Araştırma Makalesi
BibTex RIS Kaynak Göster

Mineral Katkılarla Stabilize Edilmiş Sıkıştırılmış Toprağın Uzun Vadeli Dayanımı ve Performansı Üzerine Deneysel Çalışma

Yıl 2022, , 1136 - 1148, 30.09.2022
https://doi.org/10.31202/ecjse.1094013

Öz

İnşaat sektöründe sürdürülebilirliğin önemi ve takdiri artıyor. Konvansiyonel sıkıştırılmış toprak inşaatı, sürdürülebilirlik açısından birçok faydası olan eski bir inşaat şeklidir. Son yıllarda sıkıştırılmış toprak, diğer toprak yapı yöntemleri ile birlikte dünyanın birçok ülkesinde modern binaların yerine giderek artan bir şekilde kullanılmaktadır. Bu çalışmanın genel amacı, Öğütülmüş granül yüksek fırın cürufu gibi mineral katkı ilavesiyle sıkıştırılmış toprağın fiziksel özelliklerini, sıkıştırma özelliklerini ve performansını anlamaktır. Deneysel inceleme yapıldı ve basınç dayanımı ve Başlangıç Teğet Modülü belirlendi. Öğütülmüş Yüksek Fırın Cürufunun (GGBS) stabilize sıkıştırılmış toprağın uzun vadeli etkisi üzerindeki etkisini incelemek için performans testi yapıldı. Zeminin kil içeriğindeki azalma, ıslak basınç dayanımının ve başlangıç teğet modülünün artmasıyla sonuçlanmıştır. Daha düşük kil içeriğine ve daha yüksek GGBS içeriğine sahip karışımda gelişmiş performans özellikleri ve mukavemette iyileşme gözlemlendi. Bunun nedeni, eklenen mineral katkı GGBS'den genişleyen kil parçacıklarının yüzey alanının kapsanmasındaki iyileşme olabilir.

Kaynakça

  • [1]. Niroumand, H., Zain M. F. M., Jamil M., Modern Rammed Earth in Earth Architecture, Advanced Materials Research, 2012, 399-402.
  • [2]. Reddy, B. V. V., Jagadish, K. S., Embodied Energy of Common and Alternative Building Materials and Technologies, Energy and Buildings, 2003, 32 (2), 129–137.
  • [3]. Ávila, F., Puertas E., Gallego R., Characterization of the mechanical and physical properties of stabilized rammed earth: A review, Construction and Building Materials, 2022, 325, 126693.
  • [4]. Ghasem, P. G., Momeni, M., Mousivand, M., Bayat, M., Unconfined Compressive Strength Characteristics of Treated Peat Soil with Cement and Basalt Fibre, International Journal of Engineering, Transactions B: Applications, 2022, 35 (5), 1089-1095.
  • [5]. Arrigoni, A., Beckett, C., Ciancio, D., Dotelli, G., Life cycle analysis of environmental impact vs. durability of stabilised rammed earth, Construction Building Material, 2017, 142, 128–136, https://doi.org/10.1016/ j.conbuildmat.2017.03.066.
  • [6]. Toufigh, V., Kianfar, E., The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts, Construction and Building Materials, 2019, 616-629.
  • [7]. Kosarimovahhed, M., Toufigh, V., Sustainable usage of waste materials as stabilizer in rammed earth structures, J. Clean. Prod., 2020, 277, 123279. https://doi.org/10.1016/j.jclepro.2020.123279.
  • [8]. Jayasinghe, C., Kamaladasa, N., Compressive strength characteristics of cement stabilized rammed earth walls, Journal of Construction and Building Materials, 2007, 21, 1971–1976.
  • [9]. Nagaraj, H.B., Sravan, M.V., Arun, T.G., Jagadish, K.S., Role of Lime With Cement in Long-Term Strength of Compressed Stabilized Earth Blocks, International Journal of Sustainable Built Environment, 2014, 3 (1), 54–61.
