Araştırma Makalesi
BibTex RIS Kaynak Göster

Yakıt tüketim tasarrufu için gerçek zamanlı kazan kontrol algoritması geliştirme

Yıl 2022, , 853 - 868, 31.05.2022
https://doi.org/10.31202/ecjse.1020132

Öz

Bu çalışmada kazan sistemlerinde en az katı yakıt atığı ile maksimum ısınma sağlayan otomatik katı yakıt kontrol algoritması geliştirilmiştir. Geliştirilen algoritma ile Atmega16 mikro denetleyicisi ile kazan kontrolünde kullanılan stoker, fan, su pompası gibi motorlar ile kazan sıcaklığı, sıcaklık sensoru, su pompası sıcaklığı gibi özellikler kontrol edilmektedir. Bu özelliklere ek olarak kesme fonksiyonları ile kontrol edilen menü yardımıyla yakıt yükleme, bekleme, fan hızı ayarlama gibi işlemler gerçekleştirilebilmektedir. Sistemin gerçek zamanlı ve hızlı bir şekilde kontrol edilebilmesi için geliştirilen kontrol algoritması AVR C dili ile programlanmıştır. Geliştirilen algoritmanın kullanıldığı sistemde kullanıcılarının işlerini kolaylaştıracak şekilde 7 segment display göstergeli kullanıcı dostu bir panel geliştirilmiştir. Bu panel yardımıyla kullanıcı, kazanının çalışmasını etkileyen tüm ayarlamaları çok kısa sürede gerçekleştirebilecektir. Deneysel çalışmalar neticesinde kontrol edilen kazan elemanlarının hayat ömründe artış tespit edildiği gibi klasik kazan kontrol sistemlerine göre yıllık %20’ye yakın yakıt tasarrufu sağlanmıştır.

