BibTex RIS Cite

Optimization Models in Energy: A Literature Review

Year 2016, Volume: 16 Özel Sayı, 51 - 70, 01.11.2016

Abstract

Energy is one of the priority development objectives for the countries. Changing environmental and climate conditions force countries to meet their energy needs. Energy should be low-cost, sustainable and reliable to meet the rapidly rising demand. Since energy is a substantial input for all sectors, improvements in this area directly affect the sectors. Therefore, there is a need for optimization applications to be performed in this subject. Energy has an interdisciplinary application area, so the integration of different engineering problems requires optimization applications. In this study, optimization problems of energy field are discussed, and energy problems are classified by decision level, application area and energy type. In addition, the related literature is analysed with regard to model structures and solution methods. The paper provides an overview of the applications of energy optimization techniques in order to guide researchers studying in this area

References

  • Adhikary, P., Roy, P. K. ve Mazumdar, A. (2015) “ Turbine supplier selection for small hydro project: Application of multi-criteria optimization technique” International Journal of Applied Engineering Research, 10(5), 13109–13122.
  • Alvarez-Valdes, R., Crespo, E., Tamarit, J. M. ve Villa, F. (2008) “ GRASP and path relinking for project scheduling under partially renewable resources” European Journal of Operational Research, 189(3), 1153–1170. doi:10.1016/j.ejor.2006.06.073
  • Anagnostopoulos, J. S. ve Papantonis, D. E. (2007) “ Optimal sizing of a run-of-river small hydropower plant” Energy Conversion and Management, 48(10), 2663–2670. doi:10.1016/j.enconman.2007.04.016
  • Anagnostopoulos, J. S. ve Papantonis, D. E. (2008) “ Simulation and size optimization of a pumped-storage power plant for the recovery of wind-farms rejected ener- gy” Renewable Energy, 33(7), 1685–1694. doi:10.1016/j. renene.2007.08.001
  • Bakır, M. A. ve Altunkaynak, B. (2003) “ Tamsayılı programlama: teori, modeller ve algoritmalar” Ankara: Nobel Yayınları.
  • Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A. ve Gómez, J. (2011) “ Optimization methods applied to renewable and sustainable energy: A review” Renewable and Sustainable Energy Reviews, 15(4), 1753–1766. doi:10.1016/j.rser.2010.12.008
  • Ben-Haim, Y. (2006) “ Info-gap decision theory: decisions under severe uncertainty ” 2. Edition, Amster- dam: Elsevier/Academic Press.
  • Benini, E. ve Toffolo, A. (2002) “ Optimal Design of Horizontal-Axis Wind Turbines Using Blade-El- ement Theory and Evolutionary Computation” Journal of Solar Energy Engineering, 124(4), 357–363. doi:10.1115/1.1510868
  • Bernal-Agustín, J. L. ve Dufo-López, R. (2009) “ Efficient design of hybrid renewable energy systems using evolutionary algorithms” Energy Conversion and Management, 50(3), 479–489. doi:10.1016/j.encon- man.2008.11.007
  • Bertsimas, D. ve Sim, M. (2004) “ The Price of Ro- bustness” Operations Research, 52(1), 35–53. doi:10.1287/ opre.1030.0065
  • Bosch, J. L., López, G. ve Batlles, F. J. (2008) “ Daily solar irradiation estimation over a mountainous area using artificial neural networks” Renewable Energy, 33(7), 1622–1628. doi:10.1016/j.renene.2007.09.012
  • Bozorg, H., Ashofteh, P.-S., Rasoulzadeh-Gharib- dousti, S. ve Mariño, M. A. (2014) “ Optimization model for design-operation of pumped-storage and hy- dropower systems” Journal of Energy Engineering, 140(2) “ doi:10.1061/(ASCE)EY.1943-7897.0000169
  • Cai, Y. P., Huang, G. H., Tan, Q. ve Yang, Z. F. (2009) “ Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment” Renewable Energy, 34(7), 1833–1847. doi:10.1016/j.renene.2008.11.024
  • Cai, Y. P., Huang, G. H., Yang, Z. F., Lin, Q. G. ve Tan, Q. (2009) “ Community-scale renewable energy systems planning under uncertainty—An interval chance-constrained programming approach” Renew- able and Sustainable Energy Reviews, 13(4), 721–735. doi:10.1016/j.rser.2008.01.008
  • Cao, J. ve Lin, X. (2008) “ Study of hourly and daily solar irradiation forecast using diagonal recur- rent wavelet neural networks” Energy Conversion and Management, 49(6), 1396–1406. doi:10.1016/j.encon- man.2007.12.030
  • Chakraborty, S., Senjyu, T., Saber, A. Y., Yona, A. ve Funabashi, T. (2009) “ Optimal Thermal Unit Commitment Integrated with Renewable Energy Sources Using Advanced Particle Swarm Optimization” IEEJ Transactions on Electrical and Electronic Engineering, 4(5), 609–617. doi:10.1002/tee.20453
  • Chang, Y.-P. ve Ko, C.-N. (2009) “ A PSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters” Expert Systems with Applications, 36(3, Part 2), 6809–6816. doi:10.1016/j.eswa.2008.08.007
  • Cirre, C. M., Berenguel, M., Valenzuela, L. ve Klempous, R. (2009) “ Reference governor optimization and control of a distributed solar collector field” Euro- pean Journal of Operational Research, 193(3), 709–717. doi:10.1016/j.ejor.2007.05.056
  • Dagdas, A. (2007) “ Heat exchanger optimization for geothermal district heating systems: A fuel saving approach” Renewable Energy, 32(6), 1020–1032. doi:10.1016/j.renene.2006.03.008
  • Dantzig, G. B. (1955) “ Linear Programming under Uncertainty” Management Science, 1(3/4), 197–206.
  • De Ladurantaye, D., Gendreau, M. ve Potvin, J.-Y. (2009) “ Optimizing profits from hydroelectricity pro- duction” Computers & Operations Research, Scheduling for Modern Manufacturing, Logistics, and Supply Chains, 36(2), 499–529. doi:10.1016/j.cor.2007.10.012
  • Dufo-López, R., Bernal-Agustín, J. L., Yusta-Loyo, J. M., Domínguez-Navarro, J. A., Ramírez-Rosado, I. J., Lujano, J. ve Aso, I. (2011) “ Multi-objective optimiza- tion minimizing cost and life cycle emissions of stand- alone PV–wind–diesel systems with batteries storage” Applied Energy, 88(11), 4033–4041. doi:10.1016/j. apenergy.2011.04.019
  • Eke, R., Kara, O. ve Ulgen, K. (2005) “ Optimization of a Wind/PV Hybrid Power Generation System” Interna- tional Journal of Green Energy, 2(1), 57–63. doi:10.1081/ GE-200051304
  • Finardi, E. C., da Silva, E. L. ve Sagastizábal, C. (2005) “ Solving the unit commitment problem of hydro- power plants via Lagrangian Relaxation and Sequential Quadratic Programming” Applied Mathematics, 24(3), 317–342. doi:10.1590/S0101-82052005000300001
  • Fleten, S.-E., Maribu, K. M. ve Wangensteen, I. (2007) “ Optimal investment strategies in decentralized renewable power generation under uncertainty” Energy, 32(5), 803–815. doi:10.1016/j.energy.2006.04.015
  • Frijns, J., Marchet, E. C., Carriço, N., Covas, D., Monteiro, A. J., Ramos, H. M., … Makropoulos, C. (2015) “ Management tools for hydro energy interven- tions in water supply systems” Water Practice and Technol- ogy, 10(2), 214–228. doi:10.2166/wpt.2015.024
  • Gebraad, P. M. O., Teeuwisse, F. W., van Wingerden, J. W., Fleming, P. A., Ruben, S. D., Marden, J. R. ve Pao, L. Y. (2016) “ Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study” Wind Energy, 19(1), 95–114. doi:10.1002/we.1822
  • Giannakoudis, G., Papadopoulos, A. I., Seferlis, P. ve Voutetakis, S. (2010) “ On the Systematic Design and Optimization under Uncertainty of a Hybrid Power Generation System Using Renewable Energy Sources and Hydrogen Storage” S. P. and G. B. Ferraris (Ed.), Com- puter Aided Chemical Engineering içinde , 20th European Symposium on Computer Aided Process Engineering (C. 28, ss. 907–912), Elsevier. http://www.sciencedirect.com/ science/article/pii/S157079461028152X adresinden erişildi.
