Kademeli kimyasal ve mekanik ön işlemlerden geçirilmiş selülozik liflerle güçlendirilen CMC bazlı kopolimer hidrojellerin performans özelliklerinin değerlendirilmesi: Ilımlı alkali oksidasyon uygulaması
Yıl 2025,
Cilt: 21 Sayı: 1, 172 - 192, 30.06.2025
Asena Damla Büyüküstün
,
Esat Gümüşkaya
,
Emir Erişir
Öz
Bu çalışmada, selülozun hidrojelin performans özelliklerinde yan etkilerini azaltmak için selüloza mekanik rafinasyon ve alkalin oksidasyon ön işlemleri uygulanmıştır. H2O2 ile 80°C'de ılımlı oksidasyonun yanında, mekanik işlemler PFI veya supermasscolloider ile gerçekleştirilmiştir. Hidrojel üretiminde çapraz bağlayıcı olarak epiklorohidrin ve sitrik asidin etkinliği ayrı ayrı incelenmiştir. Üretilen hidrojellerin sıvı emme kapasitesi, su alma ve şişme oranları üzerinden değerlendirilmiştir. Hidrojellerin yapısal, morfolojik ve termal özellikleri FTIR, SEM ve DSC ile belirlenmiştir. IR spektraları, çapraz bağlayıcılar ile hidrojel sentezinin başarılı olduğunu göstermiştir. %10 selüloz içeren ve sitrik asit ile çapraz bağlanmış hidrojeller başlangıç kütlesinin 50 katına kadar sıvı absorbe etmesine rağmen, epiklorohidrin ile üretilen örneklerin performansının daha üstün olduğu görülmüştür. SEM görüntüleri, sitrik asit ile sentezlenen örneklerde gözenekliliğin azaldığını ve yüzey kapalılığının arttığını bu durumunda difüzyon ve absorpsiyon kapasitesinde azalmayla sonuçlandığı değerlendirilmiştir.
Etik Beyan
Bu çalışmada, bilimsel araştırma ve yayın etiğine uygun hareket edilmiştir. Araştırma sırasında elde edilen veriler, gerçeği yansıtmaktadır ve hiçbir şekilde yanıltıcı veya manipülatif bir işlem yapılmamıştır. Çalışmada, herhangi bir çıkar çatışması bulunmamaktadır. Çalışmanın yalnızca kontrol örnekleri (2 grup veri) ile ilgili olan verileri daha önce yapılan diğer çalışmalarda kullanılmıştır. Geriye kalan 10 grup örneğe ait veriler ilk defa bu çalışma kapsamında değerlendirmeye tabi tutulmuştur. Kontrol grubu örneklerine ait verilerin kullanıldığı ilgili çalışma Drewno isimli dergiden kabul almış ancak henüz basılmamıştır.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu çalışma için sağlamış olduğu finansal destek nedeniyle yazarlar Türkiye Bilimsel ve Teknolojik Araştırmalar Kurumu (TÜBİTAK)'na teşekkürlerini sunmaktadır.
Kaynakça
-
Barbucci, R., Magnani, A., & Consumi, M. (2000). Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules, 33(20), 7475-7480.
-
Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), 763-768.
-
Buhus, G., Peptu, C., Popa, M. I., & Desbrières, J. (2009). Controlled release of water soluble antibiotics by carboxymethylcellulose- And gelatin-based hydrogels crosslinked with epichlorohydrin. Cellulose Chemistry and Technology, 43, 141-151.
-
Büyüküstün, A. D., Erişir, E., & Gümüşkaya, E. (2025). Swelling capacity in carboxymethylcellulose-cellulose hybrid hydrogels: The effects of oxidation with zinc chloride and refining on cellulose used as reinforcement. Drewno, 68(215), 1-11.
-
Cabiac, A., Guillon, E., Chambon, F., Pinel, C., Rataboul, F., & Essayem, N. (2011). Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A-general, 402(1-2), 1-10.
-
Chen, Y., Wang, Y., Wan, J., & Ma, Y. (2010). Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose, 17(2), 329-338.
-
Cui, X., Lee, J. J., & Chen, W. N. (2019). Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Scientific Reports, 9(1), 14851.
-
Das, D., Prakash, P., Rout, P. K., & Bhaladhare, S. (2021). Synthesis and characterization of superabsorbent cellulose‐based hydrogel for agriculture application. Starch – Stärke, 73(1-2), 1900284.
-
Eldin, M. S., Omer, A. M., Soliman, E. A., & Hassan, E. A. (2013). Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization. Desalination and Water Treatment, 51(16-18), 3196-3206.
