Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de Maksimum-Minimum Sıcaklık Ortalamaları ve Yağış Tutarının Google Earth Engine ile 2040 Yılı Modellemesi

Yıl 2023, , 253 - 271, 28.12.2023
https://doi.org/10.51800/ecd.1296895

Öz

Son yıllarda etkisini giderek artıran küresel iklim değişikliği, artık insanlığın önlem alması ve uyum çabalarını artırması gereken bir problem haline gelmiştir. Daha uzun süre maruz kalınan sıcak hava dalgaları, sıcak hava dalgaları ile birlikte sıklığı giderek artan orman yangınları, kuraklık, şiddetli yağışlar, sel ve heyelan olayları iklimsel parametrelerdeki farklılaşmaların en belirgin göstergeleridir. İklim değişikliğinin Dünya’nın farklı alanlarında farklı sonuçları ortaya çıksa da, Türkiye’nin içinde bulunduğu Akdeniz Havzası bu değişikliklerden en fazla etkilenmesi beklenen sahalardandır. Türkiye'nin sıcaklık ve yağış iklim değişkenleri üzerine gelecek öngörüsü sunmak ve olası farklılaşmaları belirlemek çalışmanın amacını oluşturmaktadır. Bilimsel kuruluşlar tarafından geliştirilen modeller ve uygulanan emisyon senaryoları, gelecekte yaşanabilecek olası değişikliklerin tahmini için önemli metotlardır. Araştırmada Coupled Model Intercomparison Project Phase 5 (CMIP5) projesi kapsamında yer alan modellere ve senaryolara ait çoklu model ortalaması kullanılmıştır. Analizlere dahil edilen emisyon senaryoları RCP4.5 ve RCP8.5’tir. Çalışmaya ait analizler Google Earth Engine bulut işletim sistemi ile gerçekleştirilmiş ve ArcGIS 10.4 programı ile haritalanmıştır. Yapılan analizler sonucunda 2005-2040 döneminde Türkiye, bugünkü ortalamalara göre daha sıcak günler ile karşı karşıya kalacaktır. Maksimum sıcaklık ortalamalarındaki artış trendi daha kuvvetlidir. Akdeniz kıyılarında görülen iklim şartları ilerleyen yıllarda etki sahasını Ege ve Marmara bölgelerine doğru genişletecektir. Doğu Anadolu Bölgesi’nde minimum sıcaklık ortalamalarında daha kuvvetli artışlar yaşanacaktır. Yağış miktarlarında Akdeniz-Ege kıyıları ve iç bölgelerde azalma, Doğu Karadeniz kıyılarında kısmen artışlar görülecektir. Genel olarak bütün Türkiye arazisinin ortalama yağışı dikkate alındığında, pozitif ya da negatif yönde bir eğilim mevcut değildir.

