Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 207 - 211, 07.07.2024
https://doi.org/10.31202/ecjse.1415880

Öz

Kaynakça

  • [1] M. Ayçiçek, N. Ayçiçek, N. Özsoy, M. Özsoy, and A. Akinci. Comparison of tribological behaviours of nano sio2 and zro2 reinforced polyester matrix composite materials. El-Cezeri Journal of Science and Engineering, 10:464–474, 2023.
  • [2] M. Cai, Y. Liu, K. Dong, X. Chen, and S. Li. Floatable s-scheme bi2wo6/c3n4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chinese Journal of Catalysis, 52:239–251, 2023.
  • [3] G. Jia, Y. Yu, X. Wang, C. Jia, Z. Hu, S. Yu, H. Xiang, and M. Zhu. Highly conductive and porous lignin-derived carbon fibers. Materials Horizons, 10:5847–5858, 2023.
  • [4] W. Cheng, X. F. Lu, D. Luan, and X. W. Lou. Nimn-based bimetal–organic framework nanosheets supported on multichannel carbon fibers for efficient oxygen electrocatalysis. Angewandte Chemie International Edition, 59:18234–18239, 2020.
  • [5] L. Shi, J. Ye, H. Lu, G. Wang, J. Lv, and G. Ning. Flexible all-solid-state supercapacitors based on boron and nitrogendoped carbon network anchored on carbon fiber cloth. Chemical Engineering Journal, 410:128365, 2021.
  • [6] C. Ma, J. Bai, X. Hu, Z. Jiang, and L. Wang. Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective co2 adsorbents. Journal of Environmental Sciences, 125:533–543, 2023.
  • [7] L. Li, D. Liu, K. Wang, H. Mao, and T. You. Quantitative detection of nitrite with n-doped graphene quantum dots decorated n-doped carbon nanofibers composite-based electrochemical sensor. Sensors and Actuators B: Chemical, 252: 17–23, 2017.
  • [8] R. Yang, X. Yan, Y. Li, X. Zhang, and J. Chen. Nitrogen-doped porous carbon-zno nanopolyhedra derived from zif-8: new materials for photoelectrochemical biosensors. ACS Applied Materials & Interfaces, 9(49):42482–42491, 2017.
  • [9] G. Ni, F. Qin, Z. Guo, J. Wang, and W. Shen. Nitrogen-doped asphaltene-based porous carbon fibers as supercapacitor electrode material with high specific capacitance. Electrochimica Acta, 330:135270, 2020.
  • [10] Y. Yang, Y.-X. Liu, Y. Li, B.-W. Deng, B. Yin, and M.-B. Yang. Design of compressible and elastic n-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. Journal of Materials Chemistry A, 8:17257–17265, 2020.
  • [11] F. Liu, J. Meng, F. Xia, Z. Liu, H. Peng, C. Sun, L. Xu, G. Van Tendeloo, L. Mai, and J.Wu. Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries. Journal of Materials Chemistry A, 8:18079–18086, 2020.
  • [12] Z.-Y.Wang, S.-D. Jiang, C.-Q. Duan, D.Wang, S.-H. Luo, andY.-G. Liu. In situ synthesis of co 3 o 4 nanoparticles confined in 3d nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Metals, 39:1383–1394, 2020.
  • [13] A. Öztürk and A.B. Yurtcan. Preparation and characterization of melamine-led nitrogen-doped carbon blacks at different pyrolysis temperatures. Journal of Solid State Chemistry, 296:121972, 2021.
  • [14] R. Tjandra, R.W. Liu, L. Lim, and A. Yu. Melamine based, n-doped carbon/reduced graphene oxide composite foam for li-ion hybrid supercapacitors. Carbon, 129:152–158, 2018.
  • [15] T. Kumar, M. Chandrasekar, K. Senthilkumar, R. Ilyas, S. Sapuan, N. Hariram, A.V. Rajulu, N. Rajini, and S. Siengchin. Characterization, thermal and antimicrobial properties of hybrid cellulose nanocomposite films with in-situ generated copper nanoparticles in tamarindus indica nut powder. Journal of Polymers and the Environment, 29:1134–1142, 2021.
  • [16] S. Sun, Y. Xu, J.-L. Wen, T.-Q. Yuan, and R.-C. Sun. Recent advances in lignin-based carbon fibers (lcfs): precursors, fabrications, properties, and applications. Green Chemistry, 24:5709–5738, 2022.
  • [17] S.S. Sekhon and J.-S. Park. Biomass-derived n-doped porous carbon nanosheets for energy technologies. Chemical Engineering Journal, 425:129017, 2021.
  • [18] D. Das, P. Prakash, P.K. Rout, and S. Bhaladhare. Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application. Starch-Stärke, 73:1900284, 2021.
  • [19] C. Chen, J. Guan, N.W. Li, Y. Lu, D. Luan, C.H. Zhang, G. Cheng, L. Yu, and X.W. Lou. Lotus-root-like carbon fibers embedded with ni–co nanoparticles for dendrite-free lithium metal anodes. Advanced Materials, 33:2100608, 2021.
  • [20] J. Liu, S. Muhammad, Z. Wei, J. Zhu, and X. Duan. Hierarchical n-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology, 31:015402, 2019.
  • [21] D. He, L. Wu, Y. Yao, J. Zhang, Z.-H. Huang, and M.-X. Wang. A facile route to high nitrogen-containing porous carbon fiber sheets from biomass-flax for high-performance flexible supercapacitors. Applied Surface Science, 507:145108, 2020.
  • [22] L. Chen, Z.Wen, L. Chen,W.Wang, Q. Ai, G. Hou, Y. Li, J. Lou, and L. Ci. Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon, 158:456–464, 2020.
  • [23] T.P. Mofokeng, Z.N. Tetana, and K.I. Ozoemena. Defective 3d nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics. Carbon, 169:312–326, 2020.
  • [24] Y. Zhao, G. Luo, L. Zhang, L. Gao, D. Zhang, and Z. Fan. Nitrogen-doped porous carbon tubes composites derived from metal-organic framework for highly efficient capacitive deionization. Electrochimica Acta, 331:135420, 2020.

