Araştırma Makalesi
BibTex RIS Kaynak Göster

Heyelan Duyarlılığının Değerlendirilmesinde Analitik Hiyerarşi Süreci (AHP) ve Frekans Oranı (FR) Yöntemlerinin Karşılaştırılması: Erzincan Kemah-Kömür Dere Havzasında Örnek Bir Çalışma

Yıl 2025, Cilt: 34 Sayı: 2, 337 - 356, 30.12.2025
https://doi.org/10.51800/ecd.1761885

Öz

Bu çalışma, Erzincan-Kemah Kömür Dere Havzası'nda heyelan duyarlılığını haritalamak amacıyla Analitik Hiyerarşi Süreci (AHP) ve Frekans Oranı (FR) yöntemlerini karşılaştırmaktadır. Modellerin performansı, Alıcı İşletim Karakteristiği (ROC) eğrisi, F1-Skoru ve çakışma oranı analizi gibi metriklerle kapsamlı bir şekilde değerlendirilmiştir. Sonuçlar, istatistiksel tabanlı FR modelinin Eğri Altındaki Alan (AUC = 0.884, F1-Skoru = 0.87), uzman görüşüne dayalı AHP modeline (AUC = 0.699, F1-Skoru = 0.68) göre tüm metriklerde önemli ölçüde daha yüksek performans gösterdiğini ortaya koymuştur. Modellerin pratik geçerliliğini gösteren çakışma oranı analizinde, mevcut heyelan alanlarının %92.7'si FR haritasındaki 'Yüksek' ve 'Çok Yüksek' duyarlılık sınıfları içinde yer alırken, bu oran AHP haritasında %73.7 olarak bulunmuştur. Bu bulgular, FR yönteminin bölgedeki riskli alanların tespiti ve arazi kullanım planlaması için güvenilir ve hassas bir araç olduğunu kanıtlamaktadır.

Etik Beyan

Etik kurul onayı gerekmemektedir.