Kaynakça

  • [1] Bahar, N. H., Lo, M., Sanjaya, M., Van Vianen, J., Alexander, P., Ickowitz, A. and Sunderland, T., Meeting the food security challenge for nine billion people in 2050: What impact on forests?, Glob. Environ. Chang., 2020, 62, DOI: 10.1016/j.gloenvcha.2020.102056.
  • [2] Zhu, Y., and Ghosh, M., Temperature control, emission abatement and costs: key EMF 27 results from Environment Canada’s Integrated Assessment Model, Clim. Change, 2014, 123 (3): 571–582.
  • [3] Amoo, A. L., Guda, H. A., Sambo, H. A., and Soh, T. L. G., Design and implementation of a room temperature control system: Microcontroller-based, in 2014 IEEE Student Conference on Research and Development, 2014, 1–6, DOI: 10.1109/SCORED.2014.7072989.
  • [4] Ochieng, E. G., Jones, N., Price, A. D. F., Ruan, X., Egbu, C. O., and Zuofa, T., Integration of energy efficient technologies in UK supermarkets, Energy Policy, 2014, 67: 388–393.
  • [5] Teke, A., and Timur, O., Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals, Renew. Sustain. Energy Rev., 2014, 33: 224–235.
  • [6] Vox, G., Teitel, M., Pardossi, A., Minuto, A., Tinivella, F., and Schettini, E., Sustainable greenhouse systems, Sustain. Agric. Technol. Plan. Manag. Nov. Sci. Publ. Inc., New York, NY, USA, 2010, 1–79.
  • [7] Kılıç, E. E., and Çınar, İ., Convective hot airdrying characteristics of selected vegetables, Int. Adv. Res. Eng. J., 2019, 3 (1): 7–13.
  • [8] Zhang, Q., Yi, H., Yu, Z., Gao, J., Wang, X., Lin, H. and Shen, B., Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data, Appl. Therm. Eng., 2018, 144: 614–627, DOI: 10.1016/j.applthermaleng.2018.08.069.
  • [9] Rusinowski, H., Szega, M., Szlęk, A., and Wilk, R., Methods of choosing the optimal parameters for solid fuel combustion in stoker-fired boilers, Energy Convers. Manag., 2002, 43 (9–12): 1363–1375, DOI: 10.1016/S0196-8904(02)00021-3.
  • [10] Liao, Z. and Dexter, A. L., The potential for energy saving in heating systems through improving boiler controls, Energy Build., 2004, 36 (3): 261–271, DOI: 10.1016/j.enbuild.2003.12.006.
  • [11] Carvalho, L., Wopienka, E., Pointner, C., Lundren, J., Verma, V. K., Haslinger, W., and Schmidi, C., Performance of a pellet boiler fired with agricultural fuels, Appl. Energy, 2013, 104: 286–296, DOI: 10.1016/j.apenergy.2012.10.058.
  • [12] Ortiz, P., Kubler, S., Rondeau, É., Georges, J.-P., Colantuono, G., and Shukhobodskiy, A. A., Greenhouse gas emission reduction system in photovoltaic nanogrid with battery and thermal storage reservoirs, J. Clean. Prod., 2021, 310, Aug. 2021, DOI: 10.1016/j.jclepro.2021.127347.
  • [13] Wellem, T., and Setiawan, B., A Microcontroller-based Room Temperature Monitoring System, Int. J. Comput. Appl., 2012, 53 (1): 7–10, DOI: 10.5120/8383-1984.
  • [14] Karuppiah, T., Sivasankaran, V., and Muruganand, S., Embedded System Based Industrial Power Plant Boiler Automation Using GSM Technology, 2013.
  • [15] Ashwin, J. S., and Manoharan, N., Embedded System Based Power Plant Monitoring and Controlling, Indones. J. Electr. Eng. Comput. Sci., 2018, 9(2): 275, DOI: 10.11591/ijeecs.v9.i2.pp275-278.
  • [16] Érces, N., and Kajtár, L., Operational Testing of a Solid Fuel Boiler with Different Fuels, Energies, 2021, 14(10), DOI: 10.3390/en14102966.
  • [17] Hasnain, S., Ali, M. K., Akhter, J., Ahmed, B., and Abbas, N., Selection of an industrial boiler for a soda-ash production plant using analytical hierarchy process and TOPSIS approaches Case Stud. Therm. Eng., 2020, 19, DOI: https://doi.org/10.1016/j.csite.2020.100636.
  • [18] Zadravec, T., Rajh, B., Kokalj, F., and Samec, N., CFD modelling of air staged combustion in a wood pellet boiler using the coupled modelling approach, Therm. Sci. Eng. Prog., 2020, 20, DOI: https://doi.org/10.1016/j.tsep.2020.100715.
  • [19] Pástor, M., Lengvarský, P., Trebuňa, F., and Čarák, P., Prediction of failures in steam boiler using quantification of residual stresses, Eng. Fail. Anal., 2020, 118, DOI: https://doi.org/10.1016/j.engfailanal.2020.104808.
  • [20] Klačková, I., Zajačko, I., Lenhard, R., Gritsuk, I., and Wiecek, D., Simulation of wood biomass combustion in hot water boiler, IOP Conf. Ser. Mater. Sci. Eng., 2020, 776, DOI: 10.1088/1757-899x/776/1/012033.