Synthesis and Characterization of Carbon Papers

Yıl 2024, , 207 - 211, 07.07.2024
https://doi.org/10.31202/ecjse.1415880

Öz

Porous carbons are promising for wide range of applications from sensors to CO2 capturing. This work aims to report a facile approach to synthesize porous carbons by using cheap and sustainable materials. Porous carbons are also treated to tune the chemical and physical structure. SEM images, FTIR spectra, Raman spectra and XRD patterns are examined to characterize the porous carbons. The treated carbon fibers showed highly disordered structure with a large interlayer spacing. Results show that porous carbons could be applicable for different applications

Kaynakça

  • [1] M. Ayçiçek, N. Ayçiçek, N. Özsoy, M. Özsoy, and A. Akinci. Comparison of tribological behaviours of nano sio2 and zro2 reinforced polyester matrix composite materials. El-Cezeri Journal of Science and Engineering, 10:464–474, 2023.
  • [2] M. Cai, Y. Liu, K. Dong, X. Chen, and S. Li. Floatable s-scheme bi2wo6/c3n4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chinese Journal of Catalysis, 52:239–251, 2023.
  • [3] G. Jia, Y. Yu, X. Wang, C. Jia, Z. Hu, S. Yu, H. Xiang, and M. Zhu. Highly conductive and porous lignin-derived carbon fibers. Materials Horizons, 10:5847–5858, 2023.
  • [4] W. Cheng, X. F. Lu, D. Luan, and X. W. Lou. Nimn-based bimetal–organic framework nanosheets supported on multichannel carbon fibers for efficient oxygen electrocatalysis. Angewandte Chemie International Edition, 59:18234–18239, 2020.
  • [5] L. Shi, J. Ye, H. Lu, G. Wang, J. Lv, and G. Ning. Flexible all-solid-state supercapacitors based on boron and nitrogendoped carbon network anchored on carbon fiber cloth. Chemical Engineering Journal, 410:128365, 2021.
  • [6] C. Ma, J. Bai, X. Hu, Z. Jiang, and L. Wang. Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective co2 adsorbents. Journal of Environmental Sciences, 125:533–543, 2023.
  • [7] L. Li, D. Liu, K. Wang, H. Mao, and T. You. Quantitative detection of nitrite with n-doped graphene quantum dots decorated n-doped carbon nanofibers composite-based electrochemical sensor. Sensors and Actuators B: Chemical, 252: 17–23, 2017.
  • [8] R. Yang, X. Yan, Y. Li, X. Zhang, and J. Chen. Nitrogen-doped porous carbon-zno nanopolyhedra derived from zif-8: new materials for photoelectrochemical biosensors. ACS Applied Materials & Interfaces, 9(49):42482–42491, 2017.
  • [9] G. Ni, F. Qin, Z. Guo, J. Wang, and W. Shen. Nitrogen-doped asphaltene-based porous carbon fibers as supercapacitor electrode material with high specific capacitance. Electrochimica Acta, 330:135270, 2020.
  • [10] Y. Yang, Y.-X. Liu, Y. Li, B.-W. Deng, B. Yin, and M.-B. Yang. Design of compressible and elastic n-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. Journal of Materials Chemistry A, 8:17257–17265, 2020.
  • [11] F. Liu, J. Meng, F. Xia, Z. Liu, H. Peng, C. Sun, L. Xu, G. Van Tendeloo, L. Mai, and J.Wu. Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries. Journal of Materials Chemistry A, 8:18079–18086, 2020.
