://doi.org/10.1007/978-3-642-25781-0_96)
  • Imada, A. (2014). A Literature Review: Forest Management with Neural Network and Artificial Intelligence. In *Neural Information Processing*, 23-34, Brest, Belarus.
  • IPCC. (2022). *Climate Change 2022: Impacts, Adaptation, and Vulnerability*. Intergovernmental Panel on Climate Change. Retrieved from [https://ipcc.ch](https://ipcc.ch)
  • Javaid, M., Haleem, A., Singh, R.P., & Suman, R. (2022). Understanding the Potential Applications of Artificial Intelligence in Agriculture Sector. *Advanced Agrochem*, 2(1), 1-15.
  • Jha, R. K., & Saxena, S. (2020). Contribution Of Artificial Intelligence in Forest Management & Regulation: A Critical Analysis. *Hpnlu Journal of Environment and Disaster Management*, 1, 112-121. [https://www.hpnlu.ac.in/PDF/b6e18aae-fb82-4c63-b75f-e8cd7851a8cb.pdf](https://www.hpnlu.ac.in/PDF/b6e18aae-fb82-4c63-b75f-e8cd7851a8cb.pdf)
  • Jing, W., Xie, Y., Lei, X., Wang, W., & Liu, G. (2023). Editorial: Big Data and Artificial Intelligence Technologies for Smart Forestry. *Frontiers in Plant Science*, 14. [https://doi.org/10.3389/fpls.2023.1149740](https://doi.org/10.3389/fpls.2023.1149740)
  • Jones, E.W., Hiley, W.E., & Fraser, A.I. (1955). Planning and Control in the Managed Forest. *Forestry: An International Journal of Forest Research*, 28(1), 13-24.
  • Jones, M., Taylor, J., & White, A. (2020). Machine Learning for Wildfire Risk Analysis: Case Study in California. *Fire Ecology Journal*, 16(3), 45-59.
  • Jordan, M.I., & Mitchell, T.M. (2015). Machine Learning: Trends, Perspectives, And Prospects. *Science*, 349(6245), 255-260.
  • Kanga, S. (2023). Advancements in Remote Sensing Tools for Forestry Analysis. *Sustainable Forestry*, 42(1), 1-18.
  • Kays, R., Lasky, M., Allen, M.L., & Dowler, R.C. (2022). Which Mammals Can be Identified from Camera Traps and Crowdsourced Photographs? *Journal of Mammalogy*, 103(4), 767-775.
  • Kinaneva, D., Hristov, G., Raychev, J., & Zahariev, P. (2019). Early Forest Fire Detection Using Drones and Artificial Intelligence. *ICT Conference Proceedings*, 1, 171-176, Opatija, Croatia.
  • Kothai, G., Devaraj, S., & Muthukumar, V. (2024). AI-Driven Powered Solution Selection. In T. Nguyen & N. Vo (Eds.), *Using Traditional Design Methods to Enhance AI-Driven Decision Making*, 134-165. IGI Global Scientific Publishing. [https://doi.org/10.4018/979-8-3693-0639-0.ch006](https://doi.org/10.4018/979-8-3693-0639-0.ch006)
  • Kourtz, P. (1990). Artificial Intelligence: A New Tool for Forest Management. *Canadian Journal of Forest Research*, 20(4), 428-437.
  • Kumar, M.A., Sriram, V., & Reddy, B.S. (2023). EcoGuard: Uniting IoT and AI to Secure Forests and Combat Climate Change in Real-Time. *4th International Conference on Smart Electronics and Communication (ICOSEC)*, 480-487, Trichy, India. 10.1109/icosec58147.2023.10276080
  • Kumar, S., Patel, R., & Singh, V. (2022). Deep Learning Approaches for Forest Mapping: Challenges and Opportunities. *Environmental Informatics*, 28(4), 211-230.
  • Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. *Nature*, 521(7553), 436-444.
  • Li, Y., Wang, Q., Liu, C., Tang, Z., and Wu, F. (2024). Deep Learning-Based Geological Map Generation Using Geological Routes. *Remote Sensing of Environment*, 309, 114214.
  • Liu, J., & Wang, H. (2022). Big Data and AI In Forest Climate Resilience Planning. *Nature Climate Change*, 12(1), 34-47.
  • Liu, S.Y. (2020). Artificial Intelligence (AI) in Agriculture. *IT Professional Magazine*, 22(3), 41-45.
  • Lopez Serrano, F.R., Rubio, E., Garcia Morote, F.A., & Andrés, M. (2022). Artificial Intelligence-Based Software (AID-FOREST) For Tree Detection: A New Framework for Fast And Accurate Forest Inventorying Using Lidar Point Clouds. *International Journal of Applied Earth Observation and Geoinformation*, 113, 103014.
  • Lozinska, T., Ivantsiv, V., Khomiak, I., & Zelenko, S. (2024). Research of New Technologies and Innovations in The Field of Forestry. *Agrobìologìâ*, 1. [https://doi.org/10.33245/2310-9270-2024-187-1-268-276](https://doi.org/10.33245/2310-9270-2024-187-1-268-276)
  • Luckin, R., Holmes, W., Griffiths, M., & Forcier, L.B. (2016). *Intelligence Unleashed: An Argument for AI In Education*. USA: Pearson Education.
  • Luo, F., Zhang, C., & Xu, X. (2023). Artificial Intelligence for Climate Smart Forestry: A Forward Looking Vision. *COGMI Conference*, 1-10, Atlanta, GA, USA. [https://doi.org/10.1109/cogmi58952.2023.00011](https://doi.org/10.1109/cogmi58952.2023.00011)
  • Malo, P., Tahvonen, O., Suominen, A., Back, P., & Viitasaari, L. (2021). Reinforcement Learning in Optimizing Forest Management. *Canadian Journal of Forest Research*, 51(10), 1393-1409.
  • Marvasti-Zadeh, S.M., Goodsman, D., Ray, N., & Erbilgin, N. (2023). Crown-CAM: Interpretable Visual Explanations for Tree Crown Detection in Aerial Images. *IEEE Geoscience and Remote Sensing Letters*, 20, 1-5, 8500205.
  • McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. *AI magazine*, 27(4), 12-12.
  • Miguel, E.P., Rezende, A.V., Leal, F.A., & Matricardi, E.A.T. (2016). Artificial Intelligence Tools in Predicting the Volume of Trees within A Forest Stand. *African Journal of Agricultural Research*, 11(21), pp. 1914-1923. 10.5897/AJAR2016.11015
  • Molinaro, M., Orzes, G., Sarkis, J., & Belussi, F. (2022). From Forest to Finished Products: The Contribution of Industry 4.0 Technologies to The Wood Sector. *Computers in Industry*, 134, 103558.
  • Montaño, R., Cruz, R., & Meza, H. (2017). Artificial Intelligence Models to Estimate Biomass of Tropical Forest Trees. *POLIBITS*, 55, 29-37.
  • Moreno Arteaga, A.J., Zamudio Sánchez, F.J., & González Guillén, M.J. (2019). Espacialidad Volumétrica de Madera En Plantaciones Forestales Usando Redes Neurales Artificiales Con Imágenes de Satélite. *Acta Agronómica*, 68, 142-150. 10.15446/ACAG.V68N2.78945
  • Muhammad, A., Sharma, R., & Hasan, K. (2021). Role of Machine Learning Algorithms in Forest Fire Management: A Literature Review. *IEEE International Conference on Robotics and Automation*, 9425-9431, Xi’an, China.