Kaynakça

  • Akçakaya, A., Atay, H., ve Demir, Ö. (2013). İklim Değişikliği Senaryolarında Yeni Dönem: Paralel Yaklaşım ve Temsili Konsantrasyon Rotaları. 6th Atmospheric Science Symposium - ATMOS. 3 - 5 Haziran 2013, İstanbul. İstanbul.
  • Alexeeff, S. E., Nychka, D., Sain, S. R., ve Tebaldi, C. (2018). Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments. Climatic Change, 146(3–4), 319–333. https://doi.org/10.1007/S10584-016-1809-8/FIGURES/3
  • Alonso, A., Muñoz-Carpena, R., Kennedy, R. E., ve Murcia, C. (2016). Wetland landscape spatio-temporal degradation dynamics using the new google earth engine cloud-based platform: Opportunities for non-specialists in remote sensing. Transactions of the ASABE, 59(5), 1333–1344. https://doi.org/10.13031/trans.59.11608
  • Anderson, L. S., Flowers, G. E., Jarosch, A. H., Aðalgeirsdóttir, G. T., Geirsdóttir, Á., Miller, G. H., … Pálsson, F. (2018). Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap. Quaternary Science Reviews, 190, 39–56. https://doi.org/10.1016/J.QUASCIREV.2018.04.024
  • Badino, F., Ravazzi, C., Vallè, F., Pini, R., Aceti, A., Brunetti, M., … Orombelli, G. (2018). 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction. Quaternary Science Reviews, 185, 41–68. https://doi.org/10.1016/J.QUASCIREV.2018.01.022
  • Bağçaci, S. Ç., Yucel, I., Duzenli, E., ve Yilmaz, M. T. (2021). Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research, 256, 105576. https://doi.org/https://doi.org/10.1016/j.atmosres.2021.105576
  • Bala, G. (2013). Digesting 400 ppm for global mean CO 2 concentration Conserving the endangered Mahseers ( Tor spp .) of India : the positive role of recreational fisheries. Current Science, 104(11), 1471.
  • Böhringer, C. (2003). The Kyoto Protocol: A Review and Perspectives. Oxford Review of Economic Policy, 19(3), 451–466. https://doi.org/10.1093/OXREP/19.3.451
  • Carbonbrief. (2023). Timeline History of Climate Modelling. 4 Nisan 2023 tarihinde adresinden erişildi https://www.carbonbrief.org/timeline-history-climate-modelling/
  • Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., … Giri, C. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120. https://doi.org/10.1016/j.isprsjprs.2017.07.011
  • Coşkun, M. (2022). İklim değişmeleri, küresel ısınma ve Türkiye. S. Doğanay ile M. Alım (Editör). Türkiye’nin Fiziki Coğrafyası içinde (ss. 322-351). Ankara: Pegem Akademi.
  • Crowley, T. J., ve Berner, R. A. (2001). CO2 and Climate Change. Science, 292(5518), 870–872. https://doi.org/10.1126/SCIENCE.1061664
  • Daloz, A. S., Schwingshackl, C., Mooney, P., Strada, S., Rechid, D., Davin, E. L., … Lund, M. T. (2022). Land-atmosphere interactions in sub-polar and alpine climates in the CORDEX flagship pilot study Land Use and Climate Across Scales (LUCAS) models-Part 1: Evaluation of the snow-albedo effect. Cryosphere, 16(6), 2403–2419. https://doi.org/10.5194/TC-16-2403-2022
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., ve Coşkun, M. (2017). Climate Change Projections for Turkey: Three Models and Two Scenarios. Türkiye Su Bilimi ve Yönetimi Dergisi, 1(1), 22–43. https://doi.org/10.31807/TJWSM.297183
  • ESRI (2023) What is ArcMap? 8 Mart 2023 tarihinde https://desktop.arcgis.com/en/arcmap/latest/map/main/what-is-arcmap-.htm adresinden erişildi.
  • Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., … Williamson, M. S. (2019). Taking climate model evaluation to the next level. Nature Climate Change 2019 9:2, 9(2), 102–110. https://doi.org/10.1038/s41558-018-0355-y
  • Field, C. B., Lobell, D. B., Peters, H. A., ve Chiariello, N. R. (2007). Feedbacks of Terrestrial Ecosystems to Climate Change*. https://doi.org/10.1146/annurev.energy.32.053006.141119, 32, 1–29. https://doi.org/10.1146/ANNUREV.ENERGY.32.053006.141119
  • Gao, Y., Gao, X., ve Zhang, X. (2017). The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3(2), 272–278. https://doi.org/10.1016/J.ENG.2017.01.022
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., ve Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Gorguner, M., Kavvas, M. L., ve Ishida, K. (2019). Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Science of The Total Environment, 648, 481–499. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.08.167
  • Gürkan, H., Arabacı, H., Mesut, D., Osman, E., Şensoy, S., ve Yazıcı, B. (2016). GFDL-ESM2M Modeli Temelinde RCP4.5 ve RCP8.5 Senaryolarına Göre Türkiye İçin Sıcaklık ve Yağış Projeksiyonları. Coğrafi Bilimler Dergisi, 14(2), 77–88.
  • Hao, B., Ma, M., Li, S., Li, Q., Hao, D., Huang, J., … Han, X. (2019). Land use change and climate variation in the three gorges reservoir catchment from 2000 to 2015 based on the google earth engine. Sensors (Switzerland), 19(9). https://doi.org/10.3390/s19092118
  • Hoffmann, D. (2009). Black Body. Compendium of Quantum Physics, 36–39. https://doi.org/10.1007/978-3-540-70626-7_13
  • Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., … Zhu, Z. (2017). Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sensing of Environment, 202, 166–176. https://doi.org/10.1016/j.rse.2017.02.021
  • Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., ve Field, C. B. (2003). Nitrogen and Climate Change. Science, 302(5650), 1512–1513. https://doi.org/10.1126/SCIENCE.1091390/SUPPL_FILE/HUNGATE.SOM.PDF
  • IPCC. (2023). IPCC AR6 Sentez Raporu. Tarihinde adresinden erişildi https://www.ipcc.ch/report/sixth-assessment-report-cycle/
  • Johnson, R. J., Sánchez-Lozada, L. G., Newman, L. S., Lanaspa, M. A., Diaz, H. F., Lemery, J., … Roncal-Jimenez, C. A. (2019). Climate Change and the Kidney. Annals of Nutrition and Metabolism, 74(3), 38–44. https://doi.org/10.1159/000500344
  • Jubb, I., Canadell, P., ve Dix, M. (2013). Representative Concentration Pathways.Australian Government, Department of the Environment.
  • Kelm, M. (1999). Nitric oxide metabolism and breakdown. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1411(2–3), 273–289. https://doi.org/10.1016/S0005-2728(99)00020-1
  • Kemp, L., Xu, C., Depledge, J., Ebi, K. L., Gibbins, G., Kohler, T. A., … Lenton, T. M. (2022). Climate Endgame: Exploring catastrophic climate change scenarios. Proceedings of the National Academy of Sciences of the United States of America, 119(34), e2108146119. https://doi.org/10.1073/PNAS.2108146119/SUPPL_FILE/PNAS.2108146119.SAPP.PDF
  • Kivi, R., ve Heikkinen, P. (2016). Fourier transform spectrometer measurements of column CO2 at Sodankylä, Finland. Geoscientific Instrumentation, Methods and Data Systems, 5(2), 271–279. https://doi.org/10.5194/GI-5-271-2016
  • Kozun, Y. S., Kazeev, K. S., ve Kolesnikov, S. I. (2022). Climate Effect on the Enzymatic Activity of Northern Caucasian Forest Soils. Contemporary Problems of Ecology, 15(7), 759–764. https://doi.org/10.1134/S1995425522070162
  • Kumar, L., ve Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1–15. https://doi.org/10.3390/rs10101509
  • Lamb, W. F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J. G. J., … Minx, J. (2021). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters, 16(7), 073005. https://doi.org/10.1088/1748-9326/ABEE4E
  • Liang, S., Wang, D., He, T., ve Yu, Y. (2019). Remote sensing of earth’s energy budget: synthesis and review. https://doi.org/10.1080/17538947.2019.1597189, 12(7), 737–780. https://doi.org/10.1080/17538947.2019.1597189 Manabe, S. (2019). Role of greenhouse gas in climate change. New pub: Stockholm uni Press, 71(1), 1–13. https://doi.org/10.1080/16000870.2019.1620078
  • Mansouri Daneshvar, M. R., Ebrahimi, M., ve Nejadsoleymani, H. (2019). An overview of climate change in Iran: facts and statistics. Environmental Systems Research 2019 8:1, 8(1), 1–10. https://doi.org/10.1186/S40068-019-0135-3
  • Maria, C., Góis, J., ve Leitão, A. (2020). Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Reports, 6, 364–369. https://doi.org/10.1016/J.EGYR.2019.08.074
  • Martin, C., Ménot, G., Thouveny, N., Peyron, O., Andrieu-Ponel, V., Montade, V., … Bard, E. (2020). Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe (Massif Central, France). Quaternary Science Reviews, 228, 106109. https://doi.org/10.1016/J.QUASCIREV.2019.106109
  • Meehl, G. A., Covey, C., McAvaney, B., Latif, M., ve Stouffer, R. J. (2005). Overview of the Coupled Model Intercomparison Project. Bulletin of the American Meteorological Society, 86(1), 89–93. https://doi.org/10.1175/BAMS-86-1-89
  • Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., … van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213. https://doi.org/10.1007/s10584-011-0156-z
  • Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., … Zilberman, N. (2019). Measuring global ocean heat content to estimate the earth energy imbalance. Frontiers in Marine Science, 6(JUL), 432. https://doi.org/10.3389/FMARS.2019.00432/BIBTEX
  • MGM (2022a). IPCC İklim Değişikliği Senaryoları ve Tarihsel Gelişimi. 16 Ekim 2022 tarihinde https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=senaryolar adresinden erişildi.
  • MGM (2022b). Küresel İklim Modellemesi. 16 Ekim 2022 tarihinde, https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=kuresel adresinden erişildi.
  • MGM (2022c). İllere Ait Mevsim Normalleri (1991-2020). 30 Aralık 2022 tarihinde https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m adresinden erişildi.
  • Montzka, S. A., Dlugokencky, E. J., ve Butler, J. H. (2011). Non-CO2 greenhouse gases and climate change. Nature, 476(7358), 43–50. https://doi.org/10.1038/nature10322
  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., … Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823
  • Muir, J. (1999). Nitrogen oxides (NOx), Why and How They are Controlled. EPA.
  • Mutanga, O., ve Kumar, L. (2019). Google Earth Engine Applications. Remote Sensing, C. 11. https://doi.org/10.3390/rs11050591
  • NASA (2022, Kasım 4) NEX-GDDP: NASA Earth Exchange Global Daily Downscaled Climate Projections. Kasım 4, 2022 tarihinde https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-GDDP#bands adresinden erişildi.
  • NOAA. (2023). The First Climate Model. 4 Nisan 2023 tarihinde adresinden erişildi https://celebrating200years.noaa.gov/breakthroughs/climate_model/welcome.html#vision