Kaynakça

  • Abdı, A., Bouamrane, A., Karech, T., Dahri, N., & Kaouachi, A. (2021). Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria). Geotechnical and Geological Engineering, 39(8), 5675–5691. https://doi.org/10.1007/S10706-021-01855-3
  • Abedini, M., & Tulabi, S. (2018). Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran. Environmental Earth Sciences, 77(11), 1–13. https://doi.org/10.1007/S12665-018-7524-1/TABLES/4
  • Ada, M. (2018). Alakır çayı (Antalya) havzasının uzaktan algılama ve coğrafi bilgi sistemleri kullanılarak heyelan duyarlılık haritalandırılması. http://acikerisim.akdeniz.edu.tr/xmlui/handle/123456789/3744
  • Ahmad, M. S., MonaLisa, & Khan, S. (2023). Comparative analysis of analytical hierarchy process (AHP) and frequency ratio (FR) models for landslide susceptibility mapping in Reshun, NW Pakistan. Kuwait Journal of Science, 50(3), 387–398. https://doi.org/10.1016/J.KJS.2023.01.004
  • Akıncı, H., Doğan, S., & Kılıçoğlu, C. (2017). Lenslide susceptıbılıty mappıng of canık (samsun) dıstrıct usıng bayesıan probabılıty and frequency ratıo models. Selcuk University Journal of Engineering, Science and Technology, 5(3), 283–299. https://doi.org/10.15317/SCITECH.2017.89
  • Arabameri, A., Pradhan, B., Rezaei, K., & Lee, C. W. (2019). Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR-RF integrated model and multiresolution DEMs. Remote Sensing, 11(9). https://doi.org/10.3390/RS11090999
  • Asmare, D. (2023). Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain, northwestern ethiopia. Scientific African, 19, e01470. https://doi.org/10.1016/J.SCIAF.2022.E01470
  • Avcı, V. (2016). Gökdere Havzası ve Çevresinin (Bingöl Güneybatısı) Frekans Oranı Metoduna Göre Heyelan Duyarlılık Analizi. Marmara Geographical Review, 34, 160–177. https://dergipark.org.tr/en/pub/marucog/issue/24661/260871
  • Aydın, M. C., Sevgi Birincioğlu, E., & Büyüksaraç, A. (2022). Landslide Susceptibility Mapping in Bitlis Province using GIS-based AHP method. Türk Uzaktan Algılama Ve CBS Dergisi, 3(2), 160-171. https://doi.org/10.48123/rsgis.1119723
  • Aydoğan, E., & Dağ, S. (2023). İstatistiksel Yöntemlerle Yukarı Karasu Havzası’nın Kuzeydoğu Bölümünün (Erzurum) Heyelan Duyarlılık Analizi. Türk Uzaktan Algılama ve CBS Dergisi, 4(1), 64–82. https://doi.org/10.48123/RSGIS.1202140
  • Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81(4), 432–445. https://doi.org/10.1016/J.ENGGEO.2005.08.004
  • Babitha, B. G., Danumah, J. H., Pradeep, G. S., Costache, R., Patel, N., Prasad, M. K., Rajaneesh, A., Mammen, P. C., Ajin, R. S., & Kuriakose, S. L. (2022). A framework employing the AHP and FR methods to assess the landslide susceptibility of the Western Ghats region in Kollam district. Safety in Extreme Environments, 4(2), 171–191. https://doi.org/10.1007/S42797-022-00061-5/FIGURES/9
  • Bagal, G., Sorate, R., & Desai, P. (2024). Geo-Technical and Geological Study, Management Plan of Landslide. Journal of Advances in Science and Technology. https://doi.org/10.29070/wc8dv634.
  • Başara, A. C., & Şişman, Y. (2022). Frekans oranı, kanıt ağırlığı ve lojistik regresyon yöntemleri kullanılarak heyelan duyarlılık haritalarının CBS tabanlı karşılaştırılması. Nigde Omer Halisdemir University Journal of Engineering Sciences, 11(3), 647–660. https://doi.org/10.28948/NGUMUH.1065284
  • Berber, S. (2023). Güzelyalı-Lapseki (Çanakkale) arasındaki bölgenin heyelan tehlikesinin değerlendirilmesi. http://dspace.balikesir.edu.tr/xmlui/handle/20.500.12462/13365
  • Berhane, G., Gebrehiwot, A., & Abay, A. (2023). Landslide susceptibility mapping in the Adwa Volcanic Mountain Plugs, Northern Ethiopia: a comparative analysis of frequency ratio and analytical hierarchy process methods. Geomatics, Natural Hazards and Risk, 14(1). https://doi.org/10.1080/19475705.2023.2281244
  • Bhagya, S. B., Sumi, A. S., Balaji, S., Danumah, J. H., Costache, R., Rajaneesh, A., Gokul, A., Chandrasenan, C. P., Quevedo, R. P., Johny, A., Sajinkumar, K. S., Saha, S., Ajin, R. S., Mammen, P. C., Abdelrahman, K., Fnais, M. S., & Abioui, M. (2023). Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps. Land 2023, Vol. 12, Page 468, 12(2), 468. https://doi.org/10.3390/LAND12020468
  • Biswas, B., Rahaman, A., & Barman, J. (2023). Comparative Assessment of FR and AHP Models for Landslide Susceptibility Mapping for Sikkim, India and Preparation of Suitable Mitigation Techniques. Journal of the Geological Society of India, 99(6), 791–801. https://doi.org/10.1007/S12594-023-2386-X/METRICS
  • Dağdelenler, G. (2020). İki Farklı Örneklem Tekniği Kullanılarak Oluşturulan Heyelan Duyarlılık Haritalarının Frekans Oranı (FO) Yöntemi ile Karşılaştırılması. Jeoloji Mühendisliği Dergisi, 44(1), 19–38. https://doi.org/10.24232/JMD.740509
  • Demirbilek, S., & Turoğlu, H. (2024). Frekans Oranı Yöntemi Kullanılarak Arsuz Çayı Havzası Heyelan Duyarlılık Analizi. Jeomorfolojik Araştırmalar Dergisi(13), 23-39. https://doi.org/10.46453/jader.1496249.
  • Demirel, Ş. C., & Hastaoğlu, K. Ö. (2022). CBS Tabanlı AHP Yöntemi Kullanılarak Oluşturulan Sivas Koyulhisar Heyelan Duyarlılık Haritalarının Güvenilirliğinin Araştırılması. Journal of Disaster and Risk, 5(2), 715–730. https://doi.org/10.35341/AFET.1071728
