Long-Term (1984–2024) Land Surface Temperature (LST) Trends at Iztuzu Beach (Dalyan, Türkiye): A Decadal Analysis
Yıl 2025,
Cilt: 34 Sayı: 2, 235 - 251, 30.12.2025
Ahmet Karakoç
Öz
Long-term variations in land surface temperature (LST) can significantly influence the ecological functioning of coastal habitats and the reproductive dynamics of species inhabiting these environments. This study examined LST trends at Iztuzu Beach (Dalyan), one of the ecologically critical coastal areas in the Mediterranean basin and a key nesting habitat for the loggerhead sea turtle (Caretta caretta), over the period 1984–2024. Landsat data with 30 m resolution covering May–August were used, comprising 314 satellite images corresponding to 12 decadal periods (early, middle, and late 10-day intervals of each month). Analyses included zonal Ordinary Least Squares (OLS) regression at the regional scale and pixel-level Mann–Kendall tests with Sen’s Slope statistics.
Evaluations conducted across 429 stable land pixels revealed positive trends in 9 out of 12 decadal periods. The most pronounced increases occurred in mid-May and late August. Warming trends observed in late August were statistically significant at the 90% confidence level (Sen’s slope ~0.118 °C·yr⁻¹, u = 2.62). Although mid-May exhibited high slope values, high interannual variance limited its spatial significance. Localized warming patterns in the southeastern part of the beach corresponded to areas with intense anthropogenic activity, while notable warming trends were also observed in the central section of the beach. The findings highlight that long-term temperature changes in coastal ecosystems can directly affect habitat integrity and the life cycles of species.
Etik Beyan
This study does not involve the use of surveys, interviews, focus group studies, experiments, observations, or human/animal data. Therefore, an ethics committee approval is not required.
Destekleyen Kurum
The author received no financial support for the research, authorship, and/or publication of this article.
Kaynakça
-
Altın, A., Ayyıldız, H., & Maden, M. (2021). Antalya ili Demre (Kale) kumsalındaki Deniz kaplumbağası (Caretta caretta) popülasyonunun koruma ve izleme faaliyetleri. Marine and Life Sciences, 3(2), 80-86. https://doi.org/10.51756/marlife.1005331
-
Anthony, E. J. (2013). Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea. Geomorphology, 199, 8-21. https://doi.org/10.1016/j.geomorph.2012.06.007
-
Barik, S., Mohanty, P. K., Pradhan, S., Sahoo, R. K., Kar, P. K., Behera, B., & Swain, M. (2023). Conservation and management of olive ridley sea turtles and their nesting habitat: A study at Rushikulya rookery, Odisha, east coast of India. Ocean & Coastal Management, 245, 106857. https://doi.org/10.1016/j.ocecoaman.2023.106857
-
Bilgili, M., Durhasan, T., & Pinar, E. (2024). Time series analysis of sea surface temperature change in the coastal seas of Türkiye. Journal of Atmospheric and Solar-Terrestrial Physics, 263, 106339. https://doi.org/10.1016/j.jastp.2024.106339
-
Booth, D. T., & Freeman, C. (2006). Sand and nest temperatures and an estimate of hatchling sex ratio from the Heron Island green turtle (Chelonia mydas) rookery, Southern Great Barrier Reef. Coral reefs, 25(4), 629-633. https://doi.org/10.1007/s00338-006-0135-4
-
Canbolat, A. F. (2004). A review of sea turtle nesting activity along the Mediterranean coast of Turkey. Biological Conservation, 116(1), 81-91. https://doi.org/10.1016/S0006-3207(03)00179-4
-
Candan, A. Y. “Dalyan Iztuzu kumsalı'nda (Muğla, Türkiye) yuvalama yapan iribaş deniz kaplumbağası (Caretta caretta L.) yuvalarındaki mikrofungusların incelenmesi” [PhD thesis]. Pamukkale University, Institute of Science, (2021).