  • Önol, B., Bozkurt, D., Turuncoglu, U. U., Sen, O. L., ve Dalfes, H. N. (2014). Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region. Climate Dynamics, 42(7), 1949–1965. https://doi.org/10.1007/s00382-013-1966-7
  • Özturk, T., Ceber, Z. P., Türkeş, M., ve Kurnaz, M. L. (2015). Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology, 35(14), 4276–4292. https://doi.org/https://doi.org/10.1002/joc.4285
  • Padarian, J., Minasny, B., ve McBratney, A. B. (2015). Using Google’s cloud-based platform for digital soil mapping. Computers and Geosciences, 83, 80–88. https://doi.org/10.1016/j.cageo.2015.06.023
  • Pedersen, J. S. T., Duarte Santos, F., van Vuuren, D., Gupta, J., Encarnação Coelho, R., Aparício, B. A., ve Swart, R. (2021). An assessment of the performance of scenarios against historical global emissions for IPCC reports. Global Environmental Change, 66, 102199. https://doi.org/10.1016/J.GLOENVCHA.2020.102199
  • Rosenthal, Y., Kalansky, J., Morley, A., ve Linsley, B. (2017). A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era. Quaternary Science Reviews, 155, 1–12. https://doi.org/10.1016/J.QUASCIREV.2016.10.017
  • Sandén, B. A., ve Karlström, M. (2007). Positive and negative feedback in consequential life-cycle assessment. Journal of Cleaner Production, 15(15), 1469–1481. https://doi.org/10.1016/J.JCLEPRO.2006.03.005
  • Seker, M., ve Gumus, V. (2022). Projection of temperature and precipitation in the Mediterranean region through multi-model ensemble from CMIP6. Atmospheric Research, 280, 106440. https://doi.org/https://doi.org/10.1016/j.atmosres.2022.106440
  • Sen, O., Bozkurt, D., Göktürk, O. M., Dündar, B., Altürk, B., Üniversitesi, S., … Enstitüsü, B. (2017). Türkiye’de İklim Değişikliği ve Olası Etkileri.
  • Seo, S. N. (2017). Beyond the Paris Agreement: Climate change policy negotiations and future directions. Regional Science Policy & Practice, 9(2), 121–140. https://doi.org/10.1111/RSP3.12090
  • Shallcross, D. E., ve Harrison, T. G. (2007). Climate change made simple. Physics Education, 42(6), 592. https://doi.org/10.1088/0031-9120/42/6/005
  • Singh, J., Schädler, M., Demetrio, W., Brown, G. G., ve Eisenhauer, N. (2019). Climate change effects on earthworms - a review. Soil organisms, 91(3), 114. https://doi.org/10.25674/SO91ISS3PP114
  • Stips, A., MacIas, D., Coughlan, C., Garcia-Gorriz, E., ve Liang, X. S. (2016). On the causal structure between CO2 and global temperature. Scientific Reports 2016 6:1, 6(1), 1–9. https://doi.org/10.1038/srep21691
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., ve Brisco, B. (2020a). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(January), 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., ve Brisco, B. (2020b). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2020.04.001
  • Tayanç, M., İm, U., Doğruel, M., ve Karaca, M. (2009). Climate change in Turkey for the last half century. Climatic Change, 94(3–4), 483–502. https://doi.org/10.1007/S10584-008-9511-0/METRICS
  • Taylor, K. E., Stouffer, R. J., ve Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
  • Taylor, P. C., Hegyi, B. M., Boeke, R. C., ve Boisvert, L. N. (2018). On the Increasing Importance of Air-Sea Exchanges in a Thawing Arctic: A Review. Atmosphere, 9(2), 41. https://doi.org/10.3390/ATMOS9020041
  • Thrasher, B., Maurer, E. P., McKellar, C., ve Duffy, P. B. (2012). Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16(9), 3309–3314. https://doi.org/10.5194/hess-16-3309-2012
  • Türkeş, M., ve Tolunay, D. (2023). İklim Değişikliği ve Orman Yangınları.
  • Turp, M. T., Türkeş, M., Kurnaz, M. L., ve Öztürk, T. (2014). RegCM4.3.5 Bölgesel İklim Modelini Kullanarak Türkiye ve Çevresi Bölgelerin Yakın Gelecekteki Hava Sıcaklığı ve Yağış Klimatolojileri İçin Öngörülen Değişikliklerin İncelenmesi. Aegean Geographical Journal, 23(1), 1–24.
  • UN. (2022). United Nations Office for Outer Space Affairs UN-SPIDER Knowledge Portal. 07 Aralık 2021 tarihinde, https://www.un-spider.org/links-and-resources/gis-rs-software/google-earth-engine-google adresinden erişildi
  • Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., … Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, Vol. 9, Page 514, 9(9), 514. https://doi.org/10.3390/AGRONOMY9090514
  • Xiao, X., Yao, A., Hillman, A., Shen, J., ve Haberle, S. G. (2020). Vegetation, climate and human impact since 20 ka in central Yunnan Province based on high-resolution pollen and charcoal records from Dianchi, southwestern China. Quaternary Science Reviews, 236, 106297. https://doi.org/10.1016/J.QUASCIREV.2020.106297
  • Xiong, J., Thenkabail, P. S., Tilton, J. C., Gumma, M. K., Teluguntla, P., Oliphant, A., … Gorelick, N. (2017). Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine. Remote Sensing, 9(10), 1–27. https://doi.org/10.3390/rs9101065
  • Zhao, Q., Yu, L., Li, X., Peng, D., Zhang, Y., ve Gong, P. (2021). Progress and trends in the application of google earth and google earth engine. Remote Sensing, 13(18), 1–21. https://doi.org/10.3390/rs13183778