  • [12] Z.-Y.Wang, S.-D. Jiang, C.-Q. Duan, D.Wang, S.-H. Luo, andY.-G. Liu. In situ synthesis of co 3 o 4 nanoparticles confined in 3d nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Metals, 39:1383–1394, 2020.
  • [13] A. Öztürk and A.B. Yurtcan. Preparation and characterization of melamine-led nitrogen-doped carbon blacks at different pyrolysis temperatures. Journal of Solid State Chemistry, 296:121972, 2021.
  • [14] R. Tjandra, R.W. Liu, L. Lim, and A. Yu. Melamine based, n-doped carbon/reduced graphene oxide composite foam for li-ion hybrid supercapacitors. Carbon, 129:152–158, 2018.
  • [15] T. Kumar, M. Chandrasekar, K. Senthilkumar, R. Ilyas, S. Sapuan, N. Hariram, A.V. Rajulu, N. Rajini, and S. Siengchin. Characterization, thermal and antimicrobial properties of hybrid cellulose nanocomposite films with in-situ generated copper nanoparticles in tamarindus indica nut powder. Journal of Polymers and the Environment, 29:1134–1142, 2021.
  • [16] S. Sun, Y. Xu, J.-L. Wen, T.-Q. Yuan, and R.-C. Sun. Recent advances in lignin-based carbon fibers (lcfs): precursors, fabrications, properties, and applications. Green Chemistry, 24:5709–5738, 2022.
  • [17] S.S. Sekhon and J.-S. Park. Biomass-derived n-doped porous carbon nanosheets for energy technologies. Chemical Engineering Journal, 425:129017, 2021.
  • [18] D. Das, P. Prakash, P.K. Rout, and S. Bhaladhare. Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application. Starch-Stärke, 73:1900284, 2021.
  • [19] C. Chen, J. Guan, N.W. Li, Y. Lu, D. Luan, C.H. Zhang, G. Cheng, L. Yu, and X.W. Lou. Lotus-root-like carbon fibers embedded with ni–co nanoparticles for dendrite-free lithium metal anodes. Advanced Materials, 33:2100608, 2021.
  • [20] J. Liu, S. Muhammad, Z. Wei, J. Zhu, and X. Duan. Hierarchical n-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology, 31:015402, 2019.
  • [21] D. He, L. Wu, Y. Yao, J. Zhang, Z.-H. Huang, and M.-X. Wang. A facile route to high nitrogen-containing porous carbon fiber sheets from biomass-flax for high-performance flexible supercapacitors. Applied Surface Science, 507:145108, 2020.
  • [22] L. Chen, Z.Wen, L. Chen,W.Wang, Q. Ai, G. Hou, Y. Li, J. Lou, and L. Ci. Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon, 158:456–464, 2020.
  • [23] T.P. Mofokeng, Z.N. Tetana, and K.I. Ozoemena. Defective 3d nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics. Carbon, 169:312–326, 2020.
  • [24] Y. Zhao, G. Luo, L. Zhang, L. Gao, D. Zhang, and Z. Fan. Nitrogen-doped porous carbon tubes composites derived from metal-organic framework for highly efficient capacitive deionization. Electrochimica Acta, 331:135420, 2020.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Uygulaması ve Eğitim (Diğer)
Bölüm Research Articles
Yazarlar

Yakup Kaan Yanilmaz 0009-0001-7620-614X

Yayımlanma Tarihi 7 Temmuz 2024
Gönderilme Tarihi 7 Ocak 2024
Kabul Tarihi 26 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

IEEE Y. K. Yanilmaz, “Synthesis and Characterization of Carbon Papers”, ECJSE, c. 11, sy. 2, ss. 207–211, 2024, doi: 10.31202/ecjse.1415880.