-
Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, P. A., & Samsó, M. (2022). The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections. Earth System Dynamics, 13(1), 321-340. https://doi.org/10.5194/esd-13-321-2022
-
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., ... & Xoplaki, E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature climate change, 8(11), 972-980. https://doi.org/10.1038/s41558-018-0299-2
-
Cristóbal, J., Jiménez-Muñoz, J. C., Prakash, A., Mattar, C., Skoković, D., & Sobrino, J. A. (2018). An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sensing, 10(3), 431. https://doi.org/10.3390/rs10030431
-
Çelebioğlu, T., Tayanç, M., & Oruç, H. (2021). Determination of temperature variabilities and trends in Turkey. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1003-1020. S. Kalaycı and E. Kahya, “Susurluk Havzası Nehirlerinde Su Kalitesi Trendlerinin Belirlenmesi”. Tübitak Dergisi 22, 503-514 (1998). https://doi.org/10.17482/uumfd.881416
-
Dabanli, I., Şişman, E., Güçlü, Y. S., Birpınar, M. E., & Şen, Z. (2021). Climate change impacts on sea surface temperature (SST) trend around Turkey seashores. Acta Geophysica, 69(1), 295-305. https://doi.org/10.1007/s11600-021-00544-2
-
Defeo, O., McLachlan, A., Schoeman, D. S., Schlacher, T. A., Dugan, J., Jones, A., ... & Scapini, F. (2009). Threats to sandy beach ecosystems: a review. Estuarine, coastal and shelf science, 81(1), 1-12. https://doi.org/10.1016/j.ecss.2008.09.022
-
DEKAMER (Sea Turtle Research Rescue and Rehabilitation Centre), (2019)."2018 Annual Report: Dalyan Muğla”, DEKAMER
Dimitriadis, C., Karditsa, A., Almpanidou, V., Anastasatou, M., Petrakis, S., Poulos, S., ... & Mazaris, A. D. (2022). Sea level rise threatens critical nesting sites of charismatic marine turtles in the Mediterranean. Regional Environmental Change, 22(2), 56. https://doi.org/10.1007/s10113-022-01922-2
-
Feagin, R. A., Sherman, D. J., & Grant, W. E. (2005). Coastal erosion, global sea‐level rise, and the loss of sand dune plant habitats. Frontiers in Ecology and the Environment, 3(7), 359-364. https://doi.org/10.1890/1540-9295(2005)003[0359:CEGSRA]2.0.CO;2
-
Fuentes, M. M. P. B., Maynard, J. A., Guinea, M., Bell, I. P., Werdell, P. J., & Hamann, M. (2009). Proxy indicators of sand temperature help project impacts of global warming on sea turtles in northern Australia. Endangered Species Research, 9, 33-40. https://doi.org/10.3354/esr
-
Gammon, M., Whiting, S., & Fossette, S. (2023). Vulnerability of sea turtle nesting sites to erosion and inundation: A decision support framework to maximize conservation. Ecosphere, 14(6), e4529. https://doi.org/10.1002/ecs2.4529
-
Girondot, M., & Kaska, Y. (2015). Nest temperatures in a loggerhead nesting beach in Turkey is more determined by sea surface than air temperature. Journal of Thermal Biology, 47, 13-18. https://doi.org/10.1016/j.jtherbio.2014.10.008
-
Godfrey, M. H., & Mrosovsky, N. (2006). Pivotal temperature for green sea turtles, Chelonia mydas, nesting in Suriname. The Herpetological Journal, 16(1), 55-61.
-
Godley, B. J., Broderick, A. C., Glen, F., & Hays, G. C. (2003). Post-nesting movements and submergence patterns of loggerhead marine turtles in the Mediterranean assessed by satellite tracking. Journal of Experimental Marine Biology and Ecology, 287(1), 119-134. https://doi.org/10.1016/S0022-0981(02)00547-6
-
Hays, G. C., Mazaris, A. D., Schofield, G., & Laloë, J. O. (2017). Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proceedings of the Royal Society B: Biological Sciences, 284(1848), 20162576. http://dx.doi.org/10.1098/rspb.2016.2576
-
Hazaymeh, K., Zeitoun, M., Almagbile, A., & Al Refaee, A. (2024). Exploring the Dynamics of Land Surface Temperature in Jordan’s Local Climate Zones: A Comprehensive Assessment through Landsat Entire Archive and Google Earth Engine. Atmosphere, 15(3), 318. https://doi.org/10.3390/atmos15030318
-
IUCN SSC Marine Turtle Specialist Group, "Marine turtle Red List status summaries", (2025) (accessed 20 May 2025). [https://www.iucn-mtsg.org/statuses]
-
Jia, W., & Zhao, S. (2020). Trends and drivers of land surface temperature along the urban-rural gradients in the largest urban agglomeration of China. Science of the Total Environment, 711, 134579. https://doi.org/10.1016/j.scitotenv.2019.134579
-
Karabulut, M. (2012). Doğu Akdeniz’de ekstrem maksimum ve minimum sıcaklıkların trend analizi. KSÜ Doğa Bilimleri Dergisi Özel Sayı, 37, 44.