  • Goldberg, D., Deb, K. ve Korb, B. (1989) “ Messy genetic algorithms: motivation, analysis, and first results” Complex Systems, (3), 493–530.
  • Gómez-González, M., López, A. ve Jurado, F. (2013) “ Hybrid discrete PSO and OPF approach for optimization of biomass fueled micro-scale energy system” Energy Con- version and Management, 65, 539–545. doi:10.1016/j. enconman.2012.07.029
  • Grady, S. A., Hussaini, M. Y. ve Abdullah, M. M. (2005) “ Placement of wind turbines using ge- netic algorithms” Renewable Energy, 30(2), 259–270. doi:10.1016/j.renene.2004.05.007
  • Guo, Z., Wu, J., Lu, H. ve Wang, J. (2011) “ A case study on a hybrid wind speed forecasting method using BP neural network” Knowledge-Based Systems, 24(7), 1048–1056. doi:10.1016/j.knosys.2011.04.019
  • Haddad, O., Moradi-Jalal, M. ve Mariño, M. A. (2011) “ Design–operation optimisation of run-of- river power plants” Proceedings of the Institution of Civil Engineers - Water Management, 164(9), 463–475. doi:10.1680/wama.2011.164.9.463
  • Hiremath, R. B., Shikha, S. ve Ravindranath, N. H. (2007) “ Decentralized energy planning; modeling and application—a review” Renewable and Sustainable Energy Reviews, 11(5), 729–752. doi:10.1016/j.rser.2005.07.005
  • Huang, W., Murray, C., Kraus, N. ve Rosati, J. (2003) “ Development of a regional neural network for coastal water level predictions” Ocean Engineering, 30(17), 2275–2295. doi:10.1016/S0029-8018(03)00083-0
  • Iqbal, M., Azam, M., Naeem, M., Khwaja, A. S. ve Anpalagan, A. (2014) “ Optimization classification, algorithms and tools for renewable energy: A review” Renewable and Sustainable Energy Reviews, 39, 640–654. doi:10.1016/j.rser.2014.07.120
  • Ismail, M. S., Moghavvemi, M. ve Mahlia, T. M. I. (2013) “ Characterization of PV panel and global optimization of its model parameters using genetic algo- rithm” Energy Conversion and Management, 73, 10–25. doi:10.1016/j.enconman.2013.03.033
  • Jebaraj, S. ve Iniyan, S. (2006) “ A review of energy models” Renewable and Sustainable Energy Reviews, 10(4),
  • Kahraman, C., Kaya, İ. ve Cebi, S. (2009) “ A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process” Energy, 11th Conference on Process Integration, Modelling and Op- timisation for Energy Saving and Pollution Reduction, 34(10), 1603–1616. doi:10.1016/j.energy.2009.07.008
  • Kalogirou, S. A. (2004) “ Optimization of solar systems using artificial neural-networks and genetic al- gorithms” Applied Energy, 77(4), 383–405. doi:10.1016/ S0306-2619(03)00153-3
  • Katsigiannis, Y. A., Georgilakis, P. S. ve Karapidakis, E. S. (2010) “ Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables” IET Renewable Power Generation, 4(5), 404–419. doi:10.1049/iet-rpg.2009.0076
  • Kaya, T. ve Kahraman, C. (2011) “ Multicriteria de- cision making in energy planning using a modified fuzzy TOPSIS methodology” Expert Systems with Applications, 38(6), 6577–6585. doi:10.1016/j.eswa.2010.11.081
  • Kazeminezhad, M. H., Etemad-Shahidi, A. ve Mousavi, S. J. (2005) “ Application of fuzzy inference system in the prediction of wave parameters” Ocean Engineering, 32(14-15), 1709–1725. doi:10.1016/j. oceaneng.2005.02.001
  • Kleinpeter, M. (1995) “ Energy planning and policy” Chichester, John Wiley & Sons.
  • Kongnam, C., Nuchprayoon, S., Premrudeep- reechacharn, S. ve Uatrongjit, S. (2009) “ Decision analysis on generation capacity of a wind park” Renewable and Sustainable Energy Reviews, 13(8), 2126–2133. doi:10.1016/j.rser.2009.01.023
  • Kuby, M. J., Fagan, W. F., ReVelle, C. S. ve Graf, W. L. (2005) “ A multiobjective optimization model for dam removal: an example trading off salmon passage with hy- dropower and water storage in the Willamette basin” Ad- vances in Water Resources, 28(8), 845–855. doi:10.1016/j. advwatres.2004.12.015
  • Kusiak, A. ve Zheng, H. (2010) “ Optimization of wind turbine energy and power factor with an evolution- ary computation algorithm” Energy, 35(3), 1324–1332. doi:10.1016/j.energy.2009.11.015
  • Lagorse, J., Paire, D. ve Miraoui, A. (2009) “ Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and bat- tery” Renewable Energy, 34(3), 683–691. doi:10.1016/j. renene.2008.05.030
  • Liu, H., Jiang, C. ve Zhang, Y. (2009) “ Portfolio management of hydropower producer via stochastic pro- gramming” Energy Conversion and Management, 50(10), 2593–2599. doi:10.1016/j.enconman.2009.06.010
  • Li, Y. F., Li, Y. P., Huang, G. H. ve Chen, X. (2010) “ Energy and environmental systems planning under uncertainty—An inexact fuzzy-stochastic program- ming approach” Applied Energy, 87(10), 3189–3211. doi:10.1016/j.apenergy.2010.02.030
  • Lozano, J. M. S., Teruel-Solano, J., Soto-Elvira, P. L. ve Socorro, G.-C. (2013) “ Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms loca- tions: Case study in south-eastern Spain” Renewable and Sustainable Energy Reviews, 24, 544–556. doi:10.1016/j. rser.2013.03.019
  • Madlener, R., Antunes, C. H. ve Dias, L. C. (2009) “ Assessing the performance of biogas plants with multi-cri- teria and data envelopment analysis” European Journal of Operational Research, 197(3), 1084–1094. doi:10.1016/j. ejor.2007.12.051
  • Mellit, A. ve Kalogirou, S. A. (2011) “ ANFIS-based modelling for photovoltaic power supply system: A case study” Renewable Energy, 36(1), 250–258. doi:10.1016/j. renene.2010.06.028
  • Mellit, A., Kalogirou, S. A. ve Drif, M. (2010) “ Ap- plication of neural networks and genetic algorithms for sizing of photovoltaic systems” Renewable Energy, 35(12), 2881–2893. doi:10.1016/j.renene.2010.04.017
  • Montoya, F. G., Baños, R., Gil, C., Espín, A., Al- cayde, A. ve Gómez, J. (2010) “ Minimization of voltage deviation and power losses in power networks using Pareto optimization methods” Engineering Applications of Artificial Intelligence, Advances in metaheuristics for hard optimization: new trends and case studies, 23(5), 695–703. doi:10.1016/j.engappai.2010.01.011
  • Moore, R. E. (1966) “ Interval analysis” Englewood Cliffs: Prentice-Hall.
  • Mourmouris, J. C. ve Potolias, C. (2013) “ A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece” Energy Policy, 52, 522–530. doi:10.1016/j.enpol.2012.09.074
  • Niknam, T. ve Firouzi, B. B. (2009) “ A practical algorithm for distribution state estimation including renewable energy sources” Renewable Energy, 34(11), 2309–2316.
  • Niknam, T., Firouzi, B. B. ve Ostadi, A. (2010) “ A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering dis- tributed generators” Applied Energy, 87(6), 1919–1928. doi:10.1016/j.apenergy.2010.01.003
  • Omer, A. M. (2008) “ Ground-source heat pumps sys- tems and applications” Renewable and Sustainable Energy Reviews, 12(2), 344–371. doi:10.1016/j.rser.2006.10.003
  • Omitaomu, O. A., Blevins, B. R., Jochem, W. C., Mays, G. T., Belles, R., Hadley, S. W., … Rose, A. N. (2012) “ Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites” Applied Energy, 96, 292–301. doi:10.1016/j.apen- ergy.2011.11.087
  • Ould Bilal, B., Sambou, V., Ndiaye, P. A., Kébé, C. M. F. ve Ndongo, M. (2010) “ Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP) “ Renewable Energy, 35(10), 2388–2390. doi:10.1016/j.renene.2010.03.004
  • Pantaleo, A. M., Giarola, S., Bauen, A. ve Shah, N. (2014) “ Integration of biomass into urban energy systems for heat and power Part I: An MILP based spatial optimi- zation methodology” Energy Conversion and Management, 83, 347–361. doi:10.1016/j.enconman.2014.03.050