  • Natesan, S., Malayeri, A.A., & Jafari, A. (2019). Resnet-Based Tree Species Classification Using UAV Images. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLII-2/W13, 475-481.
  • Nguyen, Q., & Tran, D. (2023). AI-Driven Solutions for Biodiversity Monitoring. *Ecological Informatics*, 74, 101833.
  • Niță, M.D. (2021). Testing Forestry Digital Twinning Workflow Based on Mobile LiDAR Scanner and AI Platform. *Forests*, 12(11), 1576. [https://doi.org/10.3390/F12111576](https://doi.org/10.3390/F12111576)
  • Nitoslawski, S.A., Wong-Stevens, K., Steenberg, J.W., Witherspoon, K., Nesbitt, L., & Konijnendijk van den Bosch, C. (2021). The Digital Forest: Mapping a Decade of Knowledge on Technological Applications for Forest Ecosystems. *Earth's Future*, 9(8), e2021EF002123.
  • Nunes, M., Görgens, E.B., Rodriguez, L.C.E., Alves, A.C., & Tomé, M. (2016). Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil. *PLoS ONE*, 11(5), e0154738.
  • Nystad, M., Strand, G.H., & Gjertsen, A.K. (2020). Artificial Intelligence in the Pulp and Paper Industry: Current State and Future Trends. *Journal of Science and Technology for Forest Products and Processes*, 8(4), 42-53.
  • Oliveira, L.F.P., Moreira, A.P.G.M., & Silva, M.F. (2021). Advances in Forest Robotics: A State-of-the-Art Survey. *Robotics*, 10(2), 53.
  • Osorio, C., Fuster, N., Chen, W., Men, Y., & Manotas, M. (2024). Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools. *Information*, 15(8), 430.
  • Peng, C., & Wen, X. (1999). Recent Applications of Artificial Neural Networks in Forest Resource Management: An Overview. *Environmental Management*, 23(4), 111-122.
  • Pettorru, G., Masala, G.L., Grosso, E., Fenu, G., & Pau, P.L. (2023). Using Artificial Intelligence and IoT Solution for Forest Fire Prevention. *International Conference on Computing, Networking and Communications (ICNC)*, 414-418, Honolulu, HI, USA. 10.1109/ICNC57223.2023.10074289
  • Picchio, R., Venanzi, R., Latterini, F., Marchi, E., Laschi, A., & Lo Monaco, A. (2019). Recent Contributions of Some Fields of the Electronics in Development of Forest Operations Technologies. *Croatian Journal of Forest Engineering*, 40(2), 259-275.
  • Pinto, J., Simões, R., & Marques da Silva, J. (2023). Artificial Intelligence Tools and Vegetation Indices Combined to Estimate Aboveground Biomass in Tropical Forests. *Journal of Applied Remote Sensing*, 17(2). [https://doi.org/10.1117/1.JRS.17.024512](https://doi.org/10.1117/1.JRS.17.024512)
  • Qin, Q. (2022). Hotspots and trends of higher education quality assurance research. *3rd International Conference on Modern Education and Information Management (ICMEIM 2022)*, 4-9, Chengdu, China. 10.2991/978-94-6463-044-2_2
  • Radzi, F.N.A.M., Ahmad, N., & Hamid, S. (2024). A Concise Review of Artificial Intelligence Methods for Forest-Fire Monitoring Systems. *IEEE 15th Control and System Graduate Research Colloquium (ICSGRC)*, pp. 1-5, Shah Alam, Malaysia. 10.1109/ICSGRC62081.2024.10691280
  • Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. *Natural Resources Conservation and Research*, 6(2), 3825. [https://doi.org/10.24294/nrcr.v6i2.3825](https://doi.org/10.24294/nrcr.v6i2.3825)
  • Ramos, A. (2024). Importancia de la Inteligencia Artificial en la Evaluación de la Biomasa Forestal en el Perú. *Revista Forestal del Perú*, 39(1), 11-21. [https://doi.org/10.21704/rfp.v39i1.2065](https://doi.org/10.21704/rfp.v39i1.2065)
  • Rasagna Devi, K.L.S., Srinivas, K., & Venkata Rao, K. (2024). Forest Fire Prediction and Management using AI, ML and Deep Learning Techniques, *IEEE Conference*, 324-327, Coimbatore, India. 10.1109/ICISC62624.2024.00062.
  • Roßmann, J., Schluse, M., Schlette, C., & Waspe, R. (2009). The virtual forest: Robotics and simulation technology as the basis for new approaches to the biological and the technical production in the forest. *IFAC Proceedings Volumes*, 42(3), 44-49, Istanbul, Turkey.
  • Rudin, C. (2019). Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. *Nature Machine Intelligence*, 1(5), 206-215.
  • Russell, S., & Norvig, P. (2021). *Artificial Intelligence: A Modern Approach*. USA: Pearson Education.
  • Sakr, G.E., Elhajj, I.H., Mitri, G., & Wejinya, U.C. (2010). Artificial intelligence for forest fire prediction. *IEEE/ASME International Conference on Advanced Intelligent Mechatronics*, 1311-1316, Montreal, Canada.
  • Sandino, J., Pegg, G., Gonzalez, F., & Smith, G. (2018). Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence. *Sensors*, 18(4), 944.
  • Schwab, K. (2016). *The Fourth Industrial Revolution*. Danvers: Crown Business.
  • Senthilkumar N., Veerasamy, S., & Ramasamy, V. (2023). Machine Learning Approaches for Pest and Insect Management in Forest Scenario: An Outlook. *Uttar Pradesh Journal of Zoology*, 44(23), 312-316. [https://doi.org/10.56557/upjoz/2023/v44i233793](https://doi.org/10.56557/upjoz/2023/v44i233793)
  • Shafik, W. (2024). Artificial Intelligence Models to Prevent Forest Fires. In M. Ouaissa, M. Ouaissa, Z. Boulouard, C. Iwendi, & M. Krichen (Eds.), *AI and IoT for Proactive Disaster Management* (pp. 78-106). IGI Global Scientific Publishing. [https://doi.org/10.4018/979-8-3693-3896-4.ch005](https://doi.org/10.4018/979-8-3693-3896-4.ch005)
  • Shedrawi, G., Magron, F., Vigga, B., Bosserelle, P., & Moore, B. (2024). Leveraging Deep Learning and Computer Vision Technologies To Enhance Management of Coastal Fisheries in the Pacific Region. *Scientific Reports*, 14(1), 20915.
  • Shivaprakash, K.N., Thammaiah, C.K., & Kumar, D. (2022). Potential For Artificial Intelligence (AI) And Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, And Related Services in India. *Sustainability*, 14(12), 7154.
  • Smith, R. (2021). Leveraging AI For Carbon Sequestration Analysis. *Sustainability Journal*, 13(8), 4290.
  • Smith, T., & Zhang, Y. (2021). Early Detection of Tree Diseases Using UAV and Deep Learning. *Remote Sensing Applications*, 15(6), 78-93.
  • Somwong, B., Kumphet, K., & Massagram, W. (2023). Acoustic Monitoring System with AI Threat Detection System for Forest Protection. *20th International Joint Conference on Computer Science and Software Engineering (JCSSE)*, Phitsanulok, Thailand, 253-257. 10.1109/JCSSE58229.2023.10202043
  • Sotomayor, J.F.M. (2024). Inteligencia Artificial en el Manejo Forestal: Una Revisión Sistemática Basada en el Marco Metodológico SALSA. *Revista Forestal*, 3(1). [https://doi.org/10.62465/riif.v3n1.2024.79](https://doi.org/10.62465/riif.v3n1.2024.79)
  • Stuart, N.A., Hartfield, G., Schultz, D.M., & Wilson, K. (2022). The Evolving Role of Humans in Weather Prediction and Communication. *Bulletin of the American Meteorological Society*, 103(8), E1720-E1746.