-
Kaska, Y., Ilgaz, Ç., Özdemir, A., Başkale, E., Türkozan, O., Baran, İ., & Stachowitsch, M. (2006). Sex ratio estimations of loggerhead sea turtle hatchlings by histological examination and nest temperatures at Fethiye beach, Turkey. Naturwissenschaften, 93(7), 338-343. https://doi.org/10.1007/s00114-006-0110-5
-
Laloë, J. O., Esteban, N., Berkel, J., & Hays, G. C. (2016). Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. Journal of Experimental Marine Biology and Ecology, 474, 92-99. https://doi.org/10.1016/j.jembe.2015.09.015
-
Lazoglou, G., Papadopoulos-Zachos, A., Georgiades, P., Zittis, G., Velikou, K., Manios, E. M., & Anagnostopoulou, C. (2024). Identification of climate change hotspots in the Mediterranean. Scientific reports, 14(1), 29817. https://doi.org/10.1038/s41598-024-80139-1
-
Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., ... & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008
-
Mancino, C., Hochscheid, S., & Maiorano, L. (2023). Increase of nesting habitat suitability for green turtles in a warming Mediterranean Sea. Scientific Reports, 13(1), 19906. https://doi.org/10.1038/s41598-023-46958-4
-
Matsuzawa, Y., Sato, K., Sakamoto, W., & Bjorndal, K. (2002). Seasonal fluctuations in sand temperature: effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Marine Biology, 140(3), 639-646. DOI 10.1007/s00227-001-0724-2
-
Mazaris, A. D., Kallimanis, A. S., Sgardelis, S. P., & Pantis, J. D. (2008). Do long-term changes in sea surface temperature at the breeding areas affect the breeding dates and reproduction performance of Mediterranean loggerhead turtles? Implications for climate change. Journal of Experimental Marine Biology and Ecology, 367(2), 219-226. https://doi.org/10.1016/j.jembe.2008.09.025
-
Mazaris, A. D., Matsinos, Y. G., & Margaritoulis, D. (2006). Nest site selection of loggerhead sea turtles: the case of the island of Zakynthos, W Greece. Journal of Experimental Marine Biology and Ecology, 336(2), 157-162. https://doi.org/10.1016/j.jembe.2006.04.015
-
Meroni, M., Fasbender, D., Rembold, F., Atzberger, C., & Klisch, A. (2019). Near real-time vegetation anomaly detection with MODIS NDVI: Timeliness vs. accuracy and effect of anomaly computation options. Remote sensing of environment, 221, 508-521. https://doi.org/10.1016/j.rse.2018.11.041
-
Mısırlıoğlu, M., & Toper, R. (2020). Deniz Kaplumbağası (Caretta Caretta, Chelonia Mydas) İzleme Ve Koruma Çalışmaları: Göksu Deltası Örneği. Doğanın Sesi, (6), 28-43.
-
Mira, M., Valor, E., Boluda, R., Caselles, V., & Coll, C. (2007). Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land surface temperature determination. Journal of Geophysical Research: Earth Surface, 112(F4). https://doi.org/10.1029/2007JF000749
-
Mrosovsky, N., & Pieau, C. (1991). Transitional range of temperature, pivotal temperatures and thermosensitive stages for sex determination in reptiles. Amphibia-Reptilia, 12(2), 169-179.
-
Mrosovsky, N., & Yntema, C. L. (1980). Temperature dependence of sexual differentiation in sea turtles: implications for conservation practices. Biological Conservation, 18(4), 271-280. https://doi.org/10.1016/0006-3207(80)90003-8
-
Patrício, A. R., Hawkes, L. A., Monsinjon, J. R., Godley, B. J., & Fuentes, M. M. (2021). Climate change and marine turtles: recent advances and future directions. Endangered Species Research, 44, 363-395. https://doi.org/10.3354/esr
-
Poloczanska, E. S., Limpus, C. J., & Hays, G. C. (2009). Vulnerability of marine turtles to climate change. Advances in marine biology, 56, 151-211. https://doi.org/10.1016/S0065-2881(09)56002-6
-
Roy, D. P., Wulder, M. A., Loveland, T. R., Ce, W., Allen, R. G., Anderson, M. C., ... & Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote sensing of Environment, 145, 154-172. https://doi.org/10.1016/j.rse.2014.02.001
-
Sajib, M. Q. U., & Wang, T. (2020). Estimation of Land Surface Temperature in an agricultural region of Bangladesh from Landsat 8: Intercomparison of four algorithms. Sensors, 20(6), 1778. https://doi.org/10.3390/s20061778
Sakalis, V. D. (2024). Trend analysis and forecast of annual precipitation and temperature series in the Eastern Mediterranean region. Atmósfera, 38. https://doi.org/10.20937/atm.53272
-
Santidrián Tomillo, P., Saba, V. S., Blanco, G. S., Stock, C. A., Paladino, F. V., & Spotila, J. R. (2012). Climate driven egg and hatchling mortality threatens survival of Eastern Pacific leatherback turtles. PLoS One, 7(5), e37602. https://doi.org/10.1371/journal.pone.0037602
-
Sarı, F., & Kaska, Y. (2015). Loggerhead sea turtle hatchling sex ratio differences between two nesting beaches in Turkey. Israel Journal of Ecology and Evolution, 61(3-4), 115-129. https://doi.org/10.1080/15659801.2015.1047681
-
Satıl, F., Tümen, G., & Selvi, S. (2021). Balıkesir kıyı kumullarındaki bitki çeşitliliği ve tehdit faktörleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3), 507-519.