  • [21] Güneş, H., and Kunt, M., Elektromanyetik Subap ile Çalışan Bir Pnömatik Motor için Kontrol Ünitesi Tasarımı ve Motor Performansına Etkisi, El-Cezeri Fen ve Mühendislik Derg., 2015, 31(1): 1-8, DOI: 10.31202/ecjse.67144.
  • [22] Ergün, A., Ceylan, İ., Aydın, M., Gürel, A. E., and Koçbulut, G., Solarmeter design for high solar radiation measurement and experimental validation, El-Cezeri J. Sci. Eng., 2019, 6(3): 726–735, DOI: https://doi.org/10.31202/ecjse.575642.
  • [23] Abd Gani, S. F., Drowsiness Detection and Alert System Using Wearable Dry Electroencephalography for Safe Driving, El-Cezeri J. Sci. Eng., 2022, 9(1): 300–310, DOI: https://doi.org/10.31202/ecjse.973119.
  • [24] Śladewski, Ł., Wojdan, K., Świrski, K., Janda, T., Nabagło, D., and Chachuła, J., Optimization of combustion process in coal-fired power plant with utilization of acoustic system for in-furnace temperature measurement, Appl. Therm. Eng., 2017, 123: 711–720, DOI: 10.1016/j.applthermaleng.2017.05.078.
  • [25] Shome, A., and Ashok, S. D., Fuzzy logic approach for boiler temperature & water level control, Int. J. Sci. Eng. Res., 2012, 3(6): 1–6.
  • [26] Man, C., Li, J., Wang, L., and Chi, Y., The fuzzy PID control system for superheated steam temperature of boiler, in Proceedings of 2011 6th International Forum on Strategic Technology, 2011, 2: 967–970, DOI: 10.1109/IFOST.2011.6021181.
  • [27] Kumar, A., Bansal, K., Kumar, D., Devrari, A., Kumar, R., and Mani, P., FPGA application for wireless monitoring in power plant, Nucl. Eng. Technol., 2021, 53(4): 1167–1175, DOI: https://doi.org/10.1016/j.net.2020.09.003.
  • [28] Jalal, M. F. A., Sahari, K. S. M., Aziz, M. A., Yunos, K., Anuar, A., Ghani, M. F. A., and How, D. N. T., Design and Development of Robotic System for Visual Inspection of Boiler Tube Inner Surface, Procedia Comput. Sci., 2017, 105: 304–309, DOI: 10.1016/j.procs.2017.01.226.
  • [29] Kaur, P. and Chatterji, S., AVR Microcontroller-based automated technique for analysis of DC motors, Int. J. Electron., 2014, 101(1): 1–9, DOI: 10.1080/00207217.2013.769181.
  • [30] Ajao, L. A., Adegboye, M. A., Dogo, E. M., Aliyu, S. O., and Maliki, D., Development and Implementation of Microcontroller-based Improved Digital Timer and Alarm System, in International Conference on Information and Communication Technology and Its Applications (ICTA 2016), 2016, 184–190.
  • [31] Wan-Fu, H., The design of a six-digit digital clock with a four-digit seven-segment display module, in 2011 International Conference on Electrical and Control Engineering, Sep. 2011, pp. 2656–2659, DOI: 10.1109/ICECENG.2011.6058086.
  • [32] Khanna, P., Digital Temperature Sensor using ATmega8 Microcontroller, Int. J. Embed. Syst. Emerg. Technol., 2017, 3(1): 13–15, DOI: 10.37628/jeset.v3i1.471.
  • [33] Ali, L., Rahman, L., and Akhter, S., Module-based Edukit for teaching and learning 8051 microcontroller programming, in 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), 2017, 57–61, DOI: 10.1109/ICTP.2017.8285918.
  • [34] Mostafa, G., Development of a single phase prepaid Electrical Energy Meter using 89S8252 microcontroller architecture, in 2015 International Conference on Advances in Electrical Engineering (ICAEE), 2015, 314–319, DOI: 10.1109/ICAEE.2015.7506858.
  • [35] Mohammedsheet, S. S., and Aziz, M. S., Design and implementation of digital heart rate counter by using the 8051 microcontroller, in 2018 International Conference on Engineering Technology and their Applications (IICETA), 2018, 107–111, DOI: 10.1109/IICETA.2018.8458085.
  • [36] Tri, D. C., and Phuc, L. T., Design of Driver Circuit to Control Induction Motor Applied in Electric Motorcycles, in 2020 5th International Conference on Green Technology and Sustainable Development (GTSD), 2020, 326–333, DOI: 10.1109/GTSD50082.2020.9303103.
  • [37] Ekici, B. B., Evaluation of TS 825 Thermal Insulation Requirements in Buildings in Terms of Solar Radiation, Megaron, 2015, 10(1): 14.
  • [38] Atmaca, U., TS 825 Binalarda Isı Yalıtım Kuralları Standardındaki Güncellemeler, Tesisat Mühendisliği, 2016, 154: 21–35.
  • [39] Türkyılmaz, O., Ocak 2015 İtibarıyla Türkiye’nin Enerji Görünümü Raporu, TMMOB Makine Mühendisleri Odası Bülteni, 2015, 200.
  • [40] Srivastava, R. K., Hall, R. E., Khan, S., Culligan, K., and Lani, B. W., Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers, J. Air Waste Manage. Assoc., 2005, 55(9):1367–1388, DOI: 10.1080/10473289.2005.10464736.