  • Suryavanshi, A., Kumar, S., & Singh, R. (2024). Empowering Forestry Conservation with AI: Severity Classification of Sequoia Canker Using Siamese CNNs. *2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC)*, 1-5, Bengaluru, India. 10.1109/iceccc61767.2024.10593892
  • Şener, E., & Şen, G. (2022). Dentomaksi̇llofasi̇yal Radyoloji̇de Yapay Zeka Uygulamalarinin Rolü: Bölüm 1. *Selcuk Dental Journal*, 9(2), 713-720. [https://doi.org/10.15311/selcukdentj.853884](https://doi.org/10.15311/selcukdentj.853884)
  • Tabier, E. (2023). Okul Öncesi Eğitimde Müze Eğitim Ortamları ve Yapay Zekâ Uygulamaları. *Journal Of Social Humanities and Administrative Sciences*, 65(65), 3082-3088. 10.29228/joshas.70500
  • Talbot, B., Astrup, R., Rahlf, J., & Stampfer, K. (2017). Applications of Remote and Proximal Sensing for Improved Precision in Forest Operations. *Croatian Journal of Forest Engineering*, 38(2), 327-336.
  • Tang, L., Shao, J., Pang, S., Wang, Y., & Liu, D. (2024). Bolstering Performance Evaluation of Image Segmentation Models with Efficacy Metrics in the Absence of a Gold Standard. *IEEE Transactions on Geoscience and Remote Sensing*, 62, 5408012.
  • Taylor, R., Davis, S., & Brandt, J. (2020). The Rise of Big Data And Supporting Technologies in Keeping Watch on the World's Forests. *Forest Policy and Economics*, 121, 102094.
  • Toming, K., Liu, H., Soomets, T., & Uuemaa, E. (2024). Estimation of the Biogeochemical and Physical Properties of Lakes Based on Remote Sensing and Artificial Intelligence Applications. *Remote Sensing*, 16(3), 464.
  • Turing, A.M. (1950). Computing Machinery and Intelligence. *Mind*, 59(236), 433-460.
  • Vasiliev, D.V., Chernykh, V.L., and Popova, O.V. (2022). Novel applications of GIS and artificial intelligence in forest restoration. *SGEM Conference Proceedings*, Vienna, Austria. [https://doi.org/10.5593/sgem2022/3.1/s14.45](https://doi.org/10.5593/sgem2022/3.1/s14.45)
  • Venanzi, R., Picchio, R., & Spinelli, R. (2023). Recent Applications of Smart Technologies for Monitoring the Sustainability of Forest Operations. *Forests*, 14(4), 737.
  • Venter, E. R. & Eck, L. v. (2020). Research on Extended External Reporting Assurance: Trends, Themes, and Opportunities. *Journal of International Financial Management &Amp; Accounting*, 32(1), 63-103. 10.1111/jifm.12125
  • Vieira, G.C., de Mendonça, A.R., da Silva, G.F., & Zanetti, S.S. (2018). Prognoses of Diameter and Height of Trees Using Artificial Intelligence. *Science of the Total Environment*, 645, 1086-1093.
  • Xu, J., & Li, H. (2022). Using Machine Learning to Predict Forest Fire Risks. *Environmental Monitoring and Assessment*, 194(2), 89-102.
  • Xu, L., Yu, H., Qin, H., & Chai, Y. (2024). Digital Twin for Aquaponics Factory: Analysis, Opportunities, and Research Challenges. *IEEE Transactions on Industrial Informatics*, 20(4), 5060-5073.
  • Yilmaz, Y., Yılmaz, D., Yıldırım, D., Korhan, E., & Kaya, D. (2021). Yapay Zeka ve Sağlıkta Yapay Zekanın Kullanımına Yönelik Sağlık Bilimleri Fakültesi Öğrencilerinin Görüşleri. *Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi*, 12(3), 297-308. 10.22312/sdusbed.950372
  • Zhang, Y., & Wang, X. (2023). Artificial Intelligence in Forest Management: Opportunities and Challenges. *Journal Of Forest Science*, 69(4), 345-360.
  • Zitouni, L., Belaidi, H., & Bekadja, E. (2024). The Impact of Artificial Intelligence in Predicting Forest Fires Using Spatio-Temporal Data Mining. *IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)*, 1-6, Hammamet, Tunisia. 10.1109/ic_aset61847.2024.10596239

Artificial Intelligence in Forestry: A Comprehensive Analysis of Current Applications and Future Perspectives

Yıl 2025, Cilt: 21 Sayı: 1, 303 - 334, 30.06.2025
https://doi.org/10.58816/duzceod.1595847

Öz

This study systematically analyzes artificial intelligence (AI) applications in forestry management, exploring current implementations, challenges, and future perspectives. A review of 580 articles from Web of Science (211) and Scopus (369) databases (2021-2025) identifies key themes where AI is transforming forestry practices. Forest Monitoring and Management Systems (30.4%) and Digital Transformation (23.6%) dominate current research, followed by Resource Optimization (17.1%) and Biodiversity Conservation (14.6%). Significant opportunities are noted in productivity enhancement, risk analysis, biodiversity conservation, and carbon management through AI. However, challenges such as data quality, resource constraints, operational complexities, and regulatory requirements remain. Emerging trends like human-centered AI, digital twins, and integrated sensor networks show promise. This analysis offers valuable insights for forestry professionals, researchers, and policymakers, providing a framework to understand AI's potential and limitations while emphasizing balanced integration for environmental sustainability and operational efficiency.

Kaynakça

  • Akalın, B., & Veranyurt, Ü. (2021). Sağlık Hizmetleri ve Yönetiminde Yapay Zekâ. *Acta Infologica*, 5(1), 231-240. [https://doi.org/10.26650/acin.750857](https://doi.org/10.26650/acin.750857)
  • Alıcılar, H., & Çöl, M. (2021). Usage of Artificial Intelligence in Public Health. *Uludağ Üniversitesi Tıp Fakültesi Dergisi*, 47(1), 151-158. [https://doi.org/10.32708/uutfd.891274](https://doi.org/10.32708/uutfd.891274)
  • Andersson, Å., Kallio, M., & Seppälä, R. (1984). Systems Analysis for the Forest Sector. *IIASA Working Paper, WP-84-060*. Retrieved from: [https://pure.iiasa.ac.at/id/eprint/2501/7/WP-84-017.pdf](https://pure.iiasa.ac.at/id/eprint/2501/7/WP-84-017.pdf). Access date: 15.11.2024.
  • Araújo Júnior, C.A., Pereira, B.L.C., Oliveira, A.C., & Leite, H.G. (2017). A multi-agent System for Forest Transport Activity Planning. *Cerne*. 23(3) [https://doi.org/10.1590/01047760201723032335](https://doi.org/10.1590/01047760201723032335)
  • Ardıç, M. (2018). Bireysel Kalite Göstergesi Olan Motivasyonu Etkileyen Faktörlerin Orman Yönetiminde İncelenmesi: Gümüşhane Ili Örneği. *Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi*, 19(2), 194-205. [https://doi.org/10.17474/artvinofd.448807](https://doi.org/10.17474/artvinofd.448807)
  • Aspragathos, N., Dogkas, E., Konstantinidis, P., Koutmos, P., Lamprinou, N., Moulianitis, V., & Thanellas, G. (2019). From Pillars to AI Technology-Based Forest Fire Protection Systems. *Intelligent System and Computing, Chapter 5*, 89-112.