  • Papaefthymiou, S. V. ve Papathanassiou, S. A. (2014) “ Optimum sizing of wind-pumped-storage hybrid power stations in island systems” Renewable Energy, 64, 187–196. doi:10.1016/j.renene.2013.10.047
  • Peña, R., Medina, A., Anaya-Lara, O. ve McDonald, J. R. (2009) “ Capacity estimation of a minihydro plant based on time series forecasting” Renewable Energy, 34(5), 1204–1209. doi:10.1016/j.renene.2008.10.011
  • Pereira, S., Ferreira, P. ve Vaz, A. I. F. (2016) “ Opti- mization modeling to support renewables integration in power systems” Renewable and Sustainable Energy Reviews, 55, 316–325. doi:10.1016/j.rser.2015.10.116
  • Pérez-Díaz, J. I., Wilhelmi, J. R. ve Sánchez-Fernán- dez, J. Á. (2010) “ Short-term operation scheduling of a hydropower plant in the day-ahead electricity market” Electric Power Systems Research, 80(12), 1535–1542. doi:10.1016/j.epsr.2010.06.017
  • Pohekar, S. D. ve Ramachandran, M. (2004) “ Ap- plication of multi-criteria decision making to sustainable energy planning—A review” Renewable and Sustain- able Energy Reviews, 8(4), 365–381. doi:10.1016/j. rser.2003.12.007
  • Reche-López, P., Ruiz-Reyes, N., García Galán, S. ve Jurado, F. (2009) “ Comparison of metaheuristic techniques to determine optimal placement of biomass power plants” Energy Conversion and Management, 50(8), 2020–2028. doi:10.1016/j.enconman.2009.04.008
  • Reikard, G. (2009) “ Forecasting ocean wave energy: Tests of time-series models” Ocean Engineering, 36(5), 348–356. doi:10.1016/j.oceaneng.2009.01.003
  • Ren, C., An, N., Wang, J., Li, L., Hu, B. ve Shang, D. (2014) “ Optimal parameters selection for BP neural net- work based on particle swarm optimization: A case study of wind speed forecasting” Knowledge-Based Systems, 56, 226–239. doi:10.1016/j.knosys.2013.11.015
  • Rentizelas, A. A., Tatsiopoulos, I. P. ve Tolis, A. (2009) “ An optimization model for multi-biomass tri-generation energy supply” Biomass and Bioenergy, 33(2), 223–233. doi:10.1016/j.biombioe.2008.05.008
  • Sadegheih, A. (2011) “ Optimal design methodol- ogies under the carbon emission trading program using MIP, GA, SA, and TS” Renewable and Sustainable Energy Reviews, 15(1), 504–513. doi:10.1016/j.rser.2010.07.035
  • Savic, D. (2002) “ Single-objective vs. Multiobjective Optimisation for Integrated Decision Support, In: Integrated Assessment and Decision” Proceedings of the First Biennial Meeting of the International Environmental Modelling and Software Society içinde (ss. 12–7) “
  • Scopus. (2016) “ Scopus - Document search results” 23 Aralık 2016 tarihinde https://www.scopus.com/ fields=TITLE_ABS_KEY=Multi+Objective+Decision+- Making%multi+objective+optimization%multiple+ob- jective+decision+making adresinden erişildi.
  • Sener, A. C. ve Van, D. (2005) “ Evolution of techni- cal and economical decision making in geothermal energy projects” Transactions - Geothermal Resources Council, C. 29, ss. 475–481.
  • Sigurdardottir, S. R., Valfells, A., Palsson, H. ve Ste- fansson, H. (2015) “ Mixed integer optimization model for utilizing a geothermal reservoir” Geothermics, 55, 171–181. doi:10.1016/j.geothermics.2015.01.006
  • Soroudi, A. ve Amraee, T. (2013) “ Decision making under uncertainty in energy systems: State of the art” Renewable and Sustainable Energy Reviews, 28, 376–384. doi:10.1016/j.rser.2013.08.039
  • Soroudi, A., Ehsan, M. ve Zareipour, H. (2011) “ A practical eco-environmental distribution network planning model including fuel cells and non-renewable distributed energy resources” Renewable Energy, 36(1), 179–188. doi:10.1016/j.renene.2010.06.019
  • Stoppato, A., Cavazzini, G., Ardizzon, G. ve Rossetti, A. (2014) “ A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Pho- tovoltaic)-pump hydro energy storage in a rural dry area” Energy, 76, 168–174. doi:10.1016/j.energy.2014.06.004
  • Suganthi, L., Iniyan, S. ve Samuel, A. A. (2015) “ Applications of fuzzy logic in renewable energy systems – A review” Renewable and Sustainable Energy Reviews, 48,
  • Taha, H. A. (2007) “ Yöneylem araştırması” (Ş. A. Baray ve Ş. Esnaf, Çev.) “ İstanbul: Literatür Yayıncılık.
  • Talbi, E.-G. (2009) “ Metaheuristics: from design to implementation. Hoboken, N.J: John Wiley & Sons.
  • Tiryaki, A. E. ve Kazan, R. (2007) “ Bulaşık maki- nesinin bulanık mantık ile modellenmesi” Mühendis ve Makina, 48(565), 3–8.
  • TMMOB. (2012) “ Dünyada ve Türkiye’de En- erji Verimliliği ( No: 589) ” Ankara: TMMOB Makine Mühendisleri Odası, http://www.mmo.org.tr/resimler/do- sya_ekler/fa34c3c2eb9b729_ek.pdf adresinden erişildi.
  • Tselepidou, K. ve Katsifarakis, K. L. (2010) “ Op- timization of the exploitation system of a low enthalpy geothermal aquifer with zones of different transmissivities and temperatures” Renewable Energy, Special Section: IST National Conference 2009, 35(7), 1408–1413. doi:10.1016/j.renene.2009.11.004
  • Turkay, M. (2006) “ Optimization Models and Solution Algorithms” New Frontiers in Total Quality and Strategic Management içinde . Ankara, Türkiye: Gazi Publishing.
  • Üstüntaş, T. ve Şahin, A. D. (2008) “ Wind turbine power curve estimation based on cluster center fuzzy logic modeling” Journal of Wind Engineering and In- dustrial Aerodynamics, 96(5), 611–620. doi:10.1016/j. jweia.2008.02.001
  • Vafaeipour, M., Hashemkhani Zolfani, S., Morshed Varzandeh, M. H., Derakhti, A. ve Keshavarz Eshkalag, M. (2014) “ Assessment of regions priority for imple- mentation of solar projects in Iran: New application of a hybrid multi-criteria decision making approach” Energy Conversion and Management, 86, 653–663. doi:10.1016/j.enconman.2014.05.083
  • Wang, J.-J., Jing, Y.-Y., Zhang, C.-F. ve Zhao, J.-H. (2009) “ Review on multi-criteria decision analysis aid in sustainable energy decision-making” Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. doi:10.1016/j.rser.2009.06.021
  • Wen, S., Lan, H., Fu, Q., Yu, D. C. ve Zhang, L. (2015) “ Economic Allocation for Energy Storage System Considering Wind Power Distribution” IEEE Transac- tions on Power Systems, 30(2), 644–652. doi:10.1109/ TPWRS.2014.2337936
  • Yoo, J.-H. (2009) “ Maximization of hydropower generation through the application of a linear program- ming model” Journal of Hydrology, 376(1–2), 182–187. doi:10.1016/j.jhydrol.2009.07.026
  • Zadeh, L. A. (1965) “ Fuzzy sets” Information and Control, 8(3), 338–353. doi:10.1016/S0019- 9958(65)90241-X
  • Zadeh, L. A. (2011) “A Note on Z-numbers” Infor- mation Sciences, 181(14), 2923–2932. doi:10.1016/j. ins.2011.02.022
  • Zakariazadeh, A., Jadid, S. ve Siano, P. (2014) “ Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective math- ematical programming approach” Energy Conversion and Management, 78, 151–164. doi:10.1016/j.encon- man.2013.10.051
  • Zangeneh, A., Jadid, S. ve Rahimi-Kian, A. (2009) “ Promotion strategy of clean technologies in distributed generation expansion planning” Renewable Energy, 34(12), 2765–2773. doi:10.1016/j.renene.2009.06.018
  • Zervas, P. L., Sarimveis, H., Palyvos, J. A. ve Mar- katos, N. C. G. (2008) “ Prediction of daily global solar irradiance on horizontal surfaces based on neural-net- work techniques” Renewable Energy, 33(8), 1796–1803. doi:10.1016/j.renene.2007.09.020
  • Zhao, M., Chen, Z. ve Blaabjerg, F. (2009) “ Op- timisation of electrical system for offshore wind farms via genetic algorithm” IET Renewable Power Generation, 3(2), 205. doi:10.1049/iet-rpg:20070112
  • Zhou, P., Ang, B. W. ve Poh, K. L. (2006) “ Decision analysis in energy and environmental modeling: An update” Energy, 31(14), 2604–2622. doi:10.1016/j. energy.2005.10.023