  • Gakaev, R. (2021). Exogenous relief-forming processes and phenomena on the territory of the Chechen Republic. SHS Web of Conferences. https://doi.org/10.1051/shsconf/202112803001.
  • Gholami, M., Ghachkanlu, E. N., Khosravi, K., & Pirasteh, S. (2019). Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. Journal of Earth System Science, 128(2), 1–22. https://doi.org/10.1007/S12040-018-1047-8/FIGURES/7
  • Giarola, A., Schoorl, J. M., Baartman, J. E. M., Bordoni, M., Tarolli, P., Zucca, F., Heckmann, T., & Meisina, C. (2024). Exploiting the land use to predict shallow landslide susceptibility: A probabilistic implementation of LAPSUS-LS. CATENA, 246, 108437. https://doi.org/10.1016/J.CATENA.2024.108437
  • Görüm, T., Bayrakdar, C., Avdan, U., & Çömert, R. (2017). Geomorphology of the Mount Akdag landslide, Western Taurus range (SW Turkey). Journal Of Maps, 13(2), 165–172. https://doi.org/10.1080/17445647.2017.1280424
  • Gudiyangada Nachappa, T., Kienberger, S., Meena, S. R., Hölbling, D., & Blaschke, T. (2020). Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomatics, Natural Hazards and Risk, 11(1), 572–600. https://doi.org/10.1080/19475705.2020.1736190
  • Hasekioğulları, G. D., & Ercanoglu, M. (2012). A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63(2), 1157–1179. https://doi.org/10.1007/S11069-012-0218-1
  • Hoa, P. V., Tuan, N. Q., Hong, P. V., Thao, G. T. P., & Binh, N. A. (2023). GIS-based modeling of landslide susceptibility zonation by integrating the frequency ratio and objective–subjective weighting approach: a case study in a tropical monsoon climate region. Frontiers in Environmental Science, 11. https://doi.org/10.3389/FENVS.2023.1175567
  • Hoşgören, M. Y. (2017). Jeomorfoloji Terimleri Sözlüğü. Çantay Kitabevi.
  • Hong, H., Chen, W., Xu, C., Youssef, A. M., Pradhan, B., & Tien Bui, D. (2017). Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto International, 32(2), 139–154. https://doi.org/10.1080/10106049.2015.1130086
  • İzbırak, R. (1975). Coğrafya Terimleri Sözlüğü, İstanbul, Mehtupla Öğretim Merkezi Yayınları: 15, Ankara.
  • Khan, H., Shafique, M., Khan, M. A., Bacha, M. A., Shah, S. U., & Calligaris, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 11–24. https://doi.org/10.1016/J.EJRS.2018.03.004
  • Kılıçoğlu, C. (2020). Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(1), 138-154. https://doi.org/10.35414/akufemubid.658662
  • Kumar, V., Gupta, V., Jamir, I., & Chattoraj, S. L. (2019). Evaluation of potential landslide damming: Case study of Urni landslide, Kinnaur, Satluj valley, India. Geoscience Frontiers, 10(2), 753–767. https://doi.org/10.1016/J.GSF.2018.05.004
  • Kumtepe, P., Nurlu, Y., Cengiz, T., & Sütçü, E. (2011). Heyelan Duyarlılık Haritalarının Hazırlanmasında Coğrafi Bilgi Sistemlerinin Kullanımı. Journal of Geodesy and Geoinformation, 104.1, 41–46. https://dergipark.org.tr/en/pub/hkmojjd/issue/53172/705374
  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41. https://doi.org/10.1007/S10346-006-0047-Y/FIGURES/3
  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50(6), 847–855. https://doi.org/10.1007/S00254-006-0256-7/FIGURES/4
  • Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q., & Wu, Y. (2017). A modified frequency ratio method for landslide susceptibility assessment. Landslides, 14(2), 727–741. https://doi.org/10.1007/S10346-016-0771-X/FIGURES/9
  • Li, L., Nahayo, L., Habiyaremye, G., & Christophe, M. (2022). Applicability and performance of statistical index, certain factor and frequency ratio models in mapping landslides susceptibility in Rwanda. Geocarto International, 37(2), 638–656. https://doi.org/10.1080/10106049.2020.1730451
  • Mokarram, M., & Zarei, A. R. (2018). Landslide Susceptibility Mapping Using Fuzzy-AHP. Geotechnical and Geological Engineering, 36(6), 3931–3943. https://doi.org/10.1007/S10706-018-0583-Y
  • Mondal, S., & Maiti, R. (2013). Integrating the Analytical Hierarchy Process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4(4), 200–212. https://doi.org/10.1007/S13753-013-0021-Y/METRICS
  • Ataol, A. (2015). Çankırı-Ankara karayolu boyunca (Akyurt-Çankırı arası) heyelan risk bölgelerinin belirlenmesi. Journal of Geography, 29(29), 51–69. https://dergipark.org.tr/en/pub/iucografya/issue/25074/264646
  • Nicu, I. C., & Asăndulesei, A. (2018). GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger? Geomorphology, 314, 27–41. https://doi.org/10.1016/J.GEOMORPH.2018.04.010
  • Ozdemir, A. (2020). A Comparative Study of the Frequency Ratio, Analytical Hierarchy Process, Artificial Neural Networks and Fuzzy Logic Methods for Landslide Susceptibility Mapping: Taşkent (Konya), Turkey. Geotechnical and Geological Engineering, 38(4), 4129–4157. https://doi.org/10.1007/S10706-020-01284-8
  • Park, S., Choi, C., Kim, B., & Kim, J. (2013a). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464. https://doi.org/10.1007/S12665-012-1842-5/TABLES/7