2040 Modeling of Maximum-Minimum Temperature Averages and Precipitation Amount in Turkey with Google Earth Engine

Yıl 2023, , 253 - 271, 28.12.2023
https://doi.org/10.51800/ecd.1296895

Öz

Global climate change, which has been increasing its impact in recent years, has become a problem that humanity must take precautions and increase its adaptation efforts. The most prominent indicators of the differences in climatic parameters are heat waves that last longer, forest fires, droughts, heavy rainfall, floods and landslides that increase in frequency with heat waves. Although climate change has different consequences in different parts of the world, the Mediterranean Basin, in which Turkey is located, is one of the areas expected to be most affected by these changes. The aim of this study is to provide future projections on Turkey's temperature and precipitation climate variables and to determine the possible differentiations. Models developed by scientific organizations and emission scenarios applied are important methods for predicting possible future changes. In the study, multiple model averages of the models and scenarios included in the Coupled Model Intercomparison Project Phase 5 (CMIP5) project were used. The emission scenarios included in the analysis are RCP4.5 and RCP8.5. The analyses of the study were carried out with Google Earth Engine cloud operating system and mapped with ArcGIS 10.4 program. As a result of the analysis, Turkey will face warmer days in the period 2005-2040 compared to today's averages. The upward trend in maximum temperature averages is stronger. The climatic conditions observed on the Mediterranean coasts will expand their sphere of influence towards the Aegean and Marmara regions in the coming years. Eastern Anatolia will experience stronger increases in minimum temperature averages. Precipitation will decrease in the Mediterranean-Aegean coasts and inland regions, and partially increase in the Eastern Black Sea coasts. In general, there is no positive or negative trend when the average precipitation of the whole area of Turkey is taken into consideration.