Enerjide Optimizasyon Uygulamaları: Bir Literatür Araştırması

Year 2016, Volume: 16 Özel Sayı, 51 - 70, 01.11.2016

Abstract

Enerji ülkeler için öncelikli kalkınma hedefleri arasındadır. Değişen çevre koşulları ve iklim şartları enerji ihtiyacının karşılanması noktasında ülkeleri çıkmaza sokmaktadır. Hızla artan enerji talebinin karşılanmasında enerjinin düşük maliyetli, sürdürülebilir ve güvenilir olması gerekmektedir. Enerji bütün sektörlerin vazgeçilmez girdisi olduğundan bu alanda yapılacak iyileştirmeler tüm sektörleri doğrudan etkiler. Dolayısıyla bu alanda yapılacak optimizasyon uygulamalarına ihtiyaç vardır. Enerji disiplinler arası bir uygulama alanına sahiptir. Bu yüzden farklı mühendislik problemlerinin entegrasyonu optimizasyon uygulamalarını gerekli kılmaktadır. Bu çalışmada enerji sahasında yapılan araştırmalar endüstri mühendisliği bakış açısıyla incelenerek enerjide optimizasyon gerekliliği vurgulanmıştır. Bu açıdan enerji problemleri karar seviyesi, uygulama alanı ve enerji türü bakımından sınıflandırılmış ve ele alınan optimizasyon problemleri model yapıları ve çözüm yöntemleri açısından incelenmiştir. Bu çalışmanın gelecek araştırmalar için alt yapı oluşturacağı düşünülmektedir