-
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389.
-
Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440. https://doi.org/10.1016/j.rse.2004.02.003
-
Sousa-Guedes, D., Marco, A., Neves, E., Medina, M., Taxonera, A., Fairweather, K., ... & Sillero, N. (2025). How vulnerable are the nesting sites of loggerhead turtles in Cabo Verde?. Regional Environmental Change, 25(1), 1-14. https://doi.org/10.1007/s10113-025-02371-3
-
Sözbilen, D., Kirkhan, J., Sezgin, Ç., Kaska, Y. (2022) Temporal Analysis Of Caretta Caretta Nest Temperature & Hatchling Gender Ratio On Iztuzu Beach, Turkiye. 7th Mediterranean Conference on Marine Turtles. 18-21 October 2022, Tetouan, Morocco.
-
Şahin, M., Yıldız, B. Y., Şenkal, O., & Peştemalcı, V. (2012). Modelling and remote sensing of land surface temperature in Turkey. Journal of the Indian Society of Remote Sensing, 40(3), 399-409. https://doi.org/10.1007/s12524-011-0158-3
-
Topuz, M., & Geçen, R. (2024). Silifke Ve Erdemli İlçe Merkezlerinin Yer Yüzey Sıcaklığına Etkisi. Çukurova Araştırmaları Dergisi, 7(14), 439-453. DOI :10.29228/cukar.54129
-
Topuz, M., Feidas, H., & Karabulut, M. (2020). Trend analysis of precipitation data in Turkey and relations to atmospheric circulation:(1955-2013). Italian Journal of Agrometeorology, (2), 91-107. doi: 10.13128/ijam-887
-
Tuel, A., & Eltahir, E. A. (2020). Why is the Mediterranean a climate change hot spot?. Journal of Climate, 33(14), 5829-5843. https://doi.org/10.1175/JCLI-D-19-0910.1
-
U.S. Geological Survey. (2025). Landsat Collection [satellite imagery]. Retrieved May 2025 from https://earthexplorer.usgs.gov
-
Wang, M., Zhang, Z., Hu, T., & Liu, X. (2019). A practical single‐channel algorithm for land surface temperature retrieval: application to Landsat series data. Journal of Geophysical Research: Atmospheres, 124(1), 299-316. https://doi.org/10.1029/2018JD029330
-
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005
-
Wildermann, N. E., Barrios-Garrido, H., Jabby, K., Hardenstine, R. S., Shimada, T., Williams, I. D., & Duarte, C. M. (2024). An emerging hazard to nesting sea turtles in the face of sea-level rise. Global Ecology and Conservation, 56, e03334. https://doi.org/10.1016/j.gecco.2024.e03334
-
Wulder, M. A., Ortlepp, S. M., White, J. C., & Maxwell, S. (2008). Evaluation of Landsat-7 SLC-off image products for forest change detection. Canadian Journal of Remote Sensing, 34(2), 93-99. https://doi.org/10.5589/m08-020
-
Xiong, Q., Chen, W., Luo, S., He, L., & Li, H. (2022). Temporal and spatial variation of land surface temperature in recent 20 years and analysis of the effect of land use in Jiangxi Province, China. Atmosphere, 13(8), 1278. https://doi.org/10.3390/atmos13081278
-
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179
-
Yalçin-Özdilek, Ş., & Yerlİ, S. V. (2006). Green Turtle (Chelonia mydas) nesting and habitat threats at Samandağ Beach, Turkey. Chelonian Conservation and Biology, 5(2), 302-305. https://doi.org/10.2744/1071-8443(2006)5[302:GTCMNA]2.0.CO;2
-
Yavaşlı, D. D. (2017). Spatio-temporal trends of urban heat island and surface temperature in Izmir, Turkey. American Journal of Remote Sensing, 5(3), 24-29. doi: 0.11648/j.ajrs.20170503.11
-
Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of hydrology, 259(1-4), 254-271. https://doi.org/10.1016/S0022-1694(01)00594-7
-
Zhu, Z., Qiu, S., He, B., & Deng, C. (2018). Cloud and cloud shadow detection for Landsat images: The fundamental basis for analyzing Landsat time series. Remote sensing time series image processing, 3-23. https://doi.org/10.1201/9781315166636
İztuzu Plajında (Dalyan, Türkiye) Uzun Dönemli (1984–2024) Yer Yüzey Sıcaklığı (YYS) Eğilimleri: Dekadal Bir Analiz
Yıl 2025,
Cilt: 34 Sayı: 2, 235 - 251, 30.12.2025
Ahmet Karakoç
Öz
Yer yüzey sıcaklıklarındaki (YYS) uzun dönemli değişimler, kıyı habitatlarının ekolojik işleyişini ve bu alanlarda yaşayan türlerin üreme dinamiklerini önemli ölçüde şekillendirmektedir. Bu çalışma, Akdeniz havzasındaki ekolojik açıdan kritik kıyı alanlarından biri olan İztuzu Plajı’nda (Dalyan), 1984–2024 dönemi boyunca YYS eğilimlerini incelemiştir. Mayıs–Ağustos dönemini kapsayan 30 m çözünürlüklü Landsat verileri kullanılmış; her ayın baş, orta ve son on günlük dilimlerini temsil eden toplam 12 dekada karşılık gelen 314 uydu görüntüsü analiz edilmiştir. Analizlerde bölgesel düzeyde En Küçük Kareler (OLS) regresyonu ile piksel düzeyinde Mann–Kendall testleri ve Sen’s Slope istatistikleri uygulanmıştır.