-
Erişir, E., & Gümüşkaya, E. (2024a). Acetylation of cellulose in ethyl acetate: characterization and thin film applications. Journal of Wood Chemistry and Technology, 44(4), 228-243.
-
Erişir, E., & Gümüşkaya, E. (2024b). Selüloz asetat üretimi için çevre dostu bir çözücü seçeneği: Etil laktat. Bartın Orman Fakültesi Dergisi, 26(3), 271-283.
-
Esposito, F., Del Nobile, M. A., Mensitieri, G., & Nicolais, L. (1996). Water sorption in cellulose‐based hydrogels. Journal of Applied Polymer Science, 60(13), 2403-2407.
-
Fekete, T., Borsa, J., Takács, E., & Wojnárovits, L. (2014). Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose, 21(6), 4157-4165.
-
Feng, S., Liu, F., Guo, Y., Ye, M., He, J., Zhou, H., Liu, L., Cai, L., Zhang, Y., & Li, R. (2021). Exploring the role of chitosan in affecting the adhesive, rheological and antimicrobial properties of carboxymethyl cellulose composite hydrogels. International Journal of Biological Macromolecules, 190, 554-563.
-
Godiya, C. B., Cheng, X., Li, D., Chen, Z., & Lu, X. (2019). Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. Journal of Hazardous Materials, 364, 28-38.
-
Golor, M. M., Rosma, D., Santoso, S. P., Soetaredjo, F. E., Yuliana, M., Ismadji, S., & Ayucitra, A. (2020). Citric acid-crosslinked cellulosic hydrogel from sugarcane bagasse: Preparation, characterization, and adsorption study. Journal of Indonesian Chemical Society, 3(1), 59-67.
-
He, X., Wu, S., Fu, D., & Ni, J. (2009). Preparation of sodium carboxymethyl cellulose from paper sludge. Journal of Chemical Technology & Biotechnology, 84(3), 427-434.
-
Hubbe, M. A., Ayoub, A., Daystar, J. S., Venditti, R. A., & Pawlak, J. J. (2013). Enhanced absorbent products incorporating cellulose and its derivatives: A review. BioResources, 8(4), 6276-6388.
-
Karaaslan, M. A., Tshabalala, M. A., Yellei, D. J., & Buschle-Diller, G. B. (2011). Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydrate Polymers, 86(1), 192-201.
-
Kelly, J. A., Shukaliak, A. M., Cheung, C. C., Shopsowitz, K. E., Hamad, W. Y., & MacLachlan, M. J. (2013). Responsive photonic hydrogels based on nanocrystalline cellulose. Angewandte Chemie, 125(34), 9056-9059.
-
Knill, C. J., & Kennedy, J. F. (2003). Degradation of cellulose under alkaline conditions. Carbohydrate Polymers, 51(3), 281-300.
-
Kumar, B., Sauraj, & Negi, Y. S. (2019). To investigate the effect of ester-linkage on the properties of polyvinyl alcohol/carboxymethyl cellulose based hydrogel. Materials Letters, 252, 308-312.
-
Kundu, R., Mahada, P., Chhirang, B., & Das, B. (2022). Cellulose hydrogels: Green and sustainable soft biomaterials. Current Research in Green and Sustainable Chemistry, 5, 100252.
-
Kurtuluş, O. Ç., Ondaral, S., Emin, N., & Kadak, A. E. (2024). Bioaerogels produced from tempo oxidized nano cellulose with chitosan, gelatin, and alginate: general performances for wound dressing application. Cellulose, 31, 1673-1689.
-
Laine, C., Wang, X., Tenkanen, M., & Varhimo, A. (2004). Changes in the fiber wall during refining of bleached pine kraft pulp. Holzforschung, 58(3), 233-240.
-
Li, J., Fang, L., Tait, W. R., Sun, L., Zhao, L., & Qian, L. (2017). Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent. RSC Advances, 7(86), 54823-54828.
-
Li, Q., Ma, Z., Yue, Q., Gao, B., Li, W., & Xu, X. (2012). Synthesis, characterization and swelling behavior of superabsorbent wheat straw graft copolymers. Bioresource Technology, 118, 204-209.
-
Liebert, T.F. (2010). Cellulose solvents - Remarkable history, bright future. In: Liebert, T.F., Heinze, T.J., Edgar, K.J. (eds) Cellulose Solvents: For Analysis, Shaping and Chemical Modification, 1st ed. AS Publishing, pp. 3-54.