References

  • Adhikary, P., Roy, P. K. ve Mazumdar, A. (2015) “ Turbine supplier selection for small hydro project: Application of multi-criteria optimization technique” International Journal of Applied Engineering Research, 10(5), 13109–13122.
  • Alvarez-Valdes, R., Crespo, E., Tamarit, J. M. ve Villa, F. (2008) “ GRASP and path relinking for project scheduling under partially renewable resources” European Journal of Operational Research, 189(3), 1153–1170. doi:10.1016/j.ejor.2006.06.073
  • Anagnostopoulos, J. S. ve Papantonis, D. E. (2007) “ Optimal sizing of a run-of-river small hydropower plant” Energy Conversion and Management, 48(10), 2663–2670. doi:10.1016/j.enconman.2007.04.016
  • Anagnostopoulos, J. S. ve Papantonis, D. E. (2008) “ Simulation and size optimization of a pumped-storage power plant for the recovery of wind-farms rejected ener- gy” Renewable Energy, 33(7), 1685–1694. doi:10.1016/j. renene.2007.08.001
  • Bakır, M. A. ve Altunkaynak, B. (2003) “ Tamsayılı programlama: teori, modeller ve algoritmalar” Ankara: Nobel Yayınları.
  • Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A. ve Gómez, J. (2011) “ Optimization methods applied to renewable and sustainable energy: A review” Renewable and Sustainable Energy Reviews, 15(4), 1753–1766. doi:10.1016/j.rser.2010.12.008
  • Ben-Haim, Y. (2006) “ Info-gap decision theory: decisions under severe uncertainty ” 2. Edition, Amster- dam: Elsevier/Academic Press.
  • Benini, E. ve Toffolo, A. (2002) “ Optimal Design of Horizontal-Axis Wind Turbines Using Blade-El- ement Theory and Evolutionary Computation” Journal of Solar Energy Engineering, 124(4), 357–363. doi:10.1115/1.1510868
  • Bernal-Agustín, J. L. ve Dufo-López, R. (2009) “ Efficient design of hybrid renewable energy systems using evolutionary algorithms” Energy Conversion and Management, 50(3), 479–489. doi:10.1016/j.encon- man.2008.11.007
  • Bertsimas, D. ve Sim, M. (2004) “ The Price of Ro- bustness” Operations Research, 52(1), 35–53. doi:10.1287/ opre.1030.0065
  • Bosch, J. L., López, G. ve Batlles, F. J. (2008) “ Daily solar irradiation estimation over a mountainous area using artificial neural networks” Renewable Energy, 33(7), 1622–1628. doi:10.1016/j.renene.2007.09.012
  • Bozorg, H., Ashofteh, P.-S., Rasoulzadeh-Gharib- dousti, S. ve Mariño, M. A. (2014) “ Optimization model for design-operation of pumped-storage and hy- dropower systems” Journal of Energy Engineering, 140(2) “ doi:10.1061/(ASCE)EY.1943-7897.0000169
  • Cai, Y. P., Huang, G. H., Tan, Q. ve Yang, Z. F. (2009) “ Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment” Renewable Energy, 34(7), 1833–1847. doi:10.1016/j.renene.2008.11.024
  • Cai, Y. P., Huang, G. H., Yang, Z. F., Lin, Q. G. ve Tan, Q. (2009) “ Community-scale renewable energy systems planning under uncertainty—An interval chance-constrained programming approach” Renew- able and Sustainable Energy Reviews, 13(4), 721–735. doi:10.1016/j.rser.2008.01.008
  • Cao, J. ve Lin, X. (2008) “ Study of hourly and daily solar irradiation forecast using diagonal recur- rent wavelet neural networks” Energy Conversion and Management, 49(6), 1396–1406. doi:10.1016/j.encon- man.2007.12.030
  • Chakraborty, S., Senjyu, T., Saber, A. Y., Yona, A. ve Funabashi, T. (2009) “ Optimal Thermal Unit Commitment Integrated with Renewable Energy Sources Using Advanced Particle Swarm Optimization” IEEJ Transactions on Electrical and Electronic Engineering, 4(5), 609–617. doi:10.1002/tee.20453
  • Chang, Y.-P. ve Ko, C.-N. (2009) “ A PSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters” Expert Systems with Applications, 36(3, Part 2), 6809–6816. doi:10.1016/j.eswa.2008.08.007
  • Cirre, C. M., Berenguel, M., Valenzuela, L. ve Klempous, R. (2009) “ Reference governor optimization and control of a distributed solar collector field” Euro- pean Journal of Operational Research, 193(3), 709–717. doi:10.1016/j.ejor.2007.05.056
  • Dagdas, A. (2007) “ Heat exchanger optimization for geothermal district heating systems: A fuel saving approach” Renewable Energy, 32(6), 1020–1032. doi:10.1016/j.renene.2006.03.008
  • Dantzig, G. B. (1955) “ Linear Programming under Uncertainty” Management Science, 1(3/4), 197–206.
  • De Ladurantaye, D., Gendreau, M. ve Potvin, J.-Y. (2009) “ Optimizing profits from hydroelectricity pro- duction” Computers & Operations Research, Scheduling for Modern Manufacturing, Logistics, and Supply Chains, 36(2), 499–529. doi:10.1016/j.cor.2007.10.012
  • Dufo-López, R., Bernal-Agustín, J. L., Yusta-Loyo, J. M., Domínguez-Navarro, J. A., Ramírez-Rosado, I. J., Lujano, J. ve Aso, I. (2011) “ Multi-objective optimiza- tion minimizing cost and life cycle emissions of stand- alone PV–wind–diesel systems with batteries storage” Applied Energy, 88(11), 4033–4041. doi:10.1016/j. apenergy.2011.04.019
  • Eke, R., Kara, O. ve Ulgen, K. (2005) “ Optimization of a Wind/PV Hybrid Power Generation System” Interna- tional Journal of Green Energy, 2(1), 57–63. doi:10.1081/ GE-200051304
  • Finardi, E. C., da Silva, E. L. ve Sagastizábal, C. (2005) “ Solving the unit commitment problem of hydro- power plants via Lagrangian Relaxation and Sequential Quadratic Programming” Applied Mathematics, 24(3), 317–342. doi:10.1590/S0101-82052005000300001
  • Fleten, S.-E., Maribu, K. M. ve Wangensteen, I. (2007) “ Optimal investment strategies in decentralized renewable power generation under uncertainty” Energy, 32(5), 803–815. doi:10.1016/j.energy.2006.04.015
  • Frijns, J., Marchet, E. C., Carriço, N., Covas, D., Monteiro, A. J., Ramos, H. M., … Makropoulos, C. (2015) “ Management tools for hydro energy interven- tions in water supply systems” Water Practice and Technol- ogy, 10(2), 214–228. doi:10.2166/wpt.2015.024
  • Gebraad, P. M. O., Teeuwisse, F. W., van Wingerden, J. W., Fleming, P. A., Ruben, S. D., Marden, J. R. ve Pao, L. Y. (2016) “ Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study” Wind Energy, 19(1), 95–114. doi:10.1002/we.1822
  • Giannakoudis, G., Papadopoulos, A. I., Seferlis, P. ve Voutetakis, S. (2010) “ On the Systematic Design and Optimization under Uncertainty of a Hybrid Power Generation System Using Renewable Energy Sources and Hydrogen Storage” S. P. and G. B. Ferraris (Ed.), Com- puter Aided Chemical Engineering içinde , 20th European Symposium on Computer Aided Process Engineering (C. 28, ss. 907–912), Elsevier. http://www.sciencedirect.com/ science/article/pii/S157079461028152X adresinden erişildi.
  • Goldberg, D., Deb, K. ve Korb, B. (1989) “ Messy genetic algorithms: motivation, analysis, and first results” Complex Systems, (3), 493–530.
  • Gómez-González, M., López, A. ve Jurado, F. (2013) “ Hybrid discrete PSO and OPF approach for optimization of biomass fueled micro-scale energy system” Energy Con- version and Management, 65, 539–545. doi:10.1016/j. enconman.2012.07.029
  • Grady, S. A., Hussaini, M. Y. ve Abdullah, M. M. (2005) “ Placement of wind turbines using ge- netic algorithms” Renewable Energy, 30(2), 259–270. doi:10.1016/j.renene.2004.05.007
  • Guo, Z., Wu, J., Lu, H. ve Wang, J. (2011) “ A case study on a hybrid wind speed forecasting method using BP neural network” Knowledge-Based Systems, 24(7), 1048–1056. doi:10.1016/j.knosys.2011.04.019