Kaynakça

  • Akçakaya, A., Atay, H., ve Demir, Ö. (2013). İklim Değişikliği Senaryolarında Yeni Dönem: Paralel Yaklaşım ve Temsili Konsantrasyon Rotaları. 6th Atmospheric Science Symposium - ATMOS. 3 - 5 Haziran 2013, İstanbul. İstanbul.
  • Alexeeff, S. E., Nychka, D., Sain, S. R., ve Tebaldi, C. (2018). Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments. Climatic Change, 146(3–4), 319–333. https://doi.org/10.1007/S10584-016-1809-8/FIGURES/3
  • Alonso, A., Muñoz-Carpena, R., Kennedy, R. E., ve Murcia, C. (2016). Wetland landscape spatio-temporal degradation dynamics using the new google earth engine cloud-based platform: Opportunities for non-specialists in remote sensing. Transactions of the ASABE, 59(5), 1333–1344. https://doi.org/10.13031/trans.59.11608
  • Anderson, L. S., Flowers, G. E., Jarosch, A. H., Aðalgeirsdóttir, G. T., Geirsdóttir, Á., Miller, G. H., … Pálsson, F. (2018). Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap. Quaternary Science Reviews, 190, 39–56. https://doi.org/10.1016/J.QUASCIREV.2018.04.024
  • Badino, F., Ravazzi, C., Vallè, F., Pini, R., Aceti, A., Brunetti, M., … Orombelli, G. (2018). 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction. Quaternary Science Reviews, 185, 41–68. https://doi.org/10.1016/J.QUASCIREV.2018.01.022
  • Bağçaci, S. Ç., Yucel, I., Duzenli, E., ve Yilmaz, M. T. (2021). Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research, 256, 105576. https://doi.org/https://doi.org/10.1016/j.atmosres.2021.105576
  • Bala, G. (2013). Digesting 400 ppm for global mean CO 2 concentration Conserving the endangered Mahseers ( Tor spp .) of India : the positive role of recreational fisheries. Current Science, 104(11), 1471.
  • Böhringer, C. (2003). The Kyoto Protocol: A Review and Perspectives. Oxford Review of Economic Policy, 19(3), 451–466. https://doi.org/10.1093/OXREP/19.3.451
  • Carbonbrief. (2023). Timeline History of Climate Modelling. 4 Nisan 2023 tarihinde adresinden erişildi https://www.carbonbrief.org/timeline-history-climate-modelling/
  • Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., … Giri, C. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120. https://doi.org/10.1016/j.isprsjprs.2017.07.011
  • Coşkun, M. (2022). İklim değişmeleri, küresel ısınma ve Türkiye. S. Doğanay ile M. Alım (Editör). Türkiye’nin Fiziki Coğrafyası içinde (ss. 322-351). Ankara: Pegem Akademi.
  • Crowley, T. J., ve Berner, R. A. (2001). CO2 and Climate Change. Science, 292(5518), 870–872. https://doi.org/10.1126/SCIENCE.1061664
  • Daloz, A. S., Schwingshackl, C., Mooney, P., Strada, S., Rechid, D., Davin, E. L., … Lund, M. T. (2022). Land-atmosphere interactions in sub-polar and alpine climates in the CORDEX flagship pilot study Land Use and Climate Across Scales (LUCAS) models-Part 1: Evaluation of the snow-albedo effect. Cryosphere, 16(6), 2403–2419. https://doi.org/10.5194/TC-16-2403-2022
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., ve Coşkun, M. (2017). Climate Change Projections for Turkey: Three Models and Two Scenarios. Türkiye Su Bilimi ve Yönetimi Dergisi, 1(1), 22–43. https://doi.org/10.31807/TJWSM.297183
  • ESRI (2023) What is ArcMap? 8 Mart 2023 tarihinde https://desktop.arcgis.com/en/arcmap/latest/map/main/what-is-arcmap-.htm adresinden erişildi.
  • Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., … Williamson, M. S. (2019). Taking climate model evaluation to the next level. Nature Climate Change 2019 9:2, 9(2), 102–110. https://doi.org/10.1038/s41558-018-0355-y
  • Field, C. B., Lobell, D. B., Peters, H. A., ve Chiariello, N. R. (2007). Feedbacks of Terrestrial Ecosystems to Climate Change*. https://doi.org/10.1146/annurev.energy.32.053006.141119, 32, 1–29. https://doi.org/10.1146/ANNUREV.ENERGY.32.053006.141119
  • Gao, Y., Gao, X., ve Zhang, X. (2017). The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3(2), 272–278. https://doi.org/10.1016/J.ENG.2017.01.022
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., ve Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Gorguner, M., Kavvas, M. L., ve Ishida, K. (2019). Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Science of The Total Environment, 648, 481–499. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.08.167
  • Gürkan, H., Arabacı, H., Mesut, D., Osman, E., Şensoy, S., ve Yazıcı, B. (2016). GFDL-ESM2M Modeli Temelinde RCP4.5 ve RCP8.5 Senaryolarına Göre Türkiye İçin Sıcaklık ve Yağış Projeksiyonları. Coğrafi Bilimler Dergisi, 14(2), 77–88.
  • Hao, B., Ma, M., Li, S., Li, Q., Hao, D., Huang, J., … Han, X. (2019). Land use change and climate variation in the three gorges reservoir catchment from 2000 to 2015 based on the google earth engine. Sensors (Switzerland), 19(9). https://doi.org/10.3390/s19092118
  • Hoffmann, D. (2009). Black Body. Compendium of Quantum Physics, 36–39. https://doi.org/10.1007/978-3-540-70626-7_13
  • Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., … Zhu, Z. (2017). Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sensing of Environment, 202, 166–176. https://doi.org/10.1016/j.rse.2017.02.021
  • Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., ve Field, C. B. (2003). Nitrogen and Climate Change. Science, 302(5650), 1512–1513. https://doi.org/10.1126/SCIENCE.1091390/SUPPL_FILE/HUNGATE.SOM.PDF