  • [10]. Reddy, B.V.V., Kumar, P.P., Cement Stabilised Rammed Earth. Part B: Compressive Strength and Stress–Strain Characteristics, Mater. Struct., 2011, 44 (3), 695–707.
  • [11]. Miccoli, L., Müller, U., Fontana, P., Mechanical behaviour of earthen materials: a comparison between earth block masonry, rammed earth and cob, Construction Building Material, 2014, 61, 327–339, https://doi.org/10.1016/ j.conbuildmat.2014.03.009
  • [12]. Shuhua, Liu, Zhigang, Wang, Xin, Li, Long-term properties of concrete containing ground granulated blast furnace slag and steel slag, Magazine of Concrete Research, 2014, 21, 1095-1103.
  • [13]. Chatterjee, A.K., 2011. Indian fly ashes: their characteristics and potential for mechanochemical activation for enhanced usability. J. Mater. Civil. Eng. 23 (6), 783–788.
  • [14]. Singh, S., Tripathy, D.P., Ranjith, P., 2008. Performance evaluation of cement stabilized fly ash–GBFS mixes as a highway construction material. Waste Manag. 28 (8), 1331–1337.
  • [15]. Yuksel, I., Blast-furnace slag, Civil and Structural Engineering, Waste and Supplementary Cementitious Materials in Concrete, Woodhead Publishing, 2018, 361-415.
  • [16]. Al-Oran, A. A. A., Safiee, N. A., Nasir N. A. M., Fresh and hardened properties of self-compacting concrete using metakaolin and GGBS as cement replacement, European Journal of Environmental and Civil Engineering, 2019, 1-14.
  • [17]. Yadu, L., Tripathi, R.K., Stabilization of soft soil with granulated blast furnace slag and fly ash, International Journal of Research in Engineering and Technology, 2013, 2(2), 115- 119. [18]. Sharma, A K., Sivapullaiah, P.V., Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer, Soils and Foundations, 2016, (). doi:10.1016/j.sandf.2016.02.004
  • [19]. Sekhar, D. C., Nayak, S., Preetham, H. K., Influence of granulated blast furnace slag and cement on the strength properties of lithomargic clay, Indian Geotechnical Journal, 2017, 47, 384-392. DOI: https://doi.org/10.1007/s40098-017-0228-8.
  • [20]. Sharma, A. K., Sivapullaiah, P. V., Improvement of strength of expansive soil with waste granulated blast furnace slag, International Proceedings of GeoCongress ASCE, 2012, 3920–3928.
  • [21]. Indian Standard IS: 4332 (Part IV), Methods of test for stabilized soils - wetting and drying, and freezing and thawing tests for compacted soil-cement mixtures, Bureau of Indian Standards, New Delhi, 1968.
  • [22]. Walker, P.J., Strength, durability and shrinkage characteristics of cement stabilised soil blocks, Cement and Concrete Composites, 1995, 17(4), 301-310.
  • [23]. Walker, P., Stace, T., Properties of some cement stabilised compressed earth blocks and mortars, Materials and Structures, 1997, 30(9), 545-551.
  • [24]. Luo, Y., Zhou, P., Ni, P., Peng, X., Ye, J., Degradation of Rammed Earth Under Soluble Salts Attack and Drying-Wetting Cycles: The Case of Fujian Tulou, China. Appl. Clay Sci. 2021, 212, 106202. doi: 10.1016/j.clay.2021.106202.
  • [25]. Darshan, S. C., Sitaram, N., Utilization of Granulated Blast Furnace Slag and Cement in the Manufacture of Compressed Stabilized Earth Blocks, Construction and Building Material, 2018, 166, 531–536. doi:10.1016/j.conbuildmat.2018.01.125