  • Pathak, Y. P., Dholakia, M. B., Prakash, I., Jagad, G. D., & Gohil, K. B. (2024). Evaluating Landslide Susceptibility in the Lower Sutlej Basin, Himachal Pradesh, India Using GIS: A Comparative Study of the Frequency Ratio and Analytical Hierarchy Process Methods. Nanotechnology Perceptions, 20(S5). https://doi.org/10.62441/NANO-NTP.V20IS5.67
  • Poudyal, C. P., Chang, C., Oh, H. J., & Lee, S. (2010). Landslide susceptibility maps comparing frequency ratio and artificial neural networks: A case study from the Nepal Himalaya. Environmental Earth Sciences, 61(5), 1049–1064. https://doi.org/10.1007/S12665-009-0426-5/FIGURES/9
  • Saaty, T. L. (1988). What is the analytic hierarchy process?. Mathematical Models for Decision Support. NATO ASI Series(48), s. 109-121.
  • Saaty, T. L. (2004). Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP). Journal of Systems Science and Systems Engineering 2004 13:1, 13(1), 1–35. https://doi.org/10.1007/S11518-006-0151-5
  • Saha, A., Mandal, S., & Saha, S. (2020). Geo-spatial approach-based landslide susceptibility mapping using analytical hierarchical process, frequency ratio, logistic regression and their ensemble methods. SN Applied Sciences, 2(10), 1–21. https://doi.org/10.1007/S42452-020-03441-3/TABLES/9
  • Shahabi, H., Khezri, S., Ahmad, B. Bin, & Hashim, M. (2014a). Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, 115, 55–70. https://doi.org/10.1016/J.CATENA.2013.11.014
  • Sharma, S., & Mahajan, A. K. (2019). A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India. Bulletin of Engineering Geology and the Environment, 78(4), 2431–2448. https://doi.org/10.1007/S10064-018-1259-9/TABLES/7
  • Silalahi, F. E. S., Pamela, Arifianti, Y., & Hidayat, F. (2019). Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geoscience Letters, 6(1), 1–17. https://doi.org/10.1186/S40562-019-0140-4/FIGURES/12
  • Solaimani, K., Mousavi, S. Z., & Kavian, A. (2013). Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arabian Journal of Geosciences, 6(7), 2557–2569. https://doi.org/10.1007/S12517-012-0526-5/FIGURES/6
  • Sunkar , M., & Avcı, V. (2016). Şepker Çayı Aşağı Havzası’nın (Adıyaman Batısı) Heyelan Duyarlılık Analizi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 26(2), 13-43.
  • Taş, M. A., Şenol, C., & Yanık, E. (2024). Analitik Hiyerarşi Süreci (AHS) Metodu İle Of İlçesi’nde (Trabzon) Heyelan Risk Duyarlılığı Analizi. Journal of Disaster and Risk, 7(1), 279–302. https://doi.org/10.35341/AFET.1361149
  • Tesfa, C. (2022). GIS-Based AHP and FR Methods for Landslide Susceptibility Mapping in the Abay Gorge, Dejen–Renaissance Bridge, Central, Ethiopia. Geotechnical and Geological Engineering, 40(10), 5029–5043. https://doi.org/10.1007/S10706-022-02197-4/FIGURES/9
  • Thomas, A. V., Saha, S., Danumah, J. H., Raveendran, S., Prasad, M. K., Ajin, R. S., & Kuriakose, S. L. (2021a). Landslide Susceptibility Zonation of Idukki District Using GIS in the Aftermath of 2018 Kerala Floods and Landslides: a Comparison of AHP and Frequency Ratio Methods. Journal of Geovisualization and Spatial Analysis, 5(2). https://doi.org/10.1007/S41651-021-00090-X
  • Turner, A. (2018). Social and environmental impacts of landslides. Innovative Infrastructure Solutions, 3, 1-25. https://doi.org/10.1007/s41062-018-0175-y.
  • Üzel Günini, N., & Öztürk, D. (2021). Van İli Heyelan Duyarlılığının Frekans Oranı Yöntemiyle Analizi. Uludağ University Journal of The Faculty of Engineering, 26(3), 865–884. https://doi.org/10.17482/UUMFD.969246
  • Vakhshoori, V., & Zare, M. (2016). Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Natural Hazards and Risk, 7(5), 1731–1752. https://doi.org/10.1080/19475705.2016.1144655
  • Vargas, L. G. (2011). Thomas L. Saaty. International Series in Operations Research and Management Science, 147, 577–591. https://doi.org/10.1007/978-1-4419-6281-2_31
  • Wang, Q., & Li, W. (2017). A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping. Physical Geography, 38(4), 318–337. https://doi.org/10.1080/02723646.2017.1294522
  • Yan, F., Zhang, Q., Ye, S., & Ren, B. (2019). A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model. Geomorphology, 327, 170–187. https://doi.org/10.1016/J.GEOMORPH.2018.10.024
  • Yazar, S., & Göster, K. (2023). Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa, Demirci, Tekeler Köyü örneği. Geomatik, 8(1), 42–54. https://doi.org/10.29128/GEOMATIK.1108735
  • Xiao, X., Zou, Y., Huang, J., Luo, X., Yang, L., Li, M., Yang, P., Ji, X., & Li, Y. (2024). An interpretable model for landslide susceptibility assessment based on Optuna hyperparameter optimization and Random Forest. Geomatics, Natural Hazards and Risk, 15. https://doi.org/10.1080/19475705.2024.2347421.
  • Web Sources
  • Yerbilimleri Harita Görüntüleyici. (n.d.). Retrieved 13 January 2025, from https://yerbilimleri.mta.gov.tr/anasayfa.aspx
  • Sentinel-2 | Copernicus Data Space Ecosystem. (n.d.). Retrieved 13 January 2025, from https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2
  • HGM | Harita Genel Müdürlüğü- Ulusal Haritacılık Kurumu. (n.d.). Retrieved 13 January 2025, from https://www.harita.gov.tr/urun/sayisal-yuzey-modeli-5-m-seviye-0-sym5-l0-/1”