  • Haddad, O., Moradi-Jalal, M. ve Mariño, M. A. (2011) “ Design–operation optimisation of run-of- river power plants” Proceedings of the Institution of Civil Engineers - Water Management, 164(9), 463–475. doi:10.1680/wama.2011.164.9.463
  • Hiremath, R. B., Shikha, S. ve Ravindranath, N. H. (2007) “ Decentralized energy planning; modeling and application—a review” Renewable and Sustainable Energy Reviews, 11(5), 729–752. doi:10.1016/j.rser.2005.07.005
  • Huang, W., Murray, C., Kraus, N. ve Rosati, J. (2003) “ Development of a regional neural network for coastal water level predictions” Ocean Engineering, 30(17), 2275–2295. doi:10.1016/S0029-8018(03)00083-0
  • Iqbal, M., Azam, M., Naeem, M., Khwaja, A. S. ve Anpalagan, A. (2014) “ Optimization classification, algorithms and tools for renewable energy: A review” Renewable and Sustainable Energy Reviews, 39, 640–654. doi:10.1016/j.rser.2014.07.120
  • Ismail, M. S., Moghavvemi, M. ve Mahlia, T. M. I. (2013) “ Characterization of PV panel and global optimization of its model parameters using genetic algo- rithm” Energy Conversion and Management, 73, 10–25. doi:10.1016/j.enconman.2013.03.033
  • Jebaraj, S. ve Iniyan, S. (2006) “ A review of energy models” Renewable and Sustainable Energy Reviews, 10(4),
  • Kahraman, C., Kaya, İ. ve Cebi, S. (2009) “ A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process” Energy, 11th Conference on Process Integration, Modelling and Op- timisation for Energy Saving and Pollution Reduction, 34(10), 1603–1616. doi:10.1016/j.energy.2009.07.008
  • Kalogirou, S. A. (2004) “ Optimization of solar systems using artificial neural-networks and genetic al- gorithms” Applied Energy, 77(4), 383–405. doi:10.1016/ S0306-2619(03)00153-3
  • Katsigiannis, Y. A., Georgilakis, P. S. ve Karapidakis, E. S. (2010) “ Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables” IET Renewable Power Generation, 4(5), 404–419. doi:10.1049/iet-rpg.2009.0076
  • Kaya, T. ve Kahraman, C. (2011) “ Multicriteria de- cision making in energy planning using a modified fuzzy TOPSIS methodology” Expert Systems with Applications, 38(6), 6577–6585. doi:10.1016/j.eswa.2010.11.081
  • Kazeminezhad, M. H., Etemad-Shahidi, A. ve Mousavi, S. J. (2005) “ Application of fuzzy inference system in the prediction of wave parameters” Ocean Engineering, 32(14-15), 1709–1725. doi:10.1016/j. oceaneng.2005.02.001
  • Kleinpeter, M. (1995) “ Energy planning and policy” Chichester, John Wiley & Sons.
  • Kongnam, C., Nuchprayoon, S., Premrudeep- reechacharn, S. ve Uatrongjit, S. (2009) “ Decision analysis on generation capacity of a wind park” Renewable and Sustainable Energy Reviews, 13(8), 2126–2133. doi:10.1016/j.rser.2009.01.023
  • Kuby, M. J., Fagan, W. F., ReVelle, C. S. ve Graf, W. L. (2005) “ A multiobjective optimization model for dam removal: an example trading off salmon passage with hy- dropower and water storage in the Willamette basin” Ad- vances in Water Resources, 28(8), 845–855. doi:10.1016/j. advwatres.2004.12.015
  • Kusiak, A. ve Zheng, H. (2010) “ Optimization of wind turbine energy and power factor with an evolution- ary computation algorithm” Energy, 35(3), 1324–1332. doi:10.1016/j.energy.2009.11.015
  • Lagorse, J., Paire, D. ve Miraoui, A. (2009) “ Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and bat- tery” Renewable Energy, 34(3), 683–691. doi:10.1016/j. renene.2008.05.030
  • Liu, H., Jiang, C. ve Zhang, Y. (2009) “ Portfolio management of hydropower producer via stochastic pro- gramming” Energy Conversion and Management, 50(10), 2593–2599. doi:10.1016/j.enconman.2009.06.010
  • Li, Y. F., Li, Y. P., Huang, G. H. ve Chen, X. (2010) “ Energy and environmental systems planning under uncertainty—An inexact fuzzy-stochastic program- ming approach” Applied Energy, 87(10), 3189–3211. doi:10.1016/j.apenergy.2010.02.030
  • Lozano, J. M. S., Teruel-Solano, J., Soto-Elvira, P. L. ve Socorro, G.-C. (2013) “ Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms loca- tions: Case study in south-eastern Spain” Renewable and Sustainable Energy Reviews, 24, 544–556. doi:10.1016/j. rser.2013.03.019
  • Madlener, R., Antunes, C. H. ve Dias, L. C. (2009) “ Assessing the performance of biogas plants with multi-cri- teria and data envelopment analysis” European Journal of Operational Research, 197(3), 1084–1094. doi:10.1016/j. ejor.2007.12.051
  • Mellit, A. ve Kalogirou, S. A. (2011) “ ANFIS-based modelling for photovoltaic power supply system: A case study” Renewable Energy, 36(1), 250–258. doi:10.1016/j. renene.2010.06.028
  • Mellit, A., Kalogirou, S. A. ve Drif, M. (2010) “ Ap- plication of neural networks and genetic algorithms for sizing of photovoltaic systems” Renewable Energy, 35(12), 2881–2893. doi:10.1016/j.renene.2010.04.017
  • Montoya, F. G., Baños, R., Gil, C., Espín, A., Al- cayde, A. ve Gómez, J. (2010) “ Minimization of voltage deviation and power losses in power networks using Pareto optimization methods” Engineering Applications of Artificial Intelligence, Advances in metaheuristics for hard optimization: new trends and case studies, 23(5), 695–703. doi:10.1016/j.engappai.2010.01.011
  • Moore, R. E. (1966) “ Interval analysis” Englewood Cliffs: Prentice-Hall.
  • Mourmouris, J. C. ve Potolias, C. (2013) “ A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece” Energy Policy, 52, 522–530. doi:10.1016/j.enpol.2012.09.074
  • Niknam, T. ve Firouzi, B. B. (2009) “ A practical algorithm for distribution state estimation including renewable energy sources” Renewable Energy, 34(11), 2309–2316.
  • Niknam, T., Firouzi, B. B. ve Ostadi, A. (2010) “ A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering dis- tributed generators” Applied Energy, 87(6), 1919–1928. doi:10.1016/j.apenergy.2010.01.003
  • Omer, A. M. (2008) “ Ground-source heat pumps sys- tems and applications” Renewable and Sustainable Energy Reviews, 12(2), 344–371. doi:10.1016/j.rser.2006.10.003
  • Omitaomu, O. A., Blevins, B. R., Jochem, W. C., Mays, G. T., Belles, R., Hadley, S. W., … Rose, A. N. (2012) “ Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites” Applied Energy, 96, 292–301. doi:10.1016/j.apen- ergy.2011.11.087
  • Ould Bilal, B., Sambou, V., Ndiaye, P. A., Kébé, C. M. F. ve Ndongo, M. (2010) “ Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP) “ Renewable Energy, 35(10), 2388–2390. doi:10.1016/j.renene.2010.03.004
  • Pantaleo, A. M., Giarola, S., Bauen, A. ve Shah, N. (2014) “ Integration of biomass into urban energy systems for heat and power Part I: An MILP based spatial optimi- zation methodology” Energy Conversion and Management, 83, 347–361. doi:10.1016/j.enconman.2014.03.050
  • Papaefthymiou, S. V. ve Papathanassiou, S. A. (2014) “ Optimum sizing of wind-pumped-storage hybrid power stations in island systems” Renewable Energy, 64, 187–196. doi:10.1016/j.renene.2013.10.047
  • Peña, R., Medina, A., Anaya-Lara, O. ve McDonald, J. R. (2009) “ Capacity estimation of a minihydro plant based on time series forecasting” Renewable Energy, 34(5), 1204–1209. doi:10.1016/j.renene.2008.10.011