-
Lindström, T., & Carlsson, G. (1982). The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers [pH, paper properties, tensile strength, swelling]. Svensk Papperstidning (Sweden), 85(15), R146-R151.
-
Ma, J., Xu, Y., Fan, B., & Liang, B. (2007). Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. European Polymer Journal, 43(5), 2221-2228.
-
Milanovic, J. Z., Kostić, M. M., & Škundrić, P. (2012). Structure and properties of tempo-oxidized cotton fibers. Chemical Industry & Chemical Engineering Quarterly, 18(3), 473-481.
-
Motaung, T. E., & Mokhothu, T. H. (2016). The influence of supermasscolloider on the morphology of sugarcane bagasse and bagasse cellulose. Fibers and Polymers, 17(3), 343-348.
-
Nasution, H., Harahap, H., Dalimunthe, N. F., Ginting, M. H., Jaafar, M., Tan, O. O., Aruan, H. K., & Herfananda, A. L. (2022). Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: A review. Gels, 8(9), 568.
-
O-chongpian, P., Na Takuathung, M., Chittasupho, C., Ruksiriwanich, W., Chaiwarit, T., Baipaywad, P., & Jantrawut, P. (2021). Composite nanocellulose fibers-based hydrogels loading clindamycin HCl with Ca2+ and citric acid as crosslinking agents for pharmaceutical applications. Polymers, 13(23), 4102.
-
Qiu, H., & Yu, J. (2008). Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: Preparation and water absorbency. Journal of Applied Polymer Science, 107(1), 118-123.
-
Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y., & Luo, C. (2016). Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate Polymers, 137, 402-409.
-
Seki, Y., Altinisik, A., Demircioğlu, B., & Tetik, C. (2014). Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: Synthesis and characterization. Cellulose, 21(3), 1689-1698.
-
Spagnol, C., Rodrigues, F. H., Pereira, A. G., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2012). Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 19(4), 1225-1237.
-
Su, C., Liu, J., Yang, Z., Jiang, L., Liu, X., & Shao, W. (2020). UV-mediated synthesis of carboxymethyl cellulose/poly-N-isopropylacrylamide composite hydrogels with triple stimuli-responsive swelling performances. International Journal of Biological Macromolecules, 161, 1140-1148.
-
Uyanga, K. A., & Daoud, W. A. (2021). Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose, 28(9), 5493-5512.
-
Wang, L., & Wang, M. (2016). Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze–thaw method. ACS Sustainable Chemistry & Engineering, 4(5), 2830-2837.
-
Wang, Z., Ning, A., Xie, P., Gao, G., Xie, L., Li, X., & Song, A. (2017). Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydrate Polymers, 157, 48-56.
-
Zhao, D., Huang, J., Zhong, Y., Li, K., Zhang, L., & Cai, J. (2016). High‐strength and high‐toughness double‐cross‐linked cellulose hydrogels: A new strategy using sequential chemical and physical cross‐linking. Advanced Functional Materials, 26(34), 6279-6287.
The Evaluation of Performance Properties of CMC-Based Copolymer Hydrogels Reinforced with Cellulosic Fibers Subjected to Stepwise Chemical and Mechanical Pretreatments: Moderate Alkaline Oxidation Treatment
Yıl 2025,
Cilt: 21 Sayı: 1, 172 - 192, 30.06.2025
Asena Damla Büyüküstün
,
Esat Gümüşkaya
,
Emir Erişir
Öz
In this study, mechanical refining and alkaline oxidation pretreatments were applied to cellulose reducing the side effect of it on hydrogel performance. In addition to moderate oxidation with hydrogen peroxide at 80°C, mechanical treatment was performed using PFI or supermasscolloider. The effectiveness of epichlorohydrin and citric acid as crosslinkers for hydrogel formation was investigated separately. The liquid absorption capacity, water uptake and swelling ratios of the produced hydrogels were measured and evaluated. The structural, morphological and thermal properties of the hydrogels were analyzed using FTIR, SEM and DSC. IR spectrum revealed that the interactions with both crosslinkers were effective. Although hydrogels with 10% cellulose ratio and cross-linked with citric acid can absorb liquid up to 50 times the initial mass, the overall performance of the samples produced with epichlorohydrin was found to be superior. SEM images showed that the porosity of the hydrogel decreased and the surface closedness increased in the samples with citric acid. These phenomena were considered as a reduction in diffusion of liquids and absorption capacity.