Comparison Of Analytical Hierarchy Process (AHP) And Frequency Ratio (FR) Methods In Landslide Susceptibility Assessment: A Case Study In Kemah-Kömür Stream Basin, Erzincan

Yıl 2025, Cilt: 34 Sayı: 2, 337 - 356, 30.12.2025
https://doi.org/10.51800/ecd.1761885

Öz

This study compares the Analytic Hierarchy Process (AHP) and Frequency Ratio (FR) methods for landslide susceptibility mapping in the Kömür Stream Basin, Kemah-Erzincan. The performance of the models was comprehensively evaluated using metrics including the Receiver Operating Characteristic (ROC) curve, F1-Score, and overlap rate analysis. The results revealed that the statistics-based FR model Area Under the Curve (AUC) = 0.884, F1-Score = 0.87 significantly outperformed the expert opinion-based AHP model (AUC = 0.699, F1-Score = 0.68) for across all metrics. In the overlap rate analysis, which demonstrates the practical validity of the models, 92.7% of the existing landslide areas fell within the 'High' and 'Very High' susceptibility classes on the FR map compared to 73.7% on the AHP map. These findings prove that the FR method is a reliable and precise tool for identifying high-risk areas and for land-use planning in the region.

Kaynakça

  • Abdı, A., Bouamrane, A., Karech, T., Dahri, N., & Kaouachi, A. (2021). Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria). Geotechnical and Geological Engineering, 39(8), 5675–5691. https://doi.org/10.1007/S10706-021-01855-3
  • Abedini, M., & Tulabi, S. (2018). Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran. Environmental Earth Sciences, 77(11), 1–13. https://doi.org/10.1007/S12665-018-7524-1/TABLES/4
  • Ada, M. (2018). Alakır çayı (Antalya) havzasının uzaktan algılama ve coğrafi bilgi sistemleri kullanılarak heyelan duyarlılık haritalandırılması. http://acikerisim.akdeniz.edu.tr/xmlui/handle/123456789/3744
  • Ahmad, M. S., MonaLisa, & Khan, S. (2023). Comparative analysis of analytical hierarchy process (AHP) and frequency ratio (FR) models for landslide susceptibility mapping in Reshun, NW Pakistan. Kuwait Journal of Science, 50(3), 387–398. https://doi.org/10.1016/J.KJS.2023.01.004
  • Akıncı, H., Doğan, S., & Kılıçoğlu, C. (2017). Lenslide susceptıbılıty mappıng of canık (samsun) dıstrıct usıng bayesıan probabılıty and frequency ratıo models. Selcuk University Journal of Engineering, Science and Technology, 5(3), 283–299. https://doi.org/10.15317/SCITECH.2017.89
  • Arabameri, A., Pradhan, B., Rezaei, K., & Lee, C. W. (2019). Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR-RF integrated model and multiresolution DEMs. Remote Sensing, 11(9). https://doi.org/10.3390/RS11090999
  • Asmare, D. (2023). Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain, northwestern ethiopia. Scientific African, 19, e01470. https://doi.org/10.1016/J.SCIAF.2022.E01470
  • Avcı, V. (2016). Gökdere Havzası ve Çevresinin (Bingöl Güneybatısı) Frekans Oranı Metoduna Göre Heyelan Duyarlılık Analizi. Marmara Geographical Review, 34, 160–177. https://dergipark.org.tr/en/pub/marucog/issue/24661/260871
  • Aydın, M. C., Sevgi Birincioğlu, E., & Büyüksaraç, A. (2022). Landslide Susceptibility Mapping in Bitlis Province using GIS-based AHP method. Türk Uzaktan Algılama Ve CBS Dergisi, 3(2), 160-171. https://doi.org/10.48123/rsgis.1119723
  • Aydoğan, E., & Dağ, S. (2023). İstatistiksel Yöntemlerle Yukarı Karasu Havzası’nın Kuzeydoğu Bölümünün (Erzurum) Heyelan Duyarlılık Analizi. Türk Uzaktan Algılama ve CBS Dergisi, 4(1), 64–82. https://doi.org/10.48123/RSGIS.1202140
  • Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81(4), 432–445. https://doi.org/10.1016/J.ENGGEO.2005.08.004
  • Babitha, B. G., Danumah, J. H., Pradeep, G. S., Costache, R., Patel, N., Prasad, M. K., Rajaneesh, A., Mammen, P. C., Ajin, R. S., & Kuriakose, S. L. (2022). A framework employing the AHP and FR methods to assess the landslide susceptibility of the Western Ghats region in Kollam district. Safety in Extreme Environments, 4(2), 171–191. https://doi.org/10.1007/S42797-022-00061-5/FIGURES/9
  • Bagal, G., Sorate, R., & Desai, P. (2024). Geo-Technical and Geological Study, Management Plan of Landslide. Journal of Advances in Science and Technology. https://doi.org/10.29070/wc8dv634.