429 kararlı kara pikseli üzerinde yapılan değerlendirmeler, 12 dekadın 9’unda pozitif eğilimler ortaya koymuştur. Bu artışların en belirgin olduğu dönemler Mayıs’ın ikinci dekadı ve Ağustos’un son dekadı olmuştur. Ağustos sonu dönemindeki eğilimler %90 güven aralığında istatistiksel olarak anlamlı bulunmuştur (Sen’s slope ~0.118 °C·yıl⁻¹, u = 2.62). May II yüksek eğim değerleri göstermiş olsa da, yıllar arası yüksek varyans, mekânsal anlamlılığı sınırlamıştır. Plajın güneydoğusundaki lokal ısınma desenleri yoğun antropojenik faaliyetlerin görüldüğü alanlarla örtüşürken, merkezi kesimde de dikkat çekici ısınma eğilimleri gözlenmiştir. Bulgular, kıyı ekosistemlerinde uzun vadeli sıcaklık değişimlerinin habitat bütünlüğünü ve türlerin yaşam döngülerini doğrudan etkileyebileceğini ortaya koymaktadır.
Etik Beyan
Bu çalışma; anket, mülakat, odak grup çalışması, deney, gözlem veya insan/ hayvan verisi kullanımını içermemektedir. Bu nedenle etik kurul onay belgesi gerektirmemektedir.
Destekleyen Kurum
Yazar, bu makalenin araştırılması, yazarlığı ve/veya yayımlanması için herhangi bir mali destek almamıştır.
Kaynakça
-
Altın, A., Ayyıldız, H., & Maden, M. (2021). Antalya ili Demre (Kale) kumsalındaki Deniz kaplumbağası (Caretta caretta) popülasyonunun koruma ve izleme faaliyetleri. Marine and Life Sciences, 3(2), 80-86. https://doi.org/10.51756/marlife.1005331
-
Anthony, E. J. (2013). Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea. Geomorphology, 199, 8-21. https://doi.org/10.1016/j.geomorph.2012.06.007
-
Barik, S., Mohanty, P. K., Pradhan, S., Sahoo, R. K., Kar, P. K., Behera, B., & Swain, M. (2023). Conservation and management of olive ridley sea turtles and their nesting habitat: A study at Rushikulya rookery, Odisha, east coast of India. Ocean & Coastal Management, 245, 106857. https://doi.org/10.1016/j.ocecoaman.2023.106857
-
Bilgili, M., Durhasan, T., & Pinar, E. (2024). Time series analysis of sea surface temperature change in the coastal seas of Türkiye. Journal of Atmospheric and Solar-Terrestrial Physics, 263, 106339. https://doi.org/10.1016/j.jastp.2024.106339
-
Booth, D. T., & Freeman, C. (2006). Sand and nest temperatures and an estimate of hatchling sex ratio from the Heron Island green turtle (Chelonia mydas) rookery, Southern Great Barrier Reef. Coral reefs, 25(4), 629-633. https://doi.org/10.1007/s00338-006-0135-4
-
Canbolat, A. F. (2004). A review of sea turtle nesting activity along the Mediterranean coast of Turkey. Biological Conservation, 116(1), 81-91. https://doi.org/10.1016/S0006-3207(03)00179-4
-
Candan, A. Y. “Dalyan Iztuzu kumsalı'nda (Muğla, Türkiye) yuvalama yapan iribaş deniz kaplumbağası (Caretta caretta L.) yuvalarındaki mikrofungusların incelenmesi” [PhD thesis]. Pamukkale University, Institute of Science, (2021).
