Araştırma Makalesi
BibTex RIS Kaynak Göster

LCD 3D Baskı için TDI Bazlı Üretan Diakrilat Takviyeli Silikon Akrilat Reçineler

Yıl 2026, Cilt: 13 Sayı: 1, 49 - 58, 31.01.2026

Öz

Bu çalışmada, daha önce yapılan çalışmalarda test edilen kontrol numunesi (Si-HTH0) olarak, silikon diakrilat ve dipropilen glikol diakrilat (DPGDA) 1:1 oranında formüle edilmiştir. Mekanik özellikleri iyileştirmek amacıyla, yeni bir diakrilat monomeri olan HEMA ile sonlandırılmış TDI bazlı üretan (HTH), toluen diizosiyanat (TDI) ile 2-hidroksietil metakrilat (HEMA) reaksiyona sokularak sentezlenmiştir. Sentezlenen monomer, farklı konsantrasyonlarda (%20–%100) DPGDA ile karıştırılarak silikon diakrilat reçinesine entegre edilmiştir. Mekanik karakterizasyon sonuçları, çekme mukavemeti, Young modülü, darbe dayanımı ve sertlik açısından önemli iyileşmeler göstermiştir. %60 HTH içeriğine sahip numune (Si-HTH60), optimum mekanik özellikleri sergileyerek, nihai çekme mukavemetinde %393’lük bir artış, %11,87 kopma uzaması ve 3,7 kJ/m² darbe dayanımı elde etmiştir. SEM analizi, Si-HTH60'ın test edilen numuneler arasında en sünek kırılma morfolojisine sahip olduğunu göstermiş, ayrıca yüzeyde pürüzlülüğün artmasının yanı sıra belirgin bir nehir benzeri (river-like) desen ve derin kırılmaların varlığı, darbe enerjisi emiliminin arttığını ortaya koymuştur. Buna karşılık, %100 HTH içeren numune, lifli ve hafif gözenekli bir yapı sergileyerek en yüksek çekme mukavemeti ve modül değerlerine ulaşmış, ancak darbe dayanımı açısından üstünlük göstermemiştir. Bu bulgular, HTH'nin silikon diakrilat bazlı reçinelerin mekanik performansını artırmadaki etkinliğini ve DLP/LCD 3D baskı uygulamaları için potansiyelini vurgulamaktadır.

Proje Numarası

yok

Kaynakça

  • [1] Schittecatte L., Geertsen V., Bonamy D., Nguyen T. T. and Guénoun P., From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials, MRS Communications, 2023, 13(3), pp. 357–377.