  • IPCC. (2023). IPCC AR6 Sentez Raporu. Tarihinde adresinden erişildi https://www.ipcc.ch/report/sixth-assessment-report-cycle/
  • Johnson, R. J., Sánchez-Lozada, L. G., Newman, L. S., Lanaspa, M. A., Diaz, H. F., Lemery, J., … Roncal-Jimenez, C. A. (2019). Climate Change and the Kidney. Annals of Nutrition and Metabolism, 74(3), 38–44. https://doi.org/10.1159/000500344
  • Jubb, I., Canadell, P., ve Dix, M. (2013). Representative Concentration Pathways.Australian Government, Department of the Environment.
  • Kelm, M. (1999). Nitric oxide metabolism and breakdown. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1411(2–3), 273–289. https://doi.org/10.1016/S0005-2728(99)00020-1
  • Kemp, L., Xu, C., Depledge, J., Ebi, K. L., Gibbins, G., Kohler, T. A., … Lenton, T. M. (2022). Climate Endgame: Exploring catastrophic climate change scenarios. Proceedings of the National Academy of Sciences of the United States of America, 119(34), e2108146119. https://doi.org/10.1073/PNAS.2108146119/SUPPL_FILE/PNAS.2108146119.SAPP.PDF
  • Kivi, R., ve Heikkinen, P. (2016). Fourier transform spectrometer measurements of column CO2 at Sodankylä, Finland. Geoscientific Instrumentation, Methods and Data Systems, 5(2), 271–279. https://doi.org/10.5194/GI-5-271-2016
  • Kozun, Y. S., Kazeev, K. S., ve Kolesnikov, S. I. (2022). Climate Effect on the Enzymatic Activity of Northern Caucasian Forest Soils. Contemporary Problems of Ecology, 15(7), 759–764. https://doi.org/10.1134/S1995425522070162
  • Kumar, L., ve Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1–15. https://doi.org/10.3390/rs10101509
  • Lamb, W. F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J. G. J., … Minx, J. (2021). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters, 16(7), 073005. https://doi.org/10.1088/1748-9326/ABEE4E
  • Liang, S., Wang, D., He, T., ve Yu, Y. (2019). Remote sensing of earth’s energy budget: synthesis and review. https://doi.org/10.1080/17538947.2019.1597189, 12(7), 737–780. https://doi.org/10.1080/17538947.2019.1597189 Manabe, S. (2019). Role of greenhouse gas in climate change. New pub: Stockholm uni Press, 71(1), 1–13. https://doi.org/10.1080/16000870.2019.1620078
  • Mansouri Daneshvar, M. R., Ebrahimi, M., ve Nejadsoleymani, H. (2019). An overview of climate change in Iran: facts and statistics. Environmental Systems Research 2019 8:1, 8(1), 1–10. https://doi.org/10.1186/S40068-019-0135-3
  • Maria, C., Góis, J., ve Leitão, A. (2020). Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Reports, 6, 364–369. https://doi.org/10.1016/J.EGYR.2019.08.074
  • Martin, C., Ménot, G., Thouveny, N., Peyron, O., Andrieu-Ponel, V., Montade, V., … Bard, E. (2020). Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe (Massif Central, France). Quaternary Science Reviews, 228, 106109. https://doi.org/10.1016/J.QUASCIREV.2019.106109
  • Meehl, G. A., Covey, C., McAvaney, B., Latif, M., ve Stouffer, R. J. (2005). Overview of the Coupled Model Intercomparison Project. Bulletin of the American Meteorological Society, 86(1), 89–93. https://doi.org/10.1175/BAMS-86-1-89
  • Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., … van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213. https://doi.org/10.1007/s10584-011-0156-z
  • Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., … Zilberman, N. (2019). Measuring global ocean heat content to estimate the earth energy imbalance. Frontiers in Marine Science, 6(JUL), 432. https://doi.org/10.3389/FMARS.2019.00432/BIBTEX
  • MGM (2022a). IPCC İklim Değişikliği Senaryoları ve Tarihsel Gelişimi. 16 Ekim 2022 tarihinde https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=senaryolar adresinden erişildi.
  • MGM (2022b). Küresel İklim Modellemesi. 16 Ekim 2022 tarihinde, https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=kuresel adresinden erişildi.
  • MGM (2022c). İllere Ait Mevsim Normalleri (1991-2020). 30 Aralık 2022 tarihinde https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m adresinden erişildi.
  • Montzka, S. A., Dlugokencky, E. J., ve Butler, J. H. (2011). Non-CO2 greenhouse gases and climate change. Nature, 476(7358), 43–50. https://doi.org/10.1038/nature10322
  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., … Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823
  • Muir, J. (1999). Nitrogen oxides (NOx), Why and How They are Controlled. EPA.
  • Mutanga, O., ve Kumar, L. (2019). Google Earth Engine Applications. Remote Sensing, C. 11. https://doi.org/10.3390/rs11050591
  • NASA (2022, Kasım 4) NEX-GDDP: NASA Earth Exchange Global Daily Downscaled Climate Projections. Kasım 4, 2022 tarihinde https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-GDDP#bands adresinden erişildi.
  • NOAA. (2023). The First Climate Model. 4 Nisan 2023 tarihinde adresinden erişildi https://celebrating200years.noaa.gov/breakthroughs/climate_model/welcome.html#vision
  • Önol, B., Bozkurt, D., Turuncoglu, U. U., Sen, O. L., ve Dalfes, H. N. (2014). Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region. Climate Dynamics, 42(7), 1949–1965. https://doi.org/10.1007/s00382-013-1966-7
  • Özturk, T., Ceber, Z. P., Türkeş, M., ve Kurnaz, M. L. (2015). Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology, 35(14), 4276–4292. https://doi.org/https://doi.org/10.1002/joc.4285