  • Başara, A. C., & Şişman, Y. (2022). Frekans oranı, kanıt ağırlığı ve lojistik regresyon yöntemleri kullanılarak heyelan duyarlılık haritalarının CBS tabanlı karşılaştırılması. Nigde Omer Halisdemir University Journal of Engineering Sciences, 11(3), 647–660. https://doi.org/10.28948/NGUMUH.1065284
  • Berber, S. (2023). Güzelyalı-Lapseki (Çanakkale) arasındaki bölgenin heyelan tehlikesinin değerlendirilmesi. http://dspace.balikesir.edu.tr/xmlui/handle/20.500.12462/13365
  • Berhane, G., Gebrehiwot, A., & Abay, A. (2023). Landslide susceptibility mapping in the Adwa Volcanic Mountain Plugs, Northern Ethiopia: a comparative analysis of frequency ratio and analytical hierarchy process methods. Geomatics, Natural Hazards and Risk, 14(1). https://doi.org/10.1080/19475705.2023.2281244
  • Bhagya, S. B., Sumi, A. S., Balaji, S., Danumah, J. H., Costache, R., Rajaneesh, A., Gokul, A., Chandrasenan, C. P., Quevedo, R. P., Johny, A., Sajinkumar, K. S., Saha, S., Ajin, R. S., Mammen, P. C., Abdelrahman, K., Fnais, M. S., & Abioui, M. (2023). Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps. Land 2023, Vol. 12, Page 468, 12(2), 468. https://doi.org/10.3390/LAND12020468
  • Biswas, B., Rahaman, A., & Barman, J. (2023). Comparative Assessment of FR and AHP Models for Landslide Susceptibility Mapping for Sikkim, India and Preparation of Suitable Mitigation Techniques. Journal of the Geological Society of India, 99(6), 791–801. https://doi.org/10.1007/S12594-023-2386-X/METRICS
  • Dağdelenler, G. (2020). İki Farklı Örneklem Tekniği Kullanılarak Oluşturulan Heyelan Duyarlılık Haritalarının Frekans Oranı (FO) Yöntemi ile Karşılaştırılması. Jeoloji Mühendisliği Dergisi, 44(1), 19–38. https://doi.org/10.24232/JMD.740509
  • Demirbilek, S., & Turoğlu, H. (2024). Frekans Oranı Yöntemi Kullanılarak Arsuz Çayı Havzası Heyelan Duyarlılık Analizi. Jeomorfolojik Araştırmalar Dergisi(13), 23-39. https://doi.org/10.46453/jader.1496249.
  • Demirel, Ş. C., & Hastaoğlu, K. Ö. (2022). CBS Tabanlı AHP Yöntemi Kullanılarak Oluşturulan Sivas Koyulhisar Heyelan Duyarlılık Haritalarının Güvenilirliğinin Araştırılması. Journal of Disaster and Risk, 5(2), 715–730. https://doi.org/10.35341/AFET.1071728
  • Gakaev, R. (2021). Exogenous relief-forming processes and phenomena on the territory of the Chechen Republic. SHS Web of Conferences. https://doi.org/10.1051/shsconf/202112803001.
  • Gholami, M., Ghachkanlu, E. N., Khosravi, K., & Pirasteh, S. (2019). Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. Journal of Earth System Science, 128(2), 1–22. https://doi.org/10.1007/S12040-018-1047-8/FIGURES/7
  • Giarola, A., Schoorl, J. M., Baartman, J. E. M., Bordoni, M., Tarolli, P., Zucca, F., Heckmann, T., & Meisina, C. (2024). Exploiting the land use to predict shallow landslide susceptibility: A probabilistic implementation of LAPSUS-LS. CATENA, 246, 108437. https://doi.org/10.1016/J.CATENA.2024.108437
  • Görüm, T., Bayrakdar, C., Avdan, U., & Çömert, R. (2017). Geomorphology of the Mount Akdag landslide, Western Taurus range (SW Turkey). Journal Of Maps, 13(2), 165–172. https://doi.org/10.1080/17445647.2017.1280424
  • Gudiyangada Nachappa, T., Kienberger, S., Meena, S. R., Hölbling, D., & Blaschke, T. (2020). Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomatics, Natural Hazards and Risk, 11(1), 572–600. https://doi.org/10.1080/19475705.2020.1736190
  • Hasekioğulları, G. D., & Ercanoglu, M. (2012). A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63(2), 1157–1179. https://doi.org/10.1007/S11069-012-0218-1
  • Hoa, P. V., Tuan, N. Q., Hong, P. V., Thao, G. T. P., & Binh, N. A. (2023). GIS-based modeling of landslide susceptibility zonation by integrating the frequency ratio and objective–subjective weighting approach: a case study in a tropical monsoon climate region. Frontiers in Environmental Science, 11. https://doi.org/10.3389/FENVS.2023.1175567
  • Hoşgören, M. Y. (2017). Jeomorfoloji Terimleri Sözlüğü. Çantay Kitabevi.
  • Hong, H., Chen, W., Xu, C., Youssef, A. M., Pradhan, B., & Tien Bui, D. (2017). Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto International, 32(2), 139–154. https://doi.org/10.1080/10106049.2015.1130086
  • İzbırak, R. (1975). Coğrafya Terimleri Sözlüğü, İstanbul, Mehtupla Öğretim Merkezi Yayınları: 15, Ankara.