  • Pereira, S., Ferreira, P. ve Vaz, A. I. F. (2016) “ Opti- mization modeling to support renewables integration in power systems” Renewable and Sustainable Energy Reviews, 55, 316–325. doi:10.1016/j.rser.2015.10.116
  • Pérez-Díaz, J. I., Wilhelmi, J. R. ve Sánchez-Fernán- dez, J. Á. (2010) “ Short-term operation scheduling of a hydropower plant in the day-ahead electricity market” Electric Power Systems Research, 80(12), 1535–1542. doi:10.1016/j.epsr.2010.06.017
  • Pohekar, S. D. ve Ramachandran, M. (2004) “ Ap- plication of multi-criteria decision making to sustainable energy planning—A review” Renewable and Sustain- able Energy Reviews, 8(4), 365–381. doi:10.1016/j. rser.2003.12.007
  • Reche-López, P., Ruiz-Reyes, N., García Galán, S. ve Jurado, F. (2009) “ Comparison of metaheuristic techniques to determine optimal placement of biomass power plants” Energy Conversion and Management, 50(8), 2020–2028. doi:10.1016/j.enconman.2009.04.008
  • Reikard, G. (2009) “ Forecasting ocean wave energy: Tests of time-series models” Ocean Engineering, 36(5), 348–356. doi:10.1016/j.oceaneng.2009.01.003
  • Ren, C., An, N., Wang, J., Li, L., Hu, B. ve Shang, D. (2014) “ Optimal parameters selection for BP neural net- work based on particle swarm optimization: A case study of wind speed forecasting” Knowledge-Based Systems, 56, 226–239. doi:10.1016/j.knosys.2013.11.015
  • Rentizelas, A. A., Tatsiopoulos, I. P. ve Tolis, A. (2009) “ An optimization model for multi-biomass tri-generation energy supply” Biomass and Bioenergy, 33(2), 223–233. doi:10.1016/j.biombioe.2008.05.008
  • Sadegheih, A. (2011) “ Optimal design methodol- ogies under the carbon emission trading program using MIP, GA, SA, and TS” Renewable and Sustainable Energy Reviews, 15(1), 504–513. doi:10.1016/j.rser.2010.07.035
  • Savic, D. (2002) “ Single-objective vs. Multiobjective Optimisation for Integrated Decision Support, In: Integrated Assessment and Decision” Proceedings of the First Biennial Meeting of the International Environmental Modelling and Software Society içinde (ss. 12–7) “
  • Scopus. (2016) “ Scopus - Document search results” 23 Aralık 2016 tarihinde https://www.scopus.com/ fields=TITLE_ABS_KEY=Multi+Objective+Decision+- Making%multi+objective+optimization%multiple+ob- jective+decision+making adresinden erişildi.
  • Sener, A. C. ve Van, D. (2005) “ Evolution of techni- cal and economical decision making in geothermal energy projects” Transactions - Geothermal Resources Council, C. 29, ss. 475–481.
  • Sigurdardottir, S. R., Valfells, A., Palsson, H. ve Ste- fansson, H. (2015) “ Mixed integer optimization model for utilizing a geothermal reservoir” Geothermics, 55, 171–181. doi:10.1016/j.geothermics.2015.01.006
  • Soroudi, A. ve Amraee, T. (2013) “ Decision making under uncertainty in energy systems: State of the art” Renewable and Sustainable Energy Reviews, 28, 376–384. doi:10.1016/j.rser.2013.08.039
  • Soroudi, A., Ehsan, M. ve Zareipour, H. (2011) “ A practical eco-environmental distribution network planning model including fuel cells and non-renewable distributed energy resources” Renewable Energy, 36(1), 179–188. doi:10.1016/j.renene.2010.06.019
  • Stoppato, A., Cavazzini, G., Ardizzon, G. ve Rossetti, A. (2014) “ A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Pho- tovoltaic)-pump hydro energy storage in a rural dry area” Energy, 76, 168–174. doi:10.1016/j.energy.2014.06.004
  • Suganthi, L., Iniyan, S. ve Samuel, A. A. (2015) “ Applications of fuzzy logic in renewable energy systems – A review” Renewable and Sustainable Energy Reviews, 48,
  • Taha, H. A. (2007) “ Yöneylem araştırması” (Ş. A. Baray ve Ş. Esnaf, Çev.) “ İstanbul: Literatür Yayıncılık.
  • Talbi, E.-G. (2009) “ Metaheuristics: from design to implementation. Hoboken, N.J: John Wiley & Sons.
  • Tiryaki, A. E. ve Kazan, R. (2007) “ Bulaşık maki- nesinin bulanık mantık ile modellenmesi” Mühendis ve Makina, 48(565), 3–8.
  • TMMOB. (2012) “ Dünyada ve Türkiye’de En- erji Verimliliği ( No: 589) ” Ankara: TMMOB Makine Mühendisleri Odası, http://www.mmo.org.tr/resimler/do- sya_ekler/fa34c3c2eb9b729_ek.pdf adresinden erişildi.
  • Tselepidou, K. ve Katsifarakis, K. L. (2010) “ Op- timization of the exploitation system of a low enthalpy geothermal aquifer with zones of different transmissivities and temperatures” Renewable Energy, Special Section: IST National Conference 2009, 35(7), 1408–1413. doi:10.1016/j.renene.2009.11.004
  • Turkay, M. (2006) “ Optimization Models and Solution Algorithms” New Frontiers in Total Quality and Strategic Management içinde . Ankara, Türkiye: Gazi Publishing.
  • Üstüntaş, T. ve Şahin, A. D. (2008) “ Wind turbine power curve estimation based on cluster center fuzzy logic modeling” Journal of Wind Engineering and In- dustrial Aerodynamics, 96(5), 611–620. doi:10.1016/j. jweia.2008.02.001
  • Vafaeipour, M., Hashemkhani Zolfani, S., Morshed Varzandeh, M. H., Derakhti, A. ve Keshavarz Eshkalag, M. (2014) “ Assessment of regions priority for imple- mentation of solar projects in Iran: New application of a hybrid multi-criteria decision making approach” Energy Conversion and Management, 86, 653–663. doi:10.1016/j.enconman.2014.05.083
  • Wang, J.-J., Jing, Y.-Y., Zhang, C.-F. ve Zhao, J.-H. (2009) “ Review on multi-criteria decision analysis aid in sustainable energy decision-making” Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. doi:10.1016/j.rser.2009.06.021
  • Wen, S., Lan, H., Fu, Q., Yu, D. C. ve Zhang, L. (2015) “ Economic Allocation for Energy Storage System Considering Wind Power Distribution” IEEE Transac- tions on Power Systems, 30(2), 644–652. doi:10.1109/ TPWRS.2014.2337936
  • Yoo, J.-H. (2009) “ Maximization of hydropower generation through the application of a linear program- ming model” Journal of Hydrology, 376(1–2), 182–187. doi:10.1016/j.jhydrol.2009.07.026
  • Zadeh, L. A. (1965) “ Fuzzy sets” Information and Control, 8(3), 338–353. doi:10.1016/S0019- 9958(65)90241-X
  • Zadeh, L. A. (2011) “A Note on Z-numbers” Infor- mation Sciences, 181(14), 2923–2932. doi:10.1016/j. ins.2011.02.022
  • Zakariazadeh, A., Jadid, S. ve Siano, P. (2014) “ Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective math- ematical programming approach” Energy Conversion and Management, 78, 151–164. doi:10.1016/j.encon- man.2013.10.051
  • Zangeneh, A., Jadid, S. ve Rahimi-Kian, A. (2009) “ Promotion strategy of clean technologies in distributed generation expansion planning” Renewable Energy, 34(12), 2765–2773. doi:10.1016/j.renene.2009.06.018
  • Zervas, P. L., Sarimveis, H., Palyvos, J. A. ve Mar- katos, N. C. G. (2008) “ Prediction of daily global solar irradiance on horizontal surfaces based on neural-net- work techniques” Renewable Energy, 33(8), 1796–1803. doi:10.1016/j.renene.2007.09.020
  • Zhao, M., Chen, Z. ve Blaabjerg, F. (2009) “ Op- timisation of electrical system for offshore wind farms via genetic algorithm” IET Renewable Power Generation, 3(2), 205. doi:10.1049/iet-rpg:20070112
  • Zhou, P., Ang, B. W. ve Poh, K. L. (2006) “ Decision analysis in energy and environmental modeling: An update” Energy, 31(14), 2604–2622. doi:10.1016/j. energy.2005.10.023
There are 99 citations in total.