Destekleyen Kurum
TÜBİTAK
Kaynakça
-
Barbucci, R., Magnani, A., & Consumi, M. (2000). Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules, 33(20), 7475-7480.
-
Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), 763-768.
-
Buhus, G., Peptu, C., Popa, M. I., & Desbrières, J. (2009). Controlled release of water soluble antibiotics by carboxymethylcellulose- And gelatin-based hydrogels crosslinked with epichlorohydrin. Cellulose Chemistry and Technology, 43, 141-151.
-
Büyüküstün, A. D., Erişir, E., & Gümüşkaya, E. (2025). Swelling capacity in carboxymethylcellulose-cellulose hybrid hydrogels: The effects of oxidation with zinc chloride and refining on cellulose used as reinforcement. Drewno, 68(215), 1-11.
-
Cabiac, A., Guillon, E., Chambon, F., Pinel, C., Rataboul, F., & Essayem, N. (2011). Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A-general, 402(1-2), 1-10.
-
Chen, Y., Wang, Y., Wan, J., & Ma, Y. (2010). Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose, 17(2), 329-338.
-
Cui, X., Lee, J. J., & Chen, W. N. (2019). Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Scientific Reports, 9(1), 14851.
-
Das, D., Prakash, P., Rout, P. K., & Bhaladhare, S. (2021). Synthesis and characterization of superabsorbent cellulose‐based hydrogel for agriculture application. Starch – Stärke, 73(1-2), 1900284.
-
Eldin, M. S., Omer, A. M., Soliman, E. A., & Hassan, E. A. (2013). Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization. Desalination and Water Treatment, 51(16-18), 3196-3206.
-
Erişir, E., & Gümüşkaya, E. (2024a). Acetylation of cellulose in ethyl acetate: characterization and thin film applications. Journal of Wood Chemistry and Technology, 44(4), 228-243.
-
Erişir, E., & Gümüşkaya, E. (2024b). Selüloz asetat üretimi için çevre dostu bir çözücü seçeneği: Etil laktat. Bartın Orman Fakültesi Dergisi, 26(3), 271-283.
-
Esposito, F., Del Nobile, M. A., Mensitieri, G., & Nicolais, L. (1996). Water sorption in cellulose‐based hydrogels. Journal of Applied Polymer Science, 60(13), 2403-2407.
-
Fekete, T., Borsa, J., Takács, E., & Wojnárovits, L. (2014). Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose, 21(6), 4157-4165.
-
Feng, S., Liu, F., Guo, Y., Ye, M., He, J., Zhou, H., Liu, L., Cai, L., Zhang, Y., & Li, R. (2021). Exploring the role of chitosan in affecting the adhesive, rheological and antimicrobial properties of carboxymethyl cellulose composite hydrogels. International Journal of Biological Macromolecules, 190, 554-563.
-
Godiya, C. B., Cheng, X., Li, D., Chen, Z., & Lu, X. (2019). Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. Journal of Hazardous Materials, 364, 28-38.
-
Golor, M. M., Rosma, D., Santoso, S. P., Soetaredjo, F. E., Yuliana, M., Ismadji, S., & Ayucitra, A. (2020). Citric acid-crosslinked cellulosic hydrogel from sugarcane bagasse: Preparation, characterization, and adsorption study. Journal of Indonesian Chemical Society, 3(1), 59-67.
-
He, X., Wu, S., Fu, D., & Ni, J. (2009). Preparation of sodium carboxymethyl cellulose from paper sludge. Journal of Chemical Technology & Biotechnology, 84(3), 427-434.
-
Hubbe, M. A., Ayoub, A., Daystar, J. S., Venditti, R. A., & Pawlak, J. J. (2013). Enhanced absorbent products incorporating cellulose and its derivatives: A review. BioResources, 8(4), 6276-6388.
-
Karaaslan, M. A., Tshabalala, M. A., Yellei, D. J., & Buschle-Diller, G. B. (2011). Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydrate Polymers, 86(1), 192-201.
-
Kelly, J. A., Shukaliak, A. M., Cheung, C. C., Shopsowitz, K. E., Hamad, W. Y., & MacLachlan, M. J. (2013). Responsive photonic hydrogels based on nanocrystalline cellulose. Angewandte Chemie, 125(34), 9056-9059.
-
Knill, C. J., & Kennedy, J. F. (2003). Degradation of cellulose under alkaline conditions. Carbohydrate Polymers, 51(3), 281-300.
-
Kumar, B., Sauraj, & Negi, Y. S. (2019). To investigate the effect of ester-linkage on the properties of polyvinyl alcohol/carboxymethyl cellulose based hydrogel. Materials Letters, 252, 308-312.