Experimental Study on Long-Term Strength and Performance of Rammed Earth Stabilized with Mineral Admixtures

Yıl 2022, , 1136 - 1148, 30.09.2022
https://doi.org/10.31202/ecjse.1094013

Öz

The significance and appreciation for sustainability is rising within the construction industry. Conventional rammed earth construction is an ancient form of construction that has many benefits in terms of sustainability. Rammed earth in current years, together with other earth building methods, has been increasingly used in place of modern buildings in many countries around the world. The overall target of this study is to understand the physical properties, compaction characteristics and performance of rammed earth with the addition of mineral admixture like Ground granulated blast furnace slag. The experimental investigation was carried out and the compressive strength, and Initial Tangent Modulus was determined. Performance test was carried out to study the effect Ground Granulated Blast Furnace Slag (GGBS) on the long-term effect of stabilized rammed earth. Reduction in clay content of the soil resulted in increase of wet compressive strength and the initial tangent modulus. Enhanced performance characteristics and improvement in strength was observed in the mix with lower clay content and higher GGBS content. This may be due to the reason of improvement in coverage of surface area of expansive clay particles from the added mineral admixture GGBS.

Kaynakça

  • [1]. Niroumand, H., Zain M. F. M., Jamil M., Modern Rammed Earth in Earth Architecture, Advanced Materials Research, 2012, 399-402.
  • [2]. Reddy, B. V. V., Jagadish, K. S., Embodied Energy of Common and Alternative Building Materials and Technologies, Energy and Buildings, 2003, 32 (2), 129–137.
  • [3]. Ávila, F., Puertas E., Gallego R., Characterization of the mechanical and physical properties of stabilized rammed earth: A review, Construction and Building Materials, 2022, 325, 126693.
  • [4]. Ghasem, P. G., Momeni, M., Mousivand, M., Bayat, M., Unconfined Compressive Strength Characteristics of Treated Peat Soil with Cement and Basalt Fibre, International Journal of Engineering, Transactions B: Applications, 2022, 35 (5), 1089-1095.
  • [5]. Arrigoni, A., Beckett, C., Ciancio, D., Dotelli, G., Life cycle analysis of environmental impact vs. durability of stabilised rammed earth, Construction Building Material, 2017, 142, 128–136, https://doi.org/10.1016/ j.conbuildmat.2017.03.066.
  • [6]. Toufigh, V., Kianfar, E., The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts, Construction and Building Materials, 2019, 616-629.
  • [7]. Kosarimovahhed, M., Toufigh, V., Sustainable usage of waste materials as stabilizer in rammed earth structures, J. Clean. Prod., 2020, 277, 123279. https://doi.org/10.1016/j.jclepro.2020.123279.
  • [8]. Jayasinghe, C., Kamaladasa, N., Compressive strength characteristics of cement stabilized rammed earth walls, Journal of Construction and Building Materials, 2007, 21, 1971–1976.
  • [9]. Nagaraj, H.B., Sravan, M.V., Arun, T.G., Jagadish, K.S., Role of Lime With Cement in Long-Term Strength of Compressed Stabilized Earth Blocks, International Journal of Sustainable Built Environment, 2014, 3 (1), 54–61.
  • [10]. Reddy, B.V.V., Kumar, P.P., Cement Stabilised Rammed Earth. Part B: Compressive Strength and Stress–Strain Characteristics, Mater. Struct., 2011, 44 (3), 695–707.
  • [11]. Miccoli, L., Müller, U., Fontana, P., Mechanical behaviour of earthen materials: a comparison between earth block masonry, rammed earth and cob, Construction Building Material, 2014, 61, 327–339, https://doi.org/10.1016/ j.conbuildmat.2014.03.009
  • [12]. Shuhua, Liu, Zhigang, Wang, Xin, Li, Long-term properties of concrete containing ground granulated blast furnace slag and steel slag, Magazine of Concrete Research, 2014, 21, 1095-1103.
  • [13]. Chatterjee, A.K., 2011. Indian fly ashes: their characteristics and potential for mechanochemical activation for enhanced usability. J. Mater. Civil. Eng. 23 (6), 783–788.
  • [14]. Singh, S., Tripathy, D.P., Ranjith, P., 2008. Performance evaluation of cement stabilized fly ash–GBFS mixes as a highway construction material. Waste Manag. 28 (8), 1331–1337.
  • [15]. Yuksel, I., Blast-furnace slag, Civil and Structural Engineering, Waste and Supplementary Cementitious Materials in Concrete, Woodhead Publishing, 2018, 361-415.
  • [16]. Al-Oran, A. A. A., Safiee, N. A., Nasir N. A. M., Fresh and hardened properties of self-compacting concrete using metakaolin and GGBS as cement replacement, European Journal of Environmental and Civil Engineering, 2019, 1-14.
  • [17]. Yadu, L., Tripathi, R.K., Stabilization of soft soil with granulated blast furnace slag and fly ash, International Journal of Research in Engineering and Technology, 2013, 2(2), 115- 119. [18]. Sharma, A K., Sivapullaiah, P.V., Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer, Soils and Foundations, 2016, (). doi:10.1016/j.sandf.2016.02.004
  • [19]. Sekhar, D. C., Nayak, S., Preetham, H. K., Influence of granulated blast furnace slag and cement on the strength properties of lithomargic clay, Indian Geotechnical Journal, 2017, 47, 384-392. DOI: https://doi.org/10.1007/s40098-017-0228-8.
  • [20]. Sharma, A. K., Sivapullaiah, P. V., Improvement of strength of expansive soil with waste granulated blast furnace slag, International Proceedings of GeoCongress ASCE, 2012, 3920–3928.
  • [21]. Indian Standard IS: 4332 (Part IV), Methods of test for stabilized soils - wetting and drying, and freezing and thawing tests for compacted soil-cement mixtures, Bureau of Indian Standards, New Delhi, 1968.
  • [22]. Walker, P.J., Strength, durability and shrinkage characteristics of cement stabilised soil blocks, Cement and Concrete Composites, 1995, 17(4), 301-310.
  • [23]. Walker, P., Stace, T., Properties of some cement stabilised compressed earth blocks and mortars, Materials and Structures, 1997, 30(9), 545-551.
  • [24]. Luo, Y., Zhou, P., Ni, P., Peng, X., Ye, J., Degradation of Rammed Earth Under Soluble Salts Attack and Drying-Wetting Cycles: The Case of Fujian Tulou, China. Appl. Clay Sci. 2021, 212, 106202. doi: 10.1016/j.clay.2021.106202.
  • [25]. Darshan, S. C., Sitaram, N., Utilization of Granulated Blast Furnace Slag and Cement in the Manufacture of Compressed Stabilized Earth Blocks, Construction and Building Material, 2018, 166, 531–536. doi:10.1016/j.conbuildmat.2018.01.125
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Neha Vıvek A 0000-0001-9565-2041

Prasanna Kumar P

Hitheswar Reddy M

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 27 Nisan 2022
Kabul Tarihi 11 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

IEEE N. Vıvek A, P. Kumar P, ve H. Reddy M, “Experimental Study on Long-Term Strength and Performance of Rammed Earth Stabilized with Mineral Admixtures”, ECJSE, c. 9, sy. 3, ss. 1136–1148, 2022, doi: 10.31202/ecjse.1094013.