-
Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, P. A., & Samsó, M. (2022). The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections. Earth System Dynamics, 13(1), 321-340. https://doi.org/10.5194/esd-13-321-2022
-
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., ... & Xoplaki, E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature climate change, 8(11), 972-980. https://doi.org/10.1038/s41558-018-0299-2
-
Cristóbal, J., Jiménez-Muñoz, J. C., Prakash, A., Mattar, C., Skoković, D., & Sobrino, J. A. (2018). An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sensing, 10(3), 431. https://doi.org/10.3390/rs10030431
-
Çelebioğlu, T., Tayanç, M., & Oruç, H. (2021). Determination of temperature variabilities and trends in Turkey. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1003-1020. S. Kalaycı and E. Kahya, “Susurluk Havzası Nehirlerinde Su Kalitesi Trendlerinin Belirlenmesi”. Tübitak Dergisi 22, 503-514 (1998). https://doi.org/10.17482/uumfd.881416
-
Dabanli, I., Şişman, E., Güçlü, Y. S., Birpınar, M. E., & Şen, Z. (2021). Climate change impacts on sea surface temperature (SST) trend around Turkey seashores. Acta Geophysica, 69(1), 295-305. https://doi.org/10.1007/s11600-021-00544-2
-
Defeo, O., McLachlan, A., Schoeman, D. S., Schlacher, T. A., Dugan, J., Jones, A., ... & Scapini, F. (2009). Threats to sandy beach ecosystems: a review. Estuarine, coastal and shelf science, 81(1), 1-12. https://doi.org/10.1016/j.ecss.2008.09.022
-
DEKAMER (Sea Turtle Research Rescue and Rehabilitation Centre), (2019)."2018 Annual Report: Dalyan Muğla”, DEKAMER
Dimitriadis, C., Karditsa, A., Almpanidou, V., Anastasatou, M., Petrakis, S., Poulos, S., ... & Mazaris, A. D. (2022). Sea level rise threatens critical nesting sites of charismatic marine turtles in the Mediterranean. Regional Environmental Change, 22(2), 56. https://doi.org/10.1007/s10113-022-01922-2
-
Feagin, R. A., Sherman, D. J., & Grant, W. E. (2005). Coastal erosion, global sea‐level rise, and the loss of sand dune plant habitats. Frontiers in Ecology and the Environment, 3(7), 359-364. https://doi.org/10.1890/1540-9295(2005)003[0359:CEGSRA]2.0.CO;2
-
Fuentes, M. M. P. B., Maynard, J. A., Guinea, M., Bell, I. P., Werdell, P. J., & Hamann, M. (2009). Proxy indicators of sand temperature help project impacts of global warming on sea turtles in northern Australia. Endangered Species Research, 9, 33-40. https://doi.org/10.3354/esr
-
Gammon, M., Whiting, S., & Fossette, S. (2023). Vulnerability of sea turtle nesting sites to erosion and inundation: A decision support framework to maximize conservation. Ecosphere, 14(6), e4529. https://doi.org/10.1002/ecs2.4529
-
Girondot, M., & Kaska, Y. (2015). Nest temperatures in a loggerhead nesting beach in Turkey is more determined by sea surface than air temperature. Journal of Thermal Biology, 47, 13-18. https://doi.org/10.1016/j.jtherbio.2014.10.008
-
Godfrey, M. H., & Mrosovsky, N. (2006). Pivotal temperature for green sea turtles, Chelonia mydas, nesting in Suriname. The Herpetological Journal, 16(1), 55-61.
-
Godley, B. J., Broderick, A. C., Glen, F., & Hays, G. C. (2003). Post-nesting movements and submergence patterns of loggerhead marine turtles in the Mediterranean assessed by satellite tracking. Journal of Experimental Marine Biology and Ecology, 287(1), 119-134. https://doi.org/10.1016/S0022-0981(02)00547-6
-
Hays, G. C., Mazaris, A. D., Schofield, G., & Laloë, J. O. (2017). Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proceedings of the Royal Society B: Biological Sciences, 284(1848), 20162576. http://dx.doi.org/10.1098/rspb.2016.2576
-
Hazaymeh, K., Zeitoun, M., Almagbile, A., & Al Refaee, A. (2024). Exploring the Dynamics of Land Surface Temperature in Jordan’s Local Climate Zones: A Comprehensive Assessment through Landsat Entire Archive and Google Earth Engine. Atmosphere, 15(3), 318. https://doi.org/10.3390/atmos15030318
-
IUCN SSC Marine Turtle Specialist Group, "Marine turtle Red List status summaries", (2025) (accessed 20 May 2025). [https://www.iucn-mtsg.org/statuses]
-
Jia, W., & Zhao, S. (2020). Trends and drivers of land surface temperature along the urban-rural gradients in the largest urban agglomeration of China. Science of the Total Environment, 711, 134579. https://doi.org/10.1016/j.scitotenv.2019.134579
-
Karabulut, M. (2012). Doğu Akdeniz’de ekstrem maksimum ve minimum sıcaklıkların trend analizi. KSÜ Doğa Bilimleri Dergisi Özel Sayı, 37, 44.
