BibTex RIS Cite

Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network

Year 2016, Volume: 16 Özel Sayı, 1 - 10, 01.11.2016

Abstract

Especially during the last years, both government and private sectors have made investments such as new airports constructions, an expansion of air fleet, and entrance of new firms to aviation sector. These developments in air transport have brought the question whether airports work efficiently. In this study, firstly an efficiency analysis of airports which are located in Turkey is conducted by using Data Envelopment Analysis (DEA). The results of DEA show that 19 airports in 41 airports work efficiently in Turkey. After DEA analysis, we build an Artificial Neural Network model which helps to predict an efficiency of existing and alternative airports by utilizing same data

References

  • Adler, N., J. Berechman (2001). “Measuring airport quality from the airlines viewpoint: an application of data envelopment analysis” Transport Policy, 8(3), 171–181.
  • Ar, İ. M. (2012). “Türkiye’deki Havalimanlarının Etkinliklerindeki Değişimin İncelenmesi: 2007-2011 Dönemi İçin Malmquist-TFV Endeksi Uygulaması” Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 26 (3-4).
  • Bakırcı, F. (2006). Üretimde Etkinlik ve Verimlilik Ölçümü Veri Zarflama Analizi Teori ve Uygulama, Atlas Yayınları, İstanbul, 250.
  • Banker, R.D., Charnes, A., Cooper, W.W., (1984). “Some Models For Estimating Technical And Scale In- efficiencies in Data Envelopment Analysis” Management Science, 30(9), 1078-192
  • Bazargan, M., B. Vasigh (2003). “Size Versus Efficien- cy: A Case Study of US Commercial Airports” Journal of Air Transport Management, 9(3), 187–193.
  • Bulak M. E.,Kuş H. T., Temizer L., Türkyılmaz A. (2014). “KOBİ’lerin Operasyonel Etkinliklerine Göre Sınıflandırılması: Veri Zarflama Analizi ile Yapay Sinir Ağı Modeli” Yöneylem Araştırması ve Endüstri Mühendisliği Ulusal Kongresi, Bursa/Türkiye, Jul. 2014, 34. Yöneylem Araştırması ve Endüstri Mühendisliği Ulusal Kongresi (YAEM 2014), 348.
  • Charnes, A., Cooper,W.W., Rhodes, E., (1978). “Measuring The Efficiency Of Decision Making Units” European Journal of Operational Research, 2, 429–444.
  • Demirci A.,Yakut E. Gündüz M. (2013). “Measure- ment of the Economical and Social Efficiency of OECD Countries by Means of Data Envelopment Analysis and Artifical Neural Network” International Journal of Business and Social Science, 4(13), 1-14
  • Düzakın, E., Güçray, A. (2001). “An Analysis of the Efficiency of Airports in Turkey” Forty Three Conference Handbook Operational Research Society Annual Confer- ence 4-6 September The University of Bath
  • Efe, M.Ö., Kaynak, O. (2000). Yapay Sinir Ağları ve Uygulamaları, Boğaziçi Üniversitesi Basımevi, İstanbul.
  • Ekinci Y., Temur G. T., Çelebi D., Bayraktar D., (2008). “Ekonomik Kriz Döneminde Firma Başarısı Tah- mini: Yapay Sinir Ağları Tabanlı Bir Yaklaşım” Endüstri Mühendisliği Dergisi, 21(1), 17-29.
  • Elmas, Ç. (2003). Yapay Sinir Ağları (Kuram, Mimari, Eğitim, Uygulama), Seçkin Yayıncılık, Ankara.
  • Fernandes, E., R.R. Pacheco (2002). “Efficient Use of Airport Capacity” Transportation Research Part A, 36(3), 225–238.
  • Gillen,D.,Lall,A. (1997). Developing measures of airport productivity and performance: an application of data envelopment analysis. Transportation Research E: Logistics and Transportation Review 33, 261–273.
  • Koçak, H. (2010). Efficiency Examination of Turkish Airports with DEA Approach, International Business Research, 4(2), 204-212.
  • Martín, J.C., C. Román (2001). An application of DEA to measure the efficiency of Spanish airports prior to privatization, Journal of Air Transport Management, 7(3), 149- 157.
  • Mostafa, M.M. (2009). Modeling the efficiency of top Arab banks: a DEA-neural network approach, Expert Systems with Applications, 36(1), 309–320.
  • Ömürbek, N., Demirgubuz M. Ö., Tunca M. Z. (2013). Hizmet Sektöründe Performans Ölçümünde Veri Zarflama Analizinin Kullanımı: Havalimanları Üzerine Bir Uygulama, Süleyman Demirel Üniversitesi Vizyoner Dergisi, 4(9), 21-43.
  • Özdemir, D. Temur, G.T. (2009). DEA ANN ap- proach in supplier evaluation system ,World Academy of Science, Engineering and Technology, 54, 343–348.
  • Öztemel, E. (2003). Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul.
  • Pacheco, R.R., E. Fernandes (2003). Managerial efficiency of Brazilian airports, Transportation Research Part A, 37(8), 667–680.
  • Peker İ., Baki B. (2009). Veri Zarflama Analizi ile Türkiye Havalimanlarında Bir Etkinlik Ölçümü Uygu- laması, Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(2), 72-88.
  • Pels, E., Nijkamp, P., P. Rietveld (2001). Relative efficiency of European airports, Transport Policy, 8(3), 183–192.
  • Raab, R. L., Lichty, R. W. (2002). Identifying subareas that comprise a greater metropolitan area: The criterion of county relative efficiency. Journal of Regional Science., Cilt 42, 579–59.
  • Sarkis, J. (2000). An analysis of the operational effi- ciency of major airports in the United States. Journal of Operations Management 18, 335–351
  • Sreekumar, S. Mahapatra, S.S. (2011). Performance modeling of Indian business schools: a DEA-neural net- work approach, Benchmarking: An International Journal, 18(2), 221–239.
  • Tosun, Ö. (2012). Using data envelopment analysis– neural network model to evaluate hospital efficiency, Int. J. Productivity and Quality Management, 9(2), 245–257.
  • Yeşilyurt, C. ve Alan, M. A. (2003). Fen liselerinin 2002 yılı göreceli etkinliğinin veri zarflama analizi yöntemiyle ile ölçülmesi, C.Ü. İktisadi ve İdari Bilimler Dergisi, 4(2), 91-104.
  • Yoshida, Y., H. Fujimoto (2004). Japanese-airport benchmarking with the DEA and endogenous weight TFP methods: testing the criticism of overinvestment in Japanese regional airports, Transportation Research Part E, 40(6), 533–546.
  • Yu, M.M. (2004). Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors’, Journal of Air Transport Management, 10(5), 295–303.
  • Wu, D., Yang, Z., Liang, L. (2006). Using DEA-neu- ral network approach to evaluate branch efficiency of a large Canadian bank, Expert Systems with Applications, 31(1), 108–111.