  • Khan, H., Shafique, M., Khan, M. A., Bacha, M. A., Shah, S. U., & Calligaris, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 11–24. https://doi.org/10.1016/J.EJRS.2018.03.004
  • Kılıçoğlu, C. (2020). Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(1), 138-154. https://doi.org/10.35414/akufemubid.658662
  • Kumar, V., Gupta, V., Jamir, I., & Chattoraj, S. L. (2019). Evaluation of potential landslide damming: Case study of Urni landslide, Kinnaur, Satluj valley, India. Geoscience Frontiers, 10(2), 753–767. https://doi.org/10.1016/J.GSF.2018.05.004
  • Kumtepe, P., Nurlu, Y., Cengiz, T., & Sütçü, E. (2011). Heyelan Duyarlılık Haritalarının Hazırlanmasında Coğrafi Bilgi Sistemlerinin Kullanımı. Journal of Geodesy and Geoinformation, 104.1, 41–46. https://dergipark.org.tr/en/pub/hkmojjd/issue/53172/705374
  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41. https://doi.org/10.1007/S10346-006-0047-Y/FIGURES/3
  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50(6), 847–855. https://doi.org/10.1007/S00254-006-0256-7/FIGURES/4
  • Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q., & Wu, Y. (2017). A modified frequency ratio method for landslide susceptibility assessment. Landslides, 14(2), 727–741. https://doi.org/10.1007/S10346-016-0771-X/FIGURES/9
  • Li, L., Nahayo, L., Habiyaremye, G., & Christophe, M. (2022). Applicability and performance of statistical index, certain factor and frequency ratio models in mapping landslides susceptibility in Rwanda. Geocarto International, 37(2), 638–656. https://doi.org/10.1080/10106049.2020.1730451
  • Mokarram, M., & Zarei, A. R. (2018). Landslide Susceptibility Mapping Using Fuzzy-AHP. Geotechnical and Geological Engineering, 36(6), 3931–3943. https://doi.org/10.1007/S10706-018-0583-Y
  • Mondal, S., & Maiti, R. (2013). Integrating the Analytical Hierarchy Process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4(4), 200–212. https://doi.org/10.1007/S13753-013-0021-Y/METRICS
  • Ataol, A. (2015). Çankırı-Ankara karayolu boyunca (Akyurt-Çankırı arası) heyelan risk bölgelerinin belirlenmesi. Journal of Geography, 29(29), 51–69. https://dergipark.org.tr/en/pub/iucografya/issue/25074/264646
  • Nicu, I. C., & Asăndulesei, A. (2018). GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger? Geomorphology, 314, 27–41. https://doi.org/10.1016/J.GEOMORPH.2018.04.010
  • Ozdemir, A. (2020). A Comparative Study of the Frequency Ratio, Analytical Hierarchy Process, Artificial Neural Networks and Fuzzy Logic Methods for Landslide Susceptibility Mapping: Taşkent (Konya), Turkey. Geotechnical and Geological Engineering, 38(4), 4129–4157. https://doi.org/10.1007/S10706-020-01284-8
  • Park, S., Choi, C., Kim, B., & Kim, J. (2013a). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464. https://doi.org/10.1007/S12665-012-1842-5/TABLES/7
  • Pathak, Y. P., Dholakia, M. B., Prakash, I., Jagad, G. D., & Gohil, K. B. (2024). Evaluating Landslide Susceptibility in the Lower Sutlej Basin, Himachal Pradesh, India Using GIS: A Comparative Study of the Frequency Ratio and Analytical Hierarchy Process Methods. Nanotechnology Perceptions, 20(S5). https://doi.org/10.62441/NANO-NTP.V20IS5.67
  • Poudyal, C. P., Chang, C., Oh, H. J., & Lee, S. (2010). Landslide susceptibility maps comparing frequency ratio and artificial neural networks: A case study from the Nepal Himalaya. Environmental Earth Sciences, 61(5), 1049–1064. https://doi.org/10.1007/S12665-009-0426-5/FIGURES/9
  • Saaty, T. L. (1988). What is the analytic hierarchy process?. Mathematical Models for Decision Support. NATO ASI Series(48), s. 109-121.
  • Saaty, T. L. (2004). Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP). Journal of Systems Science and Systems Engineering 2004 13:1, 13(1), 1–35. https://doi.org/10.1007/S11518-006-0151-5
  • Saha, A., Mandal, S., & Saha, S. (2020). Geo-spatial approach-based landslide susceptibility mapping using analytical hierarchical process, frequency ratio, logistic regression and their ensemble methods. SN Applied Sciences, 2(10), 1–21. https://doi.org/10.1007/S42452-020-03441-3/TABLES/9
  • Shahabi, H., Khezri, S., Ahmad, B. Bin, & Hashim, M. (2014a). Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, 115, 55–70. https://doi.org/10.1016/J.CATENA.2013.11.014