Details

Other ID JA57PH66UN
Journal Section Research Article
Authors

Beyzanur Çayır Ervural This is me

Bilal Ervural This is me

Ramazan Evren This is me

Publication Date November 1, 2016
Published in Issue Year 2016 Volume: 16 Özel Sayı

Cite

APA Ervural, B. Ç., Ervural, B., & Evren, R. (2016). Optimization Models in Energy: A Literature Review. Ege Academic Review, 16(5), 51-70.
AMA Ervural BÇ, Ervural B, Evren R. Optimization Models in Energy: A Literature Review. ear. November 2016;16(5):51-70.
Chicago Ervural, Beyzanur Çayır, Bilal Ervural, and Ramazan Evren. “Optimization Models in Energy: A Literature Review”. Ege Academic Review 16, no. 5 (November 2016): 51-70.
EndNote Ervural BÇ, Ervural B, Evren R (November 1, 2016) Optimization Models in Energy: A Literature Review. Ege Academic Review 16 5 51–70.
IEEE B. Ç. Ervural, B. Ervural, and R. Evren, “Optimization Models in Energy: A Literature Review”, ear, vol. 16, no. 5, pp. 51–70, 2016.
ISNAD Ervural, Beyzanur Çayır et al. “Optimization Models in Energy: A Literature Review”. Ege Academic Review 16/5 (November 2016), 51-70.
JAMA Ervural BÇ, Ervural B, Evren R. Optimization Models in Energy: A Literature Review. ear. 2016;16:51–70.
MLA Ervural, Beyzanur Çayır et al. “Optimization Models in Energy: A Literature Review”. Ege Academic Review, vol. 16, no. 5, 2016, pp. 51-70.
Vancouver Ervural BÇ, Ervural B, Evren R. Optimization Models in Energy: A Literature Review. ear. 2016;16(5):51-70.