Türkiye’deki Havalimanlarının Etkinlik Tahmini: Veri Zarflama Analizi ve Yapay Sınır Ağlarının Birlikte Kullanımı

Year 2016, Volume: 16 Özel Sayı, 1 - 10, 01.11.2016

Abstract

Havayolu ulaşımına özellikle son yıllarda hem devlet hem de özel sektör tarafından, yeni havalimanı inşaatları, uçak filosu genişletme, yeni firmaların sektöre girişleri şeklinde yoğun bir yatırım söz konusudur. Havayolu ulaşımındaki bu gelişmeler havalimanlarının ne kadar etkin çalıştığı sorusunu akıllara getirmiştir. Çalışmada ilk olarak Türkiye’de yer alan havalimanlarının Veri Zarflama Analizi yardımıyla etkinliği hesaplanmıştır. Çalışma kapsamında Türkiye’de yer alan 41 adet havalimanı incelenmiştir. Yapılan analiz sonucu çalışma kapsamında incelenen havalimanlarından 19 tanesinin etkin olarak çalıştığı tespit edilmiştir. Veri Zarflama Analizi sonrasında aynı veriler yardımıyla mevcut veya yeni yapılacak havalimanlarının etkinlik durumunun tahmin edilebileceği bir Yapay Sinir Ağları modeli geliştirilmiştir