-
Kaska, Y., Ilgaz, Ç., Özdemir, A., Başkale, E., Türkozan, O., Baran, İ., & Stachowitsch, M. (2006). Sex ratio estimations of loggerhead sea turtle hatchlings by histological examination and nest temperatures at Fethiye beach, Turkey. Naturwissenschaften, 93(7), 338-343. https://doi.org/10.1007/s00114-006-0110-5
-
Laloë, J. O., Esteban, N., Berkel, J., & Hays, G. C. (2016). Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. Journal of Experimental Marine Biology and Ecology, 474, 92-99. https://doi.org/10.1016/j.jembe.2015.09.015
-
Lazoglou, G., Papadopoulos-Zachos, A., Georgiades, P., Zittis, G., Velikou, K., Manios, E. M., & Anagnostopoulou, C. (2024). Identification of climate change hotspots in the Mediterranean. Scientific reports, 14(1), 29817. https://doi.org/10.1038/s41598-024-80139-1
-
Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., ... & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008
-
Mancino, C., Hochscheid, S., & Maiorano, L. (2023). Increase of nesting habitat suitability for green turtles in a warming Mediterranean Sea. Scientific Reports, 13(1), 19906. https://doi.org/10.1038/s41598-023-46958-4
-
Matsuzawa, Y., Sato, K., Sakamoto, W., & Bjorndal, K. (2002). Seasonal fluctuations in sand temperature: effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Marine Biology, 140(3), 639-646. DOI 10.1007/s00227-001-0724-2
-
Mazaris, A. D., Kallimanis, A. S., Sgardelis, S. P., & Pantis, J. D. (2008). Do long-term changes in sea surface temperature at the breeding areas affect the breeding dates and reproduction performance of Mediterranean loggerhead turtles? Implications for climate change. Journal of Experimental Marine Biology and Ecology, 367(2), 219-226. https://doi.org/10.1016/j.jembe.2008.09.025
-
Mazaris, A. D., Matsinos, Y. G., & Margaritoulis, D. (2006). Nest site selection of loggerhead sea turtles: the case of the island of Zakynthos, W Greece. Journal of Experimental Marine Biology and Ecology, 336(2), 157-162. https://doi.org/10.1016/j.jembe.2006.04.015
-
Meroni, M., Fasbender, D., Rembold, F., Atzberger, C., & Klisch, A. (2019). Near real-time vegetation anomaly detection with MODIS NDVI: Timeliness vs. accuracy and effect of anomaly computation options. Remote sensing of environment, 221, 508-521. https://doi.org/10.1016/j.rse.2018.11.041
-
Mısırlıoğlu, M., & Toper, R. (2020). Deniz Kaplumbağası (Caretta Caretta, Chelonia Mydas) İzleme Ve Koruma Çalışmaları: Göksu Deltası Örneği. Doğanın Sesi, (6), 28-43.
-
Mira, M., Valor, E., Boluda, R., Caselles, V., & Coll, C. (2007). Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land surface temperature determination. Journal of Geophysical Research: Earth Surface, 112(F4). https://doi.org/10.1029/2007JF000749
-
Mrosovsky, N., & Pieau, C. (1991). Transitional range of temperature, pivotal temperatures and thermosensitive stages for sex determination in reptiles. Amphibia-Reptilia, 12(2), 169-179.
-
Mrosovsky, N., & Yntema, C. L. (1980). Temperature dependence of sexual differentiation in sea turtles: implications for conservation practices. Biological Conservation, 18(4), 271-280. https://doi.org/10.1016/0006-3207(80)90003-8
-
Patrício, A. R., Hawkes, L. A., Monsinjon, J. R., Godley, B. J., & Fuentes, M. M. (2021). Climate change and marine turtles: recent advances and future directions. Endangered Species Research, 44, 363-395. https://doi.org/10.3354/esr
-
Poloczanska, E. S., Limpus, C. J., & Hays, G. C. (2009). Vulnerability of marine turtles to climate change. Advances in marine biology, 56, 151-211. https://doi.org/10.1016/S0065-2881(09)56002-6
-
Roy, D. P., Wulder, M. A., Loveland, T. R., Ce, W., Allen, R. G., Anderson, M. C., ... & Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote sensing of Environment, 145, 154-172. https://doi.org/10.1016/j.rse.2014.02.001
-
Sajib, M. Q. U., & Wang, T. (2020). Estimation of Land Surface Temperature in an agricultural region of Bangladesh from Landsat 8: Intercomparison of four algorithms. Sensors, 20(6), 1778. https://doi.org/10.3390/s20061778
Sakalis, V. D. (2024). Trend analysis and forecast of annual precipitation and temperature series in the Eastern Mediterranean region. Atmósfera, 38. https://doi.org/10.20937/atm.53272
-
Santidrián Tomillo, P., Saba, V. S., Blanco, G. S., Stock, C. A., Paladino, F. V., & Spotila, J. R. (2012). Climate driven egg and hatchling mortality threatens survival of Eastern Pacific leatherback turtles. PLoS One, 7(5), e37602. https://doi.org/10.1371/journal.pone.0037602
-
Sarı, F., & Kaska, Y. (2015). Loggerhead sea turtle hatchling sex ratio differences between two nesting beaches in Turkey. Israel Journal of Ecology and Evolution, 61(3-4), 115-129. https://doi.org/10.1080/15659801.2015.1047681
-
Satıl, F., Tümen, G., & Selvi, S. (2021). Balıkesir kıyı kumullarındaki bitki çeşitliliği ve tehdit faktörleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3), 507-519.