  • Padarian, J., Minasny, B., ve McBratney, A. B. (2015). Using Google’s cloud-based platform for digital soil mapping. Computers and Geosciences, 83, 80–88. https://doi.org/10.1016/j.cageo.2015.06.023
  • Pedersen, J. S. T., Duarte Santos, F., van Vuuren, D., Gupta, J., Encarnação Coelho, R., Aparício, B. A., ve Swart, R. (2021). An assessment of the performance of scenarios against historical global emissions for IPCC reports. Global Environmental Change, 66, 102199. https://doi.org/10.1016/J.GLOENVCHA.2020.102199
  • Rosenthal, Y., Kalansky, J., Morley, A., ve Linsley, B. (2017). A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era. Quaternary Science Reviews, 155, 1–12. https://doi.org/10.1016/J.QUASCIREV.2016.10.017
  • Sandén, B. A., ve Karlström, M. (2007). Positive and negative feedback in consequential life-cycle assessment. Journal of Cleaner Production, 15(15), 1469–1481. https://doi.org/10.1016/J.JCLEPRO.2006.03.005
  • Seker, M., ve Gumus, V. (2022). Projection of temperature and precipitation in the Mediterranean region through multi-model ensemble from CMIP6. Atmospheric Research, 280, 106440. https://doi.org/https://doi.org/10.1016/j.atmosres.2022.106440
  • Sen, O., Bozkurt, D., Göktürk, O. M., Dündar, B., Altürk, B., Üniversitesi, S., … Enstitüsü, B. (2017). Türkiye’de İklim Değişikliği ve Olası Etkileri.
  • Seo, S. N. (2017). Beyond the Paris Agreement: Climate change policy negotiations and future directions. Regional Science Policy & Practice, 9(2), 121–140. https://doi.org/10.1111/RSP3.12090
  • Shallcross, D. E., ve Harrison, T. G. (2007). Climate change made simple. Physics Education, 42(6), 592. https://doi.org/10.1088/0031-9120/42/6/005
  • Singh, J., Schädler, M., Demetrio, W., Brown, G. G., ve Eisenhauer, N. (2019). Climate change effects on earthworms - a review. Soil organisms, 91(3), 114. https://doi.org/10.25674/SO91ISS3PP114
  • Stips, A., MacIas, D., Coughlan, C., Garcia-Gorriz, E., ve Liang, X. S. (2016). On the causal structure between CO2 and global temperature. Scientific Reports 2016 6:1, 6(1), 1–9. https://doi.org/10.1038/srep21691
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., ve Brisco, B. (2020a). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(January), 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., ve Brisco, B. (2020b). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2020.04.001
  • Tayanç, M., İm, U., Doğruel, M., ve Karaca, M. (2009). Climate change in Turkey for the last half century. Climatic Change, 94(3–4), 483–502. https://doi.org/10.1007/S10584-008-9511-0/METRICS
  • Taylor, K. E., Stouffer, R. J., ve Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
  • Taylor, P. C., Hegyi, B. M., Boeke, R. C., ve Boisvert, L. N. (2018). On the Increasing Importance of Air-Sea Exchanges in a Thawing Arctic: A Review. Atmosphere, 9(2), 41. https://doi.org/10.3390/ATMOS9020041
  • Thrasher, B., Maurer, E. P., McKellar, C., ve Duffy, P. B. (2012). Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16(9), 3309–3314. https://doi.org/10.5194/hess-16-3309-2012
  • Türkeş, M., ve Tolunay, D. (2023). İklim Değişikliği ve Orman Yangınları.
  • Turp, M. T., Türkeş, M., Kurnaz, M. L., ve Öztürk, T. (2014). RegCM4.3.5 Bölgesel İklim Modelini Kullanarak Türkiye ve Çevresi Bölgelerin Yakın Gelecekteki Hava Sıcaklığı ve Yağış Klimatolojileri İçin Öngörülen Değişikliklerin İncelenmesi. Aegean Geographical Journal, 23(1), 1–24.
  • UN. (2022). United Nations Office for Outer Space Affairs UN-SPIDER Knowledge Portal. 07 Aralık 2021 tarihinde, https://www.un-spider.org/links-and-resources/gis-rs-software/google-earth-engine-google adresinden erişildi
  • Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., … Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, Vol. 9, Page 514, 9(9), 514. https://doi.org/10.3390/AGRONOMY9090514
  • Xiao, X., Yao, A., Hillman, A., Shen, J., ve Haberle, S. G. (2020). Vegetation, climate and human impact since 20 ka in central Yunnan Province based on high-resolution pollen and charcoal records from Dianchi, southwestern China. Quaternary Science Reviews, 236, 106297. https://doi.org/10.1016/J.QUASCIREV.2020.106297
  • Xiong, J., Thenkabail, P. S., Tilton, J. C., Gumma, M. K., Teluguntla, P., Oliphant, A., … Gorelick, N. (2017). Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine. Remote Sensing, 9(10), 1–27. https://doi.org/10.3390/rs9101065
  • Zhao, Q., Yu, L., Li, X., Peng, D., Zhang, Y., ve Gong, P. (2021). Progress and trends in the application of google earth and google earth engine. Remote Sensing, 13(18), 1–21. https://doi.org/10.3390/rs13183778
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beşeri Coğrafya
Bölüm Araştırma Makaleleri
Yazarlar

Mücahit Coşkun 0000-0002-7881-6742

Hüseyin Şahiner 0000-0002-3191-1590

Onur Canbulat 0000-0002-9269-4219

Ahmet Öztürk 0000-0002-4074-0201

Enes Taşoğlu 0000-0002-6365-6926

Ferhat Toprak 0000-0001-5452-5855

Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 15 Mayıs 2023
Kabul Tarihi 17 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Coşkun, M., Şahiner, H., Canbulat, O., Öztürk, A., vd. (2023). Türkiye’de Maksimum-Minimum Sıcaklık Ortalamaları ve Yağış Tutarının Google Earth Engine ile 2040 Yılı Modellemesi. Ege Coğrafya Dergisi, 32(2), 253-271. https://doi.org/10.51800/ecd.1296895