References

  • Adler, N., J. Berechman (2001). “Measuring airport quality from the airlines viewpoint: an application of data envelopment analysis” Transport Policy, 8(3), 171–181.
  • Ar, İ. M. (2012). “Türkiye’deki Havalimanlarının Etkinliklerindeki Değişimin İncelenmesi: 2007-2011 Dönemi İçin Malmquist-TFV Endeksi Uygulaması” Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 26 (3-4).
  • Bakırcı, F. (2006). Üretimde Etkinlik ve Verimlilik Ölçümü Veri Zarflama Analizi Teori ve Uygulama, Atlas Yayınları, İstanbul, 250.
  • Banker, R.D., Charnes, A., Cooper, W.W., (1984). “Some Models For Estimating Technical And Scale In- efficiencies in Data Envelopment Analysis” Management Science, 30(9), 1078-192
  • Bazargan, M., B. Vasigh (2003). “Size Versus Efficien- cy: A Case Study of US Commercial Airports” Journal of Air Transport Management, 9(3), 187–193.
  • Bulak M. E.,Kuş H. T., Temizer L., Türkyılmaz A. (2014). “KOBİ’lerin Operasyonel Etkinliklerine Göre Sınıflandırılması: Veri Zarflama Analizi ile Yapay Sinir Ağı Modeli” Yöneylem Araştırması ve Endüstri Mühendisliği Ulusal Kongresi, Bursa/Türkiye, Jul. 2014, 34. Yöneylem Araştırması ve Endüstri Mühendisliği Ulusal Kongresi (YAEM 2014), 348.
  • Charnes, A., Cooper,W.W., Rhodes, E., (1978). “Measuring The Efficiency Of Decision Making Units” European Journal of Operational Research, 2, 429–444.
  • Demirci A.,Yakut E. Gündüz M. (2013). “Measure- ment of the Economical and Social Efficiency of OECD Countries by Means of Data Envelopment Analysis and Artifical Neural Network” International Journal of Business and Social Science, 4(13), 1-14
  • Düzakın, E., Güçray, A. (2001). “An Analysis of the Efficiency of Airports in Turkey” Forty Three Conference Handbook Operational Research Society Annual Confer- ence 4-6 September The University of Bath
  • Efe, M.Ö., Kaynak, O. (2000). Yapay Sinir Ağları ve Uygulamaları, Boğaziçi Üniversitesi Basımevi, İstanbul.
  • Ekinci Y., Temur G. T., Çelebi D., Bayraktar D., (2008). “Ekonomik Kriz Döneminde Firma Başarısı Tah- mini: Yapay Sinir Ağları Tabanlı Bir Yaklaşım” Endüstri Mühendisliği Dergisi, 21(1), 17-29.
  • Elmas, Ç. (2003). Yapay Sinir Ağları (Kuram, Mimari, Eğitim, Uygulama), Seçkin Yayıncılık, Ankara.
  • Fernandes, E., R.R. Pacheco (2002). “Efficient Use of Airport Capacity” Transportation Research Part A, 36(3), 225–238.
  • Gillen,D.,Lall,A. (1997). Developing measures of airport productivity and performance: an application of data envelopment analysis. Transportation Research E: Logistics and Transportation Review 33, 261–273.
  • Koçak, H. (2010). Efficiency Examination of Turkish Airports with DEA Approach, International Business Research, 4(2), 204-212.
  • Martín, J.C., C. Román (2001). An application of DEA to measure the efficiency of Spanish airports prior to privatization, Journal of Air Transport Management, 7(3), 149- 157.
  • Mostafa, M.M. (2009). Modeling the efficiency of top Arab banks: a DEA-neural network approach, Expert Systems with Applications, 36(1), 309–320.
  • Ömürbek, N., Demirgubuz M. Ö., Tunca M. Z. (2013). Hizmet Sektöründe Performans Ölçümünde Veri Zarflama Analizinin Kullanımı: Havalimanları Üzerine Bir Uygulama, Süleyman Demirel Üniversitesi Vizyoner Dergisi, 4(9), 21-43.
  • Özdemir, D. Temur, G.T. (2009). DEA ANN ap- proach in supplier evaluation system ,World Academy of Science, Engineering and Technology, 54, 343–348.
  • Öztemel, E. (2003). Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul.
  • Pacheco, R.R., E. Fernandes (2003). Managerial efficiency of Brazilian airports, Transportation Research Part A, 37(8), 667–680.
  • Peker İ., Baki B. (2009). Veri Zarflama Analizi ile Türkiye Havalimanlarında Bir Etkinlik Ölçümü Uygu- laması, Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(2), 72-88.
  • Pels, E., Nijkamp, P., P. Rietveld (2001). Relative efficiency of European airports, Transport Policy, 8(3), 183–192.
  • Raab, R. L., Lichty, R. W. (2002). Identifying subareas that comprise a greater metropolitan area: The criterion of county relative efficiency. Journal of Regional Science., Cilt 42, 579–59.
  • Sarkis, J. (2000). An analysis of the operational effi- ciency of major airports in the United States. Journal of Operations Management 18, 335–351
  • Sreekumar, S. Mahapatra, S.S. (2011). Performance modeling of Indian business schools: a DEA-neural net- work approach, Benchmarking: An International Journal, 18(2), 221–239.
  • Tosun, Ö. (2012). Using data envelopment analysis– neural network model to evaluate hospital efficiency, Int. J. Productivity and Quality Management, 9(2), 245–257.
  • Yeşilyurt, C. ve Alan, M. A. (2003). Fen liselerinin 2002 yılı göreceli etkinliğinin veri zarflama analizi yöntemiyle ile ölçülmesi, C.Ü. İktisadi ve İdari Bilimler Dergisi, 4(2), 91-104.
  • Yoshida, Y., H. Fujimoto (2004). Japanese-airport benchmarking with the DEA and endogenous weight TFP methods: testing the criticism of overinvestment in Japanese regional airports, Transportation Research Part E, 40(6), 533–546.
  • Yu, M.M. (2004). Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors’, Journal of Air Transport Management, 10(5), 295–303.
  • Wu, D., Yang, Z., Liang, L. (2006). Using DEA-neu- ral network approach to evaluate branch efficiency of a large Canadian bank, Expert Systems with Applications, 31(1), 108–111.
There are 31 citations in total.