-
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389.
-
Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440. https://doi.org/10.1016/j.rse.2004.02.003
-
Sousa-Guedes, D., Marco, A., Neves, E., Medina, M., Taxonera, A., Fairweather, K., ... & Sillero, N. (2025). How vulnerable are the nesting sites of loggerhead turtles in Cabo Verde?. Regional Environmental Change, 25(1), 1-14. https://doi.org/10.1007/s10113-025-02371-3
-
Sözbilen, D., Kirkhan, J., Sezgin, Ç., Kaska, Y. (2022) Temporal Analysis Of Caretta Caretta Nest Temperature & Hatchling Gender Ratio On Iztuzu Beach, Turkiye. 7th Mediterranean Conference on Marine Turtles. 18-21 October 2022, Tetouan, Morocco.
-
Şahin, M., Yıldız, B. Y., Şenkal, O., & Peştemalcı, V. (2012). Modelling and remote sensing of land surface temperature in Turkey. Journal of the Indian Society of Remote Sensing, 40(3), 399-409. https://doi.org/10.1007/s12524-011-0158-3
-
Topuz, M., & Geçen, R. (2024). Silifke Ve Erdemli İlçe Merkezlerinin Yer Yüzey Sıcaklığına Etkisi. Çukurova Araştırmaları Dergisi, 7(14), 439-453. DOI :10.29228/cukar.54129
-
Topuz, M., Feidas, H., & Karabulut, M. (2020). Trend analysis of precipitation data in Turkey and relations to atmospheric circulation:(1955-2013). Italian Journal of Agrometeorology, (2), 91-107. doi: 10.13128/ijam-887
-
Tuel, A., & Eltahir, E. A. (2020). Why is the Mediterranean a climate change hot spot?. Journal of Climate, 33(14), 5829-5843. https://doi.org/10.1175/JCLI-D-19-0910.1
-
U.S. Geological Survey. (2025). Landsat Collection [satellite imagery]. Retrieved May 2025 from https://earthexplorer.usgs.gov
-
Wang, M., Zhang, Z., Hu, T., & Liu, X. (2019). A practical single‐channel algorithm for land surface temperature retrieval: application to Landsat series data. Journal of Geophysical Research: Atmospheres, 124(1), 299-316. https://doi.org/10.1029/2018JD029330
-
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005
-
Wildermann, N. E., Barrios-Garrido, H., Jabby, K., Hardenstine, R. S., Shimada, T., Williams, I. D., & Duarte, C. M. (2024). An emerging hazard to nesting sea turtles in the face of sea-level rise. Global Ecology and Conservation, 56, e03334. https://doi.org/10.1016/j.gecco.2024.e03334
-
Wulder, M. A., Ortlepp, S. M., White, J. C., & Maxwell, S. (2008). Evaluation of Landsat-7 SLC-off image products for forest change detection. Canadian Journal of Remote Sensing, 34(2), 93-99. https://doi.org/10.5589/m08-020
-
Xiong, Q., Chen, W., Luo, S., He, L., & Li, H. (2022). Temporal and spatial variation of land surface temperature in recent 20 years and analysis of the effect of land use in Jiangxi Province, China. Atmosphere, 13(8), 1278. https://doi.org/10.3390/atmos13081278
-
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179
-
Yalçin-Özdilek, Ş., & Yerlİ, S. V. (2006). Green Turtle (Chelonia mydas) nesting and habitat threats at Samandağ Beach, Turkey. Chelonian Conservation and Biology, 5(2), 302-305. https://doi.org/10.2744/1071-8443(2006)5[302:GTCMNA]2.0.CO;2
-
Yavaşlı, D. D. (2017). Spatio-temporal trends of urban heat island and surface temperature in Izmir, Turkey. American Journal of Remote Sensing, 5(3), 24-29. doi: 0.11648/j.ajrs.20170503.11
-
Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of hydrology, 259(1-4), 254-271. https://doi.org/10.1016/S0022-1694(01)00594-7
-
Zhu, Z., Qiu, S., He, B., & Deng, C. (2018). Cloud and cloud shadow detection for Landsat images: The fundamental basis for analyzing Landsat time series. Remote sensing time series image processing, 3-23. https://doi.org/10.1201/9781315166636