  • Back, P. (2021). Real-World Reinforcement Learning: Observations from Two Successful Cases. *34th Bled eConference Digital Support from Crisis to Progressive Change*, 273-285.
  • Back, P., Suominen, A., Malo, P., Tahvonen, O., Blank, J., & Deb, K. (2022). Towards Sustainable Forest Management Strategies with MOEAs. *Genetic and Evolutionary Computation Conference*, 1046-1054, Cancun, Mexico.
  • Banu, T., Borlea, G.F., & Banu, C. (2016). The Use of Drones in Forestry. *Journal of Forest Science*, 62(1), 533-540.
  • Başcıllar, M., Karataş, M., & Pak, M. (2022). Social Algorithms in The Digital Age: Artificial Intelligence and Social Work. *Sosyal Politika Çalışmaları Dergisi*, 22(56), 539-565. [https://doi.org/10.21560/spcd.vi.1081060](https://doi.org/10.21560/spcd.vi.1081060)
  • Bell, K.L.C., Chow, J.S., Hope, A., & Quinzin, M.C. (2022). Low-Cost, Deep-Sea Imaging and Analysis Tools for Deep-Sea Exploration: A Collaborative Design Study. *Frontiers in Marine Science*, 9, 873700.
  • Bellucci, E., Aguilar, O.M., & Alseekh, S. (2021). The INCREASE project: Intelligent Collections of Food-Legume Genetic Resources for European Agrofood Systems. *Plant Journal*, 108(3), 646-660.
  • Bonet-Jover, A., Sepúlveda-Torres, R., Saquete, E., & Martínez-Barco, P. (2023). A Semi-Automatic Annotation Methodology that Combines Summarization And Human-In-The-Loop to Create Disinformation Detection Resources. *Knowledge-Based Systems*, 275, 110723.
  • Boroujeni, S.P.H., Razi, A., Khoshdel, S., & Afghah, F. (2024). A Comprehensive Survey Of Research Towards AI-Enabled Unmanned Aerial Systems in Pre-, Active-, And Post-Wildfire Management. *Information Fusion*, 108, 102369.
  • Borz, S.A., Talagai, N., Cheţa, M., Chiriloiu, D., & Montoya, A.V.G. (2022). Electronics, Close-Range Sensors and Artificial Intelligence in Forestry. *Forests*, 13(10), 1669.
  • Bostrom, N. (2014). *Superintelligence: Paths, Dangers, Strategies*. UK: Oxford University Press.
  • Buchelt, A., Grabska, E., Baumann, S., Zielonka, A., Stelmaszczuk-Górska, M.A., & Lausch, A. (2024). Exploring Artificial Intelligence for Applications of Drones In Forest Ecology and Management. *Forest Ecology and Management*, 545, 121530.
  • Byrtek, J., Kałuża, M., & Niemiec, W. (2023). AI-Accelerated Decision Making in Forest Management. *XXII Conference of PhD Students and Young Scientists*, 1755-1315, Wrocław, Poland [https://doi.org/10.1088/1755-1315/1189/1/012030](https://doi.org/10.1088/1755-1315/1189/1/012030)
  • Causevic, A., Aljedaani, W., Menouer, T., Kumar, N., & Lybeck, E. (2024). Artificial Intelligence for Sustainability: Opportunities And Risks of Utilizing Earth Observation Technologies to Protect Forests. *Sustainability 1*, 2. [https://doi.org/10.1007/s44353-024-00002-2](https://doi.org/10.1007/s44353-024-00002-2)
  • Chiarello, F., Oliveira Netto, S.B., Almeida, W.P., & Pezzopane, J.E.M. (2019). Artificial Neural Networks Applied in Forest Biometrics and Modeling: State of the Art. *Journal of Forest Engineering*, 30(3), 223-234.
  • Copernicus EU. (2023). *Sentinel-2: Forest Monitoring with Artificial Intelligence*. Retrieved from: [https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2](https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2). Access date: 11/11/2024.
  • Corona, C., Chirici, G., McRoberts, R.E., Winter, S., & Barbati, A. (2017). Precision Forestry: Riferimenti Concettuali, Strumenti e Prospettive Di Diffusione In Italia. *Forest@*, 14(1), 1-21.
  • Crevier, D. (1993). *AI: The Tumultuous History of the Search for Artificial Intelligence*. USA: Basic Books.
  • Çelik, İ., Arslan, F., Tunç, R., & Yildiz, I. (2021). İlaç Keşfi̇ ve Geli̇şti̇ri̇lmesi̇nde Yapay Zekâ. *Ankara Universitesi Eczacilik Fakultesi Dergisi*, 17-17. [https://doi.org/10.33483/jfpau.878041](https://doi.org/10.33483/jfpau.878041)
  • Çiçekdemir, R., Bayrakçı, H., & Özkahraman, M. (2021). Tarım Arazilerinde Harcanan Su Miktarını Yapay Zekâ Teknikleri Kullanarak Belirlenmesi1. *Düzce Üniversitesi Bilim Ve Teknoloji Dergisi*, 9(6), 237-250. [https://doi.org/10.29130/dubited.1015690](https://doi.org/10.29130/dubited.1015690)
  • Çivilibal, S., Çevik, K., & Bozkurt, A. (2023). Derin Öğrenme Yardımıyla Aktif Termogramlar Üzerinden Meme Lezyonlarının Sınıflandırması. *Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi*, 18(2), 140-156. [https://doi.org/10.29233/sdufeffd.1141226](https://doi.org/10.29233/sdufeffd.1141226)
  • Çoşkun, F., & Gülleroğlu, H. (2021). Geçmişten Günümüze Yapay Zekanın Gelişimi ve Eğitim Alanında Kullanılması. *Ankara Universitesi Egitim Bilimleri Fakultesi Dergisi*, 54(3), 947-966. [https://doi.org/10.30964/auebfd.916220](https://doi.org/10.30964/auebfd.916220)
  • Dainelli, R., Toscano, P., Di Gennaro, S.F., & Matese, A. (2021). Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing—A Systematic Review. Part I: A General Framework. *Forests*, 12(3), 327.
  • Damaševičius, R., Maskeliūnas, R., Paulikas, Š., Połap, D., & Woźniak, M. (2024). Digital Transformation of the Future of Forestry: An Exploration of Key Concepts In The Principles Behind Forest 4.0. *Frontiers in Forests and Global Change*, 7. [https://doi.org/10.3389/ffgc.2024.1424327](https://doi.org/10.3389/ffgc.2024.1424327)
  • de Lima Araújo, H.C., Polizel, J.L., Martins, F.R., da Silva Filho, D.F., & Cardil, A. (2021). Artificial Intelligence in Urban Forestry—A Systematic Review. *Urban Forestry and Urban Greening*, 64, 127293.