Details

Other ID JA95YJ86KD
Journal Section Research Article
Authors

Bersam Bolat This is me

Gül T. Temur This is me

Haktan Gürler This is me

Publication Date November 1, 2016
Published in Issue Year 2016 Volume: 16 Özel Sayı

Cite

APA Bolat, B., Temur, G. T., & Gürler, H. (2016). Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network. Ege Academic Review, 16(5), 1-10.
AMA Bolat B, Temur GT, Gürler H. Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network. ear. November 2016;16(5):1-10.
Chicago Bolat, Bersam, Gül T. Temur, and Haktan Gürler. “Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network”. Ege Academic Review 16, no. 5 (November 2016): 1-10.
EndNote Bolat B, Temur GT, Gürler H (November 1, 2016) Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network. Ege Academic Review 16 5 1–10.
IEEE B. Bolat, G. T. Temur, and H. Gürler, “Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network”, ear, vol. 16, no. 5, pp. 1–10, 2016.
ISNAD Bolat, Bersam et al. “Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network”. Ege Academic Review 16/5 (November 2016), 1-10.
JAMA Bolat B, Temur GT, Gürler H. Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network. ear. 2016;16:1–10.
MLA Bolat, Bersam et al. “Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network”. Ege Academic Review, vol. 16, no. 5, 2016, pp. 1-10.
Vancouver Bolat B, Temur GT, Gürler H. Estimating The Efficiency Of Airports In Turkey: Utilization Of Data Envelopment Analysis And Artifical Neural Network. ear. 2016;16(5):1-10.