Developing real-time boiler control algorithm for fuel consumption savings

Yıl 2022, , 853 - 868, 31.05.2022
https://doi.org/10.31202/ecjse.1020132

Öz

In this study, an automatic solid fuel control algorithm has been developed that provides maximum heating with minimal solid fuel waste in boiler systems. With the algorithm developed using the Atmega16 microcontroller, motors such as stoker, fan, water pump used in boiler control and features such as boiler temperature, temperature sensor, water pump temperature are controlled. In addition to these features, operations such as fuel loading, waiting, fan speed adjustment can be performed with the help of the menu controlled by interrupt functions. The boiler control algorithm developed for real-time control of the system is programmed with the AVR C language. In the system in which the developed algorithm is used, a user-friendly panel with a 7-segment display has been developed to facilitate the work of the users. With the help of this panel, the user will be able to make all adjustments that affect the operation of the boiler in a very short time. As a result of experimental studies, an increase in the life span of the controlled boiler elements has been determined and an annual fuel saving of approximately 20% has been achieved compared to conventional boiler control systems.

Kaynakça

  • [1] Bahar, N. H., Lo, M., Sanjaya, M., Van Vianen, J., Alexander, P., Ickowitz, A. and Sunderland, T., Meeting the food security challenge for nine billion people in 2050: What impact on forests?, Glob. Environ. Chang., 2020, 62, DOI: 10.1016/j.gloenvcha.2020.102056.
  • [2] Zhu, Y., and Ghosh, M., Temperature control, emission abatement and costs: key EMF 27 results from Environment Canada’s Integrated Assessment Model, Clim. Change, 2014, 123 (3): 571–582.
  • [3] Amoo, A. L., Guda, H. A., Sambo, H. A., and Soh, T. L. G., Design and implementation of a room temperature control system: Microcontroller-based, in 2014 IEEE Student Conference on Research and Development, 2014, 1–6, DOI: 10.1109/SCORED.2014.7072989.
  • [4] Ochieng, E. G., Jones, N., Price, A. D. F., Ruan, X., Egbu, C. O., and Zuofa, T., Integration of energy efficient technologies in UK supermarkets, Energy Policy, 2014, 67: 388–393.
  • [5] Teke, A., and Timur, O., Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals, Renew. Sustain. Energy Rev., 2014, 33: 224–235.
  • [6] Vox, G., Teitel, M., Pardossi, A., Minuto, A., Tinivella, F., and Schettini, E., Sustainable greenhouse systems, Sustain. Agric. Technol. Plan. Manag. Nov. Sci. Publ. Inc., New York, NY, USA, 2010, 1–79.
  • [7] Kılıç, E. E., and Çınar, İ., Convective hot airdrying characteristics of selected vegetables, Int. Adv. Res. Eng. J., 2019, 3 (1): 7–13.
  • [8] Zhang, Q., Yi, H., Yu, Z., Gao, J., Wang, X., Lin, H. and Shen, B., Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data, Appl. Therm. Eng., 2018, 144: 614–627, DOI: 10.1016/j.applthermaleng.2018.08.069.
  • [9] Rusinowski, H., Szega, M., Szlęk, A., and Wilk, R., Methods of choosing the optimal parameters for solid fuel combustion in stoker-fired boilers, Energy Convers. Manag., 2002, 43 (9–12): 1363–1375, DOI: 10.1016/S0196-8904(02)00021-3.
  • [10] Liao, Z. and Dexter, A. L., The potential for energy saving in heating systems through improving boiler controls, Energy Build., 2004, 36 (3): 261–271, DOI: 10.1016/j.enbuild.2003.12.006.