-
Kundu, R., Mahada, P., Chhirang, B., & Das, B. (2022). Cellulose hydrogels: Green and sustainable soft biomaterials. Current Research in Green and Sustainable Chemistry, 5, 100252.
-
Kurtuluş, O. Ç., Ondaral, S., Emin, N., & Kadak, A. E. (2024). Bioaerogels produced from tempo oxidized nano cellulose with chitosan, gelatin, and alginate: general performances for wound dressing application. Cellulose, 31, 1673-1689.
-
Laine, C., Wang, X., Tenkanen, M., & Varhimo, A. (2004). Changes in the fiber wall during refining of bleached pine kraft pulp. Holzforschung, 58(3), 233-240.
-
Li, J., Fang, L., Tait, W. R., Sun, L., Zhao, L., & Qian, L. (2017). Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent. RSC Advances, 7(86), 54823-54828.
-
Li, Q., Ma, Z., Yue, Q., Gao, B., Li, W., & Xu, X. (2012). Synthesis, characterization and swelling behavior of superabsorbent wheat straw graft copolymers. Bioresource Technology, 118, 204-209.
-
Liebert, T.F. (2010). Cellulose solvents - Remarkable history, bright future. In: Liebert, T.F., Heinze, T.J., Edgar, K.J. (eds) Cellulose Solvents: For Analysis, Shaping and Chemical Modification, 1st ed. AS Publishing, pp. 3-54.
-
Lindström, T., & Carlsson, G. (1982). The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers [pH, paper properties, tensile strength, swelling]. Svensk Papperstidning (Sweden), 85(15), R146-R151.
-
Ma, J., Xu, Y., Fan, B., & Liang, B. (2007). Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. European Polymer Journal, 43(5), 2221-2228.
-
Milanovic, J. Z., Kostić, M. M., & Škundrić, P. (2012). Structure and properties of tempo-oxidized cotton fibers. Chemical Industry & Chemical Engineering Quarterly, 18(3), 473-481.
-
Motaung, T. E., & Mokhothu, T. H. (2016). The influence of supermasscolloider on the morphology of sugarcane bagasse and bagasse cellulose. Fibers and Polymers, 17(3), 343-348.
-
Nasution, H., Harahap, H., Dalimunthe, N. F., Ginting, M. H., Jaafar, M., Tan, O. O., Aruan, H. K., & Herfananda, A. L. (2022). Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: A review. Gels, 8(9), 568.
-
O-chongpian, P., Na Takuathung, M., Chittasupho, C., Ruksiriwanich, W., Chaiwarit, T., Baipaywad, P., & Jantrawut, P. (2021). Composite nanocellulose fibers-based hydrogels loading clindamycin HCl with Ca2+ and citric acid as crosslinking agents for pharmaceutical applications. Polymers, 13(23), 4102.
-
Qiu, H., & Yu, J. (2008). Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: Preparation and water absorbency. Journal of Applied Polymer Science, 107(1), 118-123.
-
Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y., & Luo, C. (2016). Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate Polymers, 137, 402-409.
-
Seki, Y., Altinisik, A., Demircioğlu, B., & Tetik, C. (2014). Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: Synthesis and characterization. Cellulose, 21(3), 1689-1698.
-
Spagnol, C., Rodrigues, F. H., Pereira, A. G., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2012). Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 19(4), 1225-1237.
-
Su, C., Liu, J., Yang, Z., Jiang, L., Liu, X., & Shao, W. (2020). UV-mediated synthesis of carboxymethyl cellulose/poly-N-isopropylacrylamide composite hydrogels with triple stimuli-responsive swelling performances. International Journal of Biological Macromolecules, 161, 1140-1148.
-
Uyanga, K. A., & Daoud, W. A. (2021). Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose, 28(9), 5493-5512.
-
Wang, L., & Wang, M. (2016). Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze–thaw method. ACS Sustainable Chemistry & Engineering, 4(5), 2830-2837.
-
Wang, Z., Ning, A., Xie, P., Gao, G., Xie, L., Li, X., & Song, A. (2017). Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydrate Polymers, 157, 48-56.
-
Zhao, D., Huang, J., Zhong, Y., Li, K., Zhang, L., & Cai, J. (2016). High‐strength and high‐toughness double‐cross‐linked cellulose hydrogels: A new strategy using sequential chemical and physical cross‐linking. Advanced Functional Materials, 26(34), 6279-6287.