  • Dey, B., Ahmed, R., Ferdous, J., Haque, M. M. U., Khatun, R., Hasan, F. E. & Uddin, S. N. (2023). Automated Plant Species Identification From The Stomata Images Using Deep Neural Network: A Study of Selected Mangrove and Freshwater Swamp Forest Tree Species of Bangladesh. *Ecological Informatics*, 75, Article 102128. doi: [https://doi.org/10.1016/j.ecoinf.2023.102128](https://doi.org/10.1016/j.ecoinf.2023.102128)
  • Diamantopoulou, M.J., Özçelik, R., & Yılmaz, E. (2023). Artificial Intelligence As an Alternative Modelling Strategy for Reliable Height-Diameter Predictions of Mixed-Oaks Species. *Turkish Journal of Agriculture and Forestry*, 47(2), 228-241. [https://doi.org/10.55730/1300-011x.3081](https://doi.org/10.55730/1300-011x.3081)
  • Diez, Y., Kentsch, S., Fukuda, M., Caceres, M.L.L., Moritake, K., & Cabezas, M. (2021). Deep Learning in Forestry Using UAV-Acquired RGB Data: A Practical Review. *Remote Sensing*, 13(14), 2874.
  • Dost, S. (2023). Yapay Zekâ ve Uluslararası Hukukun Geleceği. *Süleyman Demirel Üniversitesi Hukuk Fakültesi Dergisi*, 13(2), 1271-1313. [https://doi.org/10.52273/sduhfd.1375673](https://doi.org/10.52273/sduhfd.1375673)
  • e Domingo, M., Ortigosa, N., Sevilla, J., & Roger, S. (2021). Cluster-Based Relocation of Stations for Efficient Forest Fire Management in the Province of Valencia (Spain). *Sensors*, 21(3), 797.
  • Elbasi, E., Ozdemir, S., & Polat, K. (2023). Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. *IEEE Access*, 11, 12345-12367.
  • Erbaş, S. (2023). Reklamcılıkta ve Pazarlamada Yeni̇ Aktör: Sosyal Robotlar. *Erciyes Akademi*, 37(3), 919-942. [https://doi.org/10.48070/erciyesakademi.1309995](https://doi.org/10.48070/erciyesakademi.1309995)
  • Erdönmez, C. (2020). 50 Days in The Burning Forests: Forestry Lessons in the Observation Of Yaşar Kemal. *Bartın Orman Fakültesi Dergisi*, 22(2), 614-632. [https://doi.org/10.24011/barofd.744987](https://doi.org/10.24011/barofd.744987)
  • Erkutlu, H. (2023). Yapay Zekâ Ve Örgütsel Davraniş. *Nevşehir Hacı Bektaş Veli Üniversitesi Sbe Dergisi*, 13(3), 1403-1417. [https://doi.org/10.30783/nevsosbilen.1246678](https://doi.org/10.30783/nevsosbilen.1246678)
  • Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., & Thrun, S. (2017). Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. *Nature*, 542(7639), 115-118.
  • Eugenio, F.C., Silva, K.G., Batista, J.L.F., Drescher, R., Péllico Netto, S., & Rex, F.E. (2020). Remotely Piloted Aircraft Systems and Forests: A Global State of the Art and Future Challenges. *Canadian Journal of Forest Research*, 50(6), 705-716.
  • FAO. (2020). *The State of the World’s Forests 2020*. Food and Agriculture Organization. Retrieved from: [https://www.fao.org/state-of-forests/en/](https://www.fao.org/state-of-forests/en/). Access date: 12/11/2024.
  • FAO. (2021). *The Role of Technology in Sustainable Forestry Management*. Food and Agriculture Organization of the United Nations. Retrieved from: [https://www.fao.org/platforms/green-agriculture/areas-of-work/natural-resources-biodiversity-green-production/forestry/sustainable-forest-management/en](https://www.fao.org/platforms/green-agriculture/areas-of-work/natural-resources-biodiversity-green-production/forestry/sustainable-forest-management/en). Access date: 24/11/2024.
  • Fardusi, M.J., Chianucci, F., & Barbati, A. (2017). Concept to Practice of Geospatial-Information Tools to Assist Forest Management and Planning under Precision Forestry Framework: a review. *Journal of Forest Science*, 63(3), 108-116.
  • Fernandez, A., Garcia, D., & Lopez, R. (2019). Optimization of Forest Harvest Planning Using Genetic Algorithms. *Journal Of Forest Science*, 65(7), 123-136.
  • Ferreira, J.F., Pereira, A.I., & Santos, L. (2023). Sensing and Artificial Perception for Robots in Precision Forestry: A Survey. *Robotics*, 12(5), 139.
  • Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. (2018). AI4People—An Ethical Framework for A Good AI Society: Opportunities, Risks, Principles, And Recommendations. *Minds And Machines*, 28(4), 689-707.
  • Fransson, J., Rosengren, M., Thierfelder, T., Ulander, L.M.H., & Persson, H.J. (2023). ForestMap: Mapping Forest Attributes Across the Globe - First Case Study. *IEEE International Geoscience and Remote Sensing Symposium*, 3891-3894, Pasadena, USA.
  • Gairola, S.U., Kumar, M., Sharma, J., & Kumar, A. (2023). Significance of artificial intelligence in forest land management and biodiversity conservation. *International Conference on Green Energy, Computing and Intelligent Technology (GEn-CITy 2023)*, Iskandar Puteri, Malaysia. [https://doi.org/10.1049/icp.2023.1808](https://doi.org/10.1049/icp.2023.1808)
  • Galaz, V., Centeno, M.A., Callahan, P.W., Causevic, A., Patterson, T., Brass, I., & Baum, S. (2021). Artificial Intelligence, Systemic Risks, And Sustainability. *Technology and Society*, 68, 101741.
  • Gandikota, D., Dutta, S., Mukherjee, A., & Das, P. (2022). AI Augmentation to Remote Sensing Imagery in Forestry Conservation and Restoration for Increased Responsive Capabilities. *IEEE Applied Imagery Pattern Recognition Workshop (AIPR)*, 1-16, DC, USA. [https://doi.org/10.1109/AIPR57179.2022.10092215](https://doi.org/10.1109/AIPR57179.2022.10092215)
  • Gaudreault, J., Forget, P., Frayret, J.M., Rousseau, A., & D'Amours, S. (2019). L'intelligence Artificielle Au Service De L'industrie Forestière. *Gestion*, 44(4), 68-71.
  • Giannakidou, S., Koutroumpogiannis, N., Karachalios, S., Tsakanikas, P., & Sarimveis, H. (2024). Leveraging The Power of Internet of Things and Artificial Intelligence in Forest Fire Prevention, Detection, and Restoration: A Comprehensive Survey. *Internet of Things*, 25, 101171. [https://doi.org/10.1016/j.iot.2024.101171](https://doi.org/10.1016/j.iot.2024.101171)
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. USA: MIT Press.
  • Grazhdani, H., David, E., Spagnolo, O. V., Buemi, F., Perri, A., Orsogna, N., & Chimenz, R. (2018). Quality Assurance of Ultrasound Systems: Current Status and Review of Literature. *Journal of Ultrasound*, 21(3), 173-182. [https://doi.org/10.1007/s40477-018-0304-7](https://doi.org/10.1007/s40477-018-0304-7)
  • Güler, S. (2024). The Role of Artificial Intelligence and Remote Sensing Technologies in Forest Ecosystems and Their Importance in Determining Carbon Capture Potential. *Silva World*, 3(1). [https://doi.org/10.61326/silvaworld.v3i1.248](https://doi.org/10.61326/silvaworld.v3i1.248)
  • Güzel, Ş., Dömbekci, H., & Eren, F. (2022). The Use of Artificial Intelligence in The Health Institutions: A Qualitative Research. *Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi*, 9(4), 509-519. [https://doi.org/10.34087/cbusbed.1140122](https://doi.org/10.34087/cbusbed.1140122)
  • Hamedianfar, A., Shafri, H.Z.M., Mansor, S., & Ahmad, N. (2022). Deep Learning for Forest Inventory and Planning: A Critical Review. *Forestry*, 95(5), 599-619.
  • Hang, H.T., Ahmed, G.B., Magsi, H., Kumar, S., & Chakraborty, S. (2024). Exploring Forest Fire Susceptibility and Management Strategies in Western Himalaya: Integrating Ensemble Machine Learning and eXplainable AI for Accurate Prediction and Comprehensive Analysis. *Environmental Technology and Innovation*, 25. [https://doi.org/10.1016/j.eti.2024.103655](https://doi.org/10.1016/j.eti.2024.103655)
  • Hasan, R., Khan, M.A., & Singh, V.K. (2024). AI-Driven Strategies for Reducing Deforestation. *The American Journal of Engineering and Technology*, 6(06), 6–20. [https://doi.org/10.37547/tajet/volume06issue06-02](https://doi.org/10.37547/tajet/volume06issue06-02)
  • Hokans, R.H. (1984). An Artificial Intelligence Application to Timber Harvest Schedule Implementation. *Forest Science*, 30(1), 183-191.
  • Holzinger, A., Malle, B., Saranti, A., & Pfeifer, B. (2024). From Industry 5.0 To Forestry 5.0: Bridging the Gap with Human-Centered Artificial Intelligence. *Current Forestry Reports*, 10, 442–455. [https://doi.org/10.1007/s40725-024-00231-7](https://doi.org/10.1007/s40725-024-00231-7)
  • Hsieh, Y.C., Lin, Y.C., & Yang, K.C. (2021). Solving Forest Harvesting Problem with Artificial Intelligence Approaches: An Example in Taiwan. *Journal of Intelligent and Fuzzy Systems*, 40(4), 7763-7774. 10.3233/JIFS-189597
  • Huang, J., Wang, X., & Li, Y. (2012). Forest Growth Simulation Based on Artificial Neural Network. In: Qian, Z., Cao, L., Su, W., Wang, T., Yang, H. (eds) *Recent Advances in Computer Science and Information Engineering. Lecture Notes in Electrical Engineering*, vol. 124. Springer, Berlin, Heidelberg. [https://doi.org/10.1007/978-3-642-25781-0_96](https://doi.org/10.1007/978-3-642-25781-0_96)
  • Imada, A. (2014). A Literature Review: Forest Management with Neural Network and Artificial Intelligence. In *Neural Information Processing*, 23-34, Brest, Belarus.
  • IPCC. (2022). *Climate Change 2022: Impacts, Adaptation, and Vulnerability*. Intergovernmental Panel on Climate Change. Retrieved from [https://ipcc.ch](https://ipcc.ch)
  • Javaid, M., Haleem, A., Singh, R.P., & Suman, R. (2022). Understanding the Potential Applications of Artificial Intelligence in Agriculture Sector. *Advanced Agrochem*, 2(1), 1-15.
  • Jha, R. K., & Saxena, S. (2020). Contribution Of Artificial Intelligence in Forest Management & Regulation: A Critical Analysis. *Hpnlu Journal of Environment and Disaster Management*, 1, 112-121. [https://www.hpnlu.ac.in/PDF/b6e18aae-fb82-4c63-b75f-e8cd7851a8cb.pdf](https://www.hpnlu.ac.in/PDF/b6e18aae-fb82-4c63-b75f-e8cd7851a8cb.pdf)
  • Jing, W., Xie, Y., Lei, X., Wang, W., & Liu, G. (2023). Editorial: Big Data and Artificial Intelligence Technologies for Smart Forestry. *Frontiers in Plant Science*, 14. [https://doi.org/10.3389/fpls.2023.1149740](https://doi.org/10.3389/fpls.2023.1149740)
  • Jones, E.W., Hiley, W.E., & Fraser, A.I. (1955). Planning and Control in the Managed Forest. *Forestry: An International Journal of Forest Research*, 28(1), 13-24.
  • Jones, M., Taylor, J., & White, A. (2020). Machine Learning for Wildfire Risk Analysis: Case Study in California. *Fire Ecology Journal*, 16(3), 45-59.
  • Jordan, M.I., & Mitchell, T.M. (2015). Machine Learning: Trends, Perspectives, And Prospects. *Science*, 349(6245), 255-260.
  • Kanga, S. (2023). Advancements in Remote Sensing Tools for Forestry Analysis. *Sustainable Forestry*, 42(1), 1-18.
  • Kays, R., Lasky, M., Allen, M.L., & Dowler, R.C. (2022). Which Mammals Can be Identified from Camera Traps and Crowdsourced Photographs? *Journal of Mammalogy*, 103(4), 767-775.
  • Kinaneva, D., Hristov, G., Raychev, J., & Zahariev, P. (2019). Early Forest Fire Detection Using Drones and Artificial Intelligence. *ICT Conference Proceedings*, 1, 171-176, Opatija, Croatia.
  • Kothai, G., Devaraj, S., & Muthukumar, V. (2024). AI-Driven Powered Solution Selection. In T. Nguyen & N. Vo (Eds.), *Using Traditional Design Methods to Enhance AI-Driven Decision Making*, 134-165. IGI Global Scientific Publishing. [https://doi.org/10.4018/979-8-3693-0639-0.ch006](https://doi.org/10.4018/979-8-3693-0639-0.ch006)
  • Kourtz, P. (1990). Artificial Intelligence: A New Tool for Forest Management. *Canadian Journal of Forest Research*, 20(4), 428-437.
  • Kumar, M.A., Sriram, V., & Reddy, B.S. (2023). EcoGuard: Uniting IoT and AI to Secure Forests and Combat Climate Change in Real-Time. *4th International Conference on Smart Electronics and Communication (ICOSEC)*, 480-487, Trichy, India. 10.1109/icosec58147.2023.10276080
  • Kumar, S., Patel, R., & Singh, V. (2022). Deep Learning Approaches for Forest Mapping: Challenges and Opportunities. *Environmental Informatics*, 28(4), 211-230.
  • Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. *Nature*, 521(7553), 436-444.
  • Li, Y., Wang, Q., Liu, C., Tang, Z., and Wu, F. (2024). Deep Learning-Based Geological Map Generation Using Geological Routes. *Remote Sensing of Environment*, 309, 114214.
  • Liu, J., & Wang, H. (2022). Big Data and AI In Forest Climate Resilience Planning. *Nature Climate Change*, 12(1), 34-47.
  • Liu, S.Y. (2020). Artificial Intelligence (AI) in Agriculture. *IT Professional Magazine*, 22(3), 41-45.
  • Lopez Serrano, F.R., Rubio, E., Garcia Morote, F.A., & Andrés, M. (2022). Artificial Intelligence-Based Software (AID-FOREST) For Tree Detection: A New Framework for Fast And Accurate Forest Inventorying Using Lidar Point Clouds. *International Journal of Applied Earth Observation and Geoinformation*, 113, 103014.
  • Lozinska, T., Ivantsiv, V., Khomiak, I., & Zelenko, S. (2024). Research of New Technologies and Innovations in The Field of Forestry. *Agrobìologìâ*, 1. [https://doi.org/10.33245/2310-9270-2024-187-1-268-276](https://doi.org/10.33245/2310-9270-2024-187-1-268-276)
  • Luckin, R., Holmes, W., Griffiths, M., & Forcier, L.B. (2016). *Intelligence Unleashed: An Argument for AI In Education*. USA: Pearson Education.
  • Luo, F., Zhang, C., & Xu, X. (2023). Artificial Intelligence for Climate Smart Forestry: A Forward Looking Vision. *COGMI Conference*, 1-10, Atlanta, GA, USA. [https://doi.org/10.1109/cogmi58952.2023.00011](https://doi.org/10.1109/cogmi58952.2023.00011)
  • Malo, P., Tahvonen, O., Suominen, A., Back, P., & Viitasaari, L. (2021). Reinforcement Learning in Optimizing Forest Management. *Canadian Journal of Forest Research*, 51(10), 1393-1409.
  • Marvasti-Zadeh, S.M., Goodsman, D., Ray, N., & Erbilgin, N. (2023). Crown-CAM: Interpretable Visual Explanations for Tree Crown Detection in Aerial Images. *IEEE Geoscience and Remote Sensing Letters*, 20, 1-5, 8500205.
  • McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. *AI magazine*, 27(4), 12-12.
  • Miguel, E.P., Rezende, A.V., Leal, F.A., & Matricardi, E.A.T. (2016). Artificial Intelligence Tools in Predicting the Volume of Trees within A Forest Stand. *African Journal of Agricultural Research*, 11(21), pp. 1914-1923. 10.5897/AJAR2016.11015
  • Molinaro, M., Orzes, G., Sarkis, J., & Belussi, F. (2022). From Forest to Finished Products: The Contribution of Industry 4.0 Technologies to The Wood Sector. *Computers in Industry*, 134, 103558.
  • Montaño, R., Cruz, R., & Meza, H. (2017). Artificial Intelligence Models to Estimate Biomass of Tropical Forest Trees. *POLIBITS*, 55, 29-37.
  • Moreno Arteaga, A.J., Zamudio Sánchez, F.J., & González Guillén, M.J. (2019). Espacialidad Volumétrica de Madera En Plantaciones Forestales Usando Redes Neurales Artificiales Con Imágenes de Satélite. *Acta Agronómica*, 68, 142-150. 10.15446/ACAG.V68N2.78945
  • Muhammad, A., Sharma, R., & Hasan, K. (2021). Role of Machine Learning Algorithms in Forest Fire Management: A Literature Review. *IEEE International Conference on Robotics and Automation*, 9425-9431, Xi’an, China.
  • Natesan, S., Malayeri, A.A., & Jafari, A. (2019). Resnet-Based Tree Species Classification Using UAV Images. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLII-2/W13, 475-481.
  • Nguyen, Q., & Tran, D. (2023). AI-Driven Solutions for Biodiversity Monitoring. *Ecological Informatics*, 74, 101833.
  • Niță, M.D. (2021). Testing Forestry Digital Twinning Workflow Based on Mobile LiDAR Scanner and AI Platform. *Forests*, 12(11), 1576. [https://doi.org/10.3390/F12111576](https://doi.org/10.3390/F12111576)
  • Nitoslawski, S.A., Wong-Stevens, K., Steenberg, J.W., Witherspoon, K., Nesbitt, L., & Konijnendijk van den Bosch, C. (2021). The Digital Forest: Mapping a Decade of Knowledge on Technological Applications for Forest Ecosystems. *Earth's Future*, 9(8), e2021EF002123.
  • Nunes, M., Görgens, E.B., Rodriguez, L.C.E., Alves, A.C., & Tomé, M. (2016). Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil. *PLoS ONE*, 11(5), e0154738.
  • Nystad, M., Strand, G.H., & Gjertsen, A.K. (2020). Artificial Intelligence in the Pulp and Paper Industry: Current State and Future Trends. *Journal of Science and Technology for Forest Products and Processes*, 8(4), 42-53.
  • Oliveira, L.F.P., Moreira, A.P.G.M., & Silva, M.F. (2021). Advances in Forest Robotics: A State-of-the-Art Survey. *Robotics*, 10(2), 53.
  • Osorio, C., Fuster, N., Chen, W., Men, Y., & Manotas, M. (2024). Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools. *Information*, 15(8), 430.
  • Peng, C., & Wen, X. (1999). Recent Applications of Artificial Neural Networks in Forest Resource Management: An Overview. *Environmental Management*, 23(4), 111-122.
  • Pettorru, G., Masala, G.L., Grosso, E., Fenu, G., & Pau, P.L. (2023). Using Artificial Intelligence and IoT Solution for Forest Fire Prevention. *International Conference on Computing, Networking and Communications (ICNC)*, 414-418, Honolulu, HI, USA. 10.1109/ICNC57223.2023.10074289
  • Picchio, R., Venanzi, R., Latterini, F., Marchi, E., Laschi, A., & Lo Monaco, A. (2019). Recent Contributions of Some Fields of the Electronics in Development of Forest Operations Technologies. *Croatian Journal of Forest Engineering*, 40(2), 259-275.
  • Pinto, J., Simões, R., & Marques da Silva, J. (2023). Artificial Intelligence Tools and Vegetation Indices Combined to Estimate Aboveground Biomass in Tropical Forests. *Journal of Applied Remote Sensing*, 17(2). [https://doi.org/10.1117/1.JRS.17.024512](https://doi.org/10.1117/1.JRS.17.024512)
  • Qin, Q. (2022). Hotspots and trends of higher education quality assurance research. *3rd International Conference on Modern Education and Information Management (ICMEIM 2022)*, 4-9, Chengdu, China. 10.2991/978-94-6463-044-2_2
  • Radzi, F.N.A.M., Ahmad, N., & Hamid, S. (2024). A Concise Review of Artificial Intelligence Methods for Forest-Fire Monitoring Systems. *IEEE 15th Control and System Graduate Research Colloquium (ICSGRC)*, pp. 1-5, Shah Alam, Malaysia. 10.1109/ICSGRC62081.2024.10691280
  • Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. *Natural Resources Conservation and Research*, 6(2), 3825. [https://doi.org/10.24294/nrcr.v6i2.3825](https://doi.org/10.24294/nrcr.v6i2.3825)
  • Ramos, A. (2024). Importancia de la Inteligencia Artificial en la Evaluación de la Biomasa Forestal en el Perú. *Revista Forestal del Perú*, 39(1), 11-21. [https://doi.org/10.21704/rfp.v39i1.2065](https://doi.org/10.21704/rfp.v39i1.2065)
  • Rasagna Devi, K.L.S., Srinivas, K., & Venkata Rao, K. (2024). Forest Fire Prediction and Management using AI, ML and Deep Learning Techniques, *IEEE Conference*, 324-327, Coimbatore, India. 10.1109/ICISC62624.2024.00062.
  • Roßmann, J., Schluse, M., Schlette, C., & Waspe, R. (2009). The virtual forest: Robotics and simulation technology as the basis for new approaches to the biological and the technical production in the forest. *IFAC Proceedings Volumes*, 42(3), 44-49, Istanbul, Turkey.
  • Rudin, C. (2019). Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. *Nature Machine Intelligence*, 1(5), 206-215.
  • Russell, S., & Norvig, P. (2021). *Artificial Intelligence: A Modern Approach*. USA: Pearson Education.
  • Sakr, G.E., Elhajj, I.H., Mitri, G., & Wejinya, U.C. (2010). Artificial intelligence for forest fire prediction. *IEEE/ASME International Conference on Advanced Intelligent Mechatronics*, 1311-1316, Montreal, Canada.
  • Sandino, J., Pegg, G., Gonzalez, F., & Smith, G. (2018). Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence. *Sensors*, 18(4), 944.
  • Schwab, K. (2016). *The Fourth Industrial Revolution*. Danvers: Crown Business.