  • [11] Carvalho, L., Wopienka, E., Pointner, C., Lundren, J., Verma, V. K., Haslinger, W., and Schmidi, C., Performance of a pellet boiler fired with agricultural fuels, Appl. Energy, 2013, 104: 286–296, DOI: 10.1016/j.apenergy.2012.10.058.
  • [12] Ortiz, P., Kubler, S., Rondeau, É., Georges, J.-P., Colantuono, G., and Shukhobodskiy, A. A., Greenhouse gas emission reduction system in photovoltaic nanogrid with battery and thermal storage reservoirs, J. Clean. Prod., 2021, 310, Aug. 2021, DOI: 10.1016/j.jclepro.2021.127347.
  • [13] Wellem, T., and Setiawan, B., A Microcontroller-based Room Temperature Monitoring System, Int. J. Comput. Appl., 2012, 53 (1): 7–10, DOI: 10.5120/8383-1984.
  • [14] Karuppiah, T., Sivasankaran, V., and Muruganand, S., Embedded System Based Industrial Power Plant Boiler Automation Using GSM Technology, 2013.
  • [15] Ashwin, J. S., and Manoharan, N., Embedded System Based Power Plant Monitoring and Controlling, Indones. J. Electr. Eng. Comput. Sci., 2018, 9(2): 275, DOI: 10.11591/ijeecs.v9.i2.pp275-278.
  • [16] Érces, N., and Kajtár, L., Operational Testing of a Solid Fuel Boiler with Different Fuels, Energies, 2021, 14(10), DOI: 10.3390/en14102966.
  • [17] Hasnain, S., Ali, M. K., Akhter, J., Ahmed, B., and Abbas, N., Selection of an industrial boiler for a soda-ash production plant using analytical hierarchy process and TOPSIS approaches Case Stud. Therm. Eng., 2020, 19, DOI: https://doi.org/10.1016/j.csite.2020.100636.
  • [18] Zadravec, T., Rajh, B., Kokalj, F., and Samec, N., CFD modelling of air staged combustion in a wood pellet boiler using the coupled modelling approach, Therm. Sci. Eng. Prog., 2020, 20, DOI: https://doi.org/10.1016/j.tsep.2020.100715.
  • [19] Pástor, M., Lengvarský, P., Trebuňa, F., and Čarák, P., Prediction of failures in steam boiler using quantification of residual stresses, Eng. Fail. Anal., 2020, 118, DOI: https://doi.org/10.1016/j.engfailanal.2020.104808.
  • [20] Klačková, I., Zajačko, I., Lenhard, R., Gritsuk, I., and Wiecek, D., Simulation of wood biomass combustion in hot water boiler, IOP Conf. Ser. Mater. Sci. Eng., 2020, 776, DOI: 10.1088/1757-899x/776/1/012033.
  • [21] Güneş, H., and Kunt, M., Elektromanyetik Subap ile Çalışan Bir Pnömatik Motor için Kontrol Ünitesi Tasarımı ve Motor Performansına Etkisi, El-Cezeri Fen ve Mühendislik Derg., 2015, 31(1): 1-8, DOI: 10.31202/ecjse.67144.
  • [22] Ergün, A., Ceylan, İ., Aydın, M., Gürel, A. E., and Koçbulut, G., Solarmeter design for high solar radiation measurement and experimental validation, El-Cezeri J. Sci. Eng., 2019, 6(3): 726–735, DOI: https://doi.org/10.31202/ecjse.575642.
  • [23] Abd Gani, S. F., Drowsiness Detection and Alert System Using Wearable Dry Electroencephalography for Safe Driving, El-Cezeri J. Sci. Eng., 2022, 9(1): 300–310, DOI: https://doi.org/10.31202/ecjse.973119.
  • [24] Śladewski, Ł., Wojdan, K., Świrski, K., Janda, T., Nabagło, D., and Chachuła, J., Optimization of combustion process in coal-fired power plant with utilization of acoustic system for in-furnace temperature measurement, Appl. Therm. Eng., 2017, 123: 711–720, DOI: 10.1016/j.applthermaleng.2017.05.078.
  • [25] Shome, A., and Ashok, S. D., Fuzzy logic approach for boiler temperature & water level control, Int. J. Sci. Eng. Res., 2012, 3(6): 1–6.
  • [26] Man, C., Li, J., Wang, L., and Chi, Y., The fuzzy PID control system for superheated steam temperature of boiler, in Proceedings of 2011 6th International Forum on Strategic Technology, 2011, 2: 967–970, DOI: 10.1109/IFOST.2011.6021181.