  • Sharma, S., & Mahajan, A. K. (2019). A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India. Bulletin of Engineering Geology and the Environment, 78(4), 2431–2448. https://doi.org/10.1007/S10064-018-1259-9/TABLES/7
  • Silalahi, F. E. S., Pamela, Arifianti, Y., & Hidayat, F. (2019). Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geoscience Letters, 6(1), 1–17. https://doi.org/10.1186/S40562-019-0140-4/FIGURES/12
  • Solaimani, K., Mousavi, S. Z., & Kavian, A. (2013). Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arabian Journal of Geosciences, 6(7), 2557–2569. https://doi.org/10.1007/S12517-012-0526-5/FIGURES/6
  • Sunkar , M., & Avcı, V. (2016). Şepker Çayı Aşağı Havzası’nın (Adıyaman Batısı) Heyelan Duyarlılık Analizi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 26(2), 13-43.
  • Taş, M. A., Şenol, C., & Yanık, E. (2024). Analitik Hiyerarşi Süreci (AHS) Metodu İle Of İlçesi’nde (Trabzon) Heyelan Risk Duyarlılığı Analizi. Journal of Disaster and Risk, 7(1), 279–302. https://doi.org/10.35341/AFET.1361149
  • Tesfa, C. (2022). GIS-Based AHP and FR Methods for Landslide Susceptibility Mapping in the Abay Gorge, Dejen–Renaissance Bridge, Central, Ethiopia. Geotechnical and Geological Engineering, 40(10), 5029–5043. https://doi.org/10.1007/S10706-022-02197-4/FIGURES/9
  • Thomas, A. V., Saha, S., Danumah, J. H., Raveendran, S., Prasad, M. K., Ajin, R. S., & Kuriakose, S. L. (2021a). Landslide Susceptibility Zonation of Idukki District Using GIS in the Aftermath of 2018 Kerala Floods and Landslides: a Comparison of AHP and Frequency Ratio Methods. Journal of Geovisualization and Spatial Analysis, 5(2). https://doi.org/10.1007/S41651-021-00090-X
  • Turner, A. (2018). Social and environmental impacts of landslides. Innovative Infrastructure Solutions, 3, 1-25. https://doi.org/10.1007/s41062-018-0175-y.
  • Üzel Günini, N., & Öztürk, D. (2021). Van İli Heyelan Duyarlılığının Frekans Oranı Yöntemiyle Analizi. Uludağ University Journal of The Faculty of Engineering, 26(3), 865–884. https://doi.org/10.17482/UUMFD.969246
  • Vakhshoori, V., & Zare, M. (2016). Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Natural Hazards and Risk, 7(5), 1731–1752. https://doi.org/10.1080/19475705.2016.1144655
  • Vargas, L. G. (2011). Thomas L. Saaty. International Series in Operations Research and Management Science, 147, 577–591. https://doi.org/10.1007/978-1-4419-6281-2_31
  • Wang, Q., & Li, W. (2017). A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping. Physical Geography, 38(4), 318–337. https://doi.org/10.1080/02723646.2017.1294522
  • Yan, F., Zhang, Q., Ye, S., & Ren, B. (2019). A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model. Geomorphology, 327, 170–187. https://doi.org/10.1016/J.GEOMORPH.2018.10.024
  • Yazar, S., & Göster, K. (2023). Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa, Demirci, Tekeler Köyü örneği. Geomatik, 8(1), 42–54. https://doi.org/10.29128/GEOMATIK.1108735
  • Xiao, X., Zou, Y., Huang, J., Luo, X., Yang, L., Li, M., Yang, P., Ji, X., & Li, Y. (2024). An interpretable model for landslide susceptibility assessment based on Optuna hyperparameter optimization and Random Forest. Geomatics, Natural Hazards and Risk, 15. https://doi.org/10.1080/19475705.2024.2347421.
  • Web Sources
  • Yerbilimleri Harita Görüntüleyici. (n.d.). Retrieved 13 January 2025, from https://yerbilimleri.mta.gov.tr/anasayfa.aspx
  • Sentinel-2 | Copernicus Data Space Ecosystem. (n.d.). Retrieved 13 January 2025, from https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2
  • HGM | Harita Genel Müdürlüğü- Ulusal Haritacılık Kurumu. (n.d.). Retrieved 13 January 2025, from https://www.harita.gov.tr/urun/sayisal-yuzey-modeli-5-m-seviye-0-sym5-l0-/1”
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Türkiye Fiziki Coğrafyası
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Akif Taş 0000-0003-3543-037X

Gönderilme Tarihi 10 Ağustos 2025
Kabul Tarihi 7 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 34 Sayı: 2

Kaynak Göster

APA Taş, M. A. (2025). Comparison Of Analytical Hierarchy Process (AHP) And Frequency Ratio (FR) Methods In Landslide Susceptibility Assessment: A Case Study In Kemah-Kömür Stream Basin, Erzincan. Ege Coğrafya Dergisi, 34(2), 337-356. https://doi.org/10.51800/ecd.1761885