  • Senthilkumar N., Veerasamy, S., & Ramasamy, V. (2023). Machine Learning Approaches for Pest and Insect Management in Forest Scenario: An Outlook. *Uttar Pradesh Journal of Zoology*, 44(23), 312-316. [https://doi.org/10.56557/upjoz/2023/v44i233793](https://doi.org/10.56557/upjoz/2023/v44i233793)
  • Shafik, W. (2024). Artificial Intelligence Models to Prevent Forest Fires. In M. Ouaissa, M. Ouaissa, Z. Boulouard, C. Iwendi, & M. Krichen (Eds.), *AI and IoT for Proactive Disaster Management* (pp. 78-106). IGI Global Scientific Publishing. [https://doi.org/10.4018/979-8-3693-3896-4.ch005](https://doi.org/10.4018/979-8-3693-3896-4.ch005)
  • Shedrawi, G., Magron, F., Vigga, B., Bosserelle, P., & Moore, B. (2024). Leveraging Deep Learning and Computer Vision Technologies To Enhance Management of Coastal Fisheries in the Pacific Region. *Scientific Reports*, 14(1), 20915.
  • Shivaprakash, K.N., Thammaiah, C.K., & Kumar, D. (2022). Potential For Artificial Intelligence (AI) And Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, And Related Services in India. *Sustainability*, 14(12), 7154.
  • Smith, R. (2021). Leveraging AI For Carbon Sequestration Analysis. *Sustainability Journal*, 13(8), 4290.
  • Smith, T., & Zhang, Y. (2021). Early Detection of Tree Diseases Using UAV and Deep Learning. *Remote Sensing Applications*, 15(6), 78-93.
  • Somwong, B., Kumphet, K., & Massagram, W. (2023). Acoustic Monitoring System with AI Threat Detection System for Forest Protection. *20th International Joint Conference on Computer Science and Software Engineering (JCSSE)*, Phitsanulok, Thailand, 253-257. 10.1109/JCSSE58229.2023.10202043
  • Sotomayor, J.F.M. (2024). Inteligencia Artificial en el Manejo Forestal: Una Revisión Sistemática Basada en el Marco Metodológico SALSA. *Revista Forestal*, 3(1). [https://doi.org/10.62465/riif.v3n1.2024.79](https://doi.org/10.62465/riif.v3n1.2024.79)
  • Stuart, N.A., Hartfield, G., Schultz, D.M., & Wilson, K. (2022). The Evolving Role of Humans in Weather Prediction and Communication. *Bulletin of the American Meteorological Society*, 103(8), E1720-E1746.
  • Suryavanshi, A., Kumar, S., & Singh, R. (2024). Empowering Forestry Conservation with AI: Severity Classification of Sequoia Canker Using Siamese CNNs. *2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC)*, 1-5, Bengaluru, India. 10.1109/iceccc61767.2024.10593892
  • Şener, E., & Şen, G. (2022). Dentomaksi̇llofasi̇yal Radyoloji̇de Yapay Zeka Uygulamalarinin Rolü: Bölüm 1. *Selcuk Dental Journal*, 9(2), 713-720. [https://doi.org/10.15311/selcukdentj.853884](https://doi.org/10.15311/selcukdentj.853884)
  • Tabier, E. (2023). Okul Öncesi Eğitimde Müze Eğitim Ortamları ve Yapay Zekâ Uygulamaları. *Journal Of Social Humanities and Administrative Sciences*, 65(65), 3082-3088. 10.29228/joshas.70500
  • Talbot, B., Astrup, R., Rahlf, J., & Stampfer, K. (2017). Applications of Remote and Proximal Sensing for Improved Precision in Forest Operations. *Croatian Journal of Forest Engineering*, 38(2), 327-336.
  • Tang, L., Shao, J., Pang, S., Wang, Y., & Liu, D. (2024). Bolstering Performance Evaluation of Image Segmentation Models with Efficacy Metrics in the Absence of a Gold Standard. *IEEE Transactions on Geoscience and Remote Sensing*, 62, 5408012.
  • Taylor, R., Davis, S., & Brandt, J. (2020). The Rise of Big Data And Supporting Technologies in Keeping Watch on the World's Forests. *Forest Policy and Economics*, 121, 102094.
  • Toming, K., Liu, H., Soomets, T., & Uuemaa, E. (2024). Estimation of the Biogeochemical and Physical Properties of Lakes Based on Remote Sensing and Artificial Intelligence Applications. *Remote Sensing*, 16(3), 464.
  • Turing, A.M. (1950). Computing Machinery and Intelligence. *Mind*, 59(236), 433-460.
  • Vasiliev, D.V., Chernykh, V.L., and Popova, O.V. (2022). Novel applications of GIS and artificial intelligence in forest restoration. *SGEM Conference Proceedings*, Vienna, Austria. [https://doi.org/10.5593/sgem2022/3.1/s14.45](https://doi.org/10.5593/sgem2022/3.1/s14.45)
  • Venanzi, R., Picchio, R., & Spinelli, R. (2023). Recent Applications of Smart Technologies for Monitoring the Sustainability of Forest Operations. *Forests*, 14(4), 737.
  • Venter, E. R. & Eck, L. v. (2020). Research on Extended External Reporting Assurance: Trends, Themes, and Opportunities. *Journal of International Financial Management &Amp; Accounting*, 32(1), 63-103. 10.1111/jifm.12125
  • Vieira, G.C., de Mendonça, A.R., da Silva, G.F., & Zanetti, S.S. (2018). Prognoses of Diameter and Height of Trees Using Artificial Intelligence. *Science of the Total Environment*, 645, 1086-1093.
  • Xu, J., & Li, H. (2022). Using Machine Learning to Predict Forest Fire Risks. *Environmental Monitoring and Assessment*, 194(2), 89-102.
  • Xu, L., Yu, H., Qin, H., & Chai, Y. (2024). Digital Twin for Aquaponics Factory: Analysis, Opportunities, and Research Challenges. *IEEE Transactions on Industrial Informatics*, 20(4), 5060-5073.
  • Yilmaz, Y., Yılmaz, D., Yıldırım, D., Korhan, E., & Kaya, D. (2021). Yapay Zeka ve Sağlıkta Yapay Zekanın Kullanımına Yönelik Sağlık Bilimleri Fakültesi Öğrencilerinin Görüşleri. *Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi*, 12(3), 297-308. 10.22312/sdusbed.950372
  • Zhang, Y., & Wang, X. (2023). Artificial Intelligence in Forest Management: Opportunities and Challenges. *Journal Of Forest Science*, 69(4), 345-360.
  • Zitouni, L., Belaidi, H., & Bekadja, E. (2024). The Impact of Artificial Intelligence in Predicting Forest Fires Using Spatio-Temporal Data Mining. *IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)*, 1-6, Hammamet, Tunisia. 10.1109/ic_aset61847.2024.10596239
Toplam 144 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ormancılık Yönetimi ve Çevre, Ormancılık (Diğer)
Bölüm Derleme
Yazarlar

Ouranıa Areta Hızıroğlu 0000-0001-8607-6089

Tarık Semiz 0000-0002-6647-3383

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 3 Aralık 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 1

Kaynak Göster

APA Areta Hızıroğlu, O., & Semiz, T. (2025). Artificial Intelligence in Forestry: A Comprehensive Analysis of Current Applications and Future Perspectives. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 21(1), 303-334. https://doi.org/10.58816/duzceod.1595847

 DÜOD'da yayımlanan makaleler Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC) kapsamında lisanslanmıştır.