  • [27] Kumar, A., Bansal, K., Kumar, D., Devrari, A., Kumar, R., and Mani, P., FPGA application for wireless monitoring in power plant, Nucl. Eng. Technol., 2021, 53(4): 1167–1175, DOI: https://doi.org/10.1016/j.net.2020.09.003.
  • [28] Jalal, M. F. A., Sahari, K. S. M., Aziz, M. A., Yunos, K., Anuar, A., Ghani, M. F. A., and How, D. N. T., Design and Development of Robotic System for Visual Inspection of Boiler Tube Inner Surface, Procedia Comput. Sci., 2017, 105: 304–309, DOI: 10.1016/j.procs.2017.01.226.
  • [29] Kaur, P. and Chatterji, S., AVR Microcontroller-based automated technique for analysis of DC motors, Int. J. Electron., 2014, 101(1): 1–9, DOI: 10.1080/00207217.2013.769181.
  • [30] Ajao, L. A., Adegboye, M. A., Dogo, E. M., Aliyu, S. O., and Maliki, D., Development and Implementation of Microcontroller-based Improved Digital Timer and Alarm System, in International Conference on Information and Communication Technology and Its Applications (ICTA 2016), 2016, 184–190.
  • [31] Wan-Fu, H., The design of a six-digit digital clock with a four-digit seven-segment display module, in 2011 International Conference on Electrical and Control Engineering, Sep. 2011, pp. 2656–2659, DOI: 10.1109/ICECENG.2011.6058086.
  • [32] Khanna, P., Digital Temperature Sensor using ATmega8 Microcontroller, Int. J. Embed. Syst. Emerg. Technol., 2017, 3(1): 13–15, DOI: 10.37628/jeset.v3i1.471.
  • [33] Ali, L., Rahman, L., and Akhter, S., Module-based Edukit for teaching and learning 8051 microcontroller programming, in 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), 2017, 57–61, DOI: 10.1109/ICTP.2017.8285918.
  • [34] Mostafa, G., Development of a single phase prepaid Electrical Energy Meter using 89S8252 microcontroller architecture, in 2015 International Conference on Advances in Electrical Engineering (ICAEE), 2015, 314–319, DOI: 10.1109/ICAEE.2015.7506858.
  • [35] Mohammedsheet, S. S., and Aziz, M. S., Design and implementation of digital heart rate counter by using the 8051 microcontroller, in 2018 International Conference on Engineering Technology and their Applications (IICETA), 2018, 107–111, DOI: 10.1109/IICETA.2018.8458085.
  • [36] Tri, D. C., and Phuc, L. T., Design of Driver Circuit to Control Induction Motor Applied in Electric Motorcycles, in 2020 5th International Conference on Green Technology and Sustainable Development (GTSD), 2020, 326–333, DOI: 10.1109/GTSD50082.2020.9303103.
  • [37] Ekici, B. B., Evaluation of TS 825 Thermal Insulation Requirements in Buildings in Terms of Solar Radiation, Megaron, 2015, 10(1): 14.
  • [38] Atmaca, U., TS 825 Binalarda Isı Yalıtım Kuralları Standardındaki Güncellemeler, Tesisat Mühendisliği, 2016, 154: 21–35.
  • [39] Türkyılmaz, O., Ocak 2015 İtibarıyla Türkiye’nin Enerji Görünümü Raporu, TMMOB Makine Mühendisleri Odası Bülteni, 2015, 200.
  • [40] Srivastava, R. K., Hall, R. E., Khan, S., Culligan, K., and Lani, B. W., Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers, J. Air Waste Manage. Assoc., 2005, 55(9):1367–1388, DOI: 10.1080/10473289.2005.10464736.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İbrahim Çetiner 0000-0002-1635-6461

Halit Çetiner 0000-0001-7794-2555

Yayımlanma Tarihi 31 Mayıs 2022
Gönderilme Tarihi 6 Kasım 2021
Kabul Tarihi 28 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

IEEE İ. Çetiner ve H. Çetiner, “Developing real-time boiler control algorithm for fuel consumption savings”, ECJSE, c. 9, sy. 2, ss. 853–868, 2022, doi: 10.31202/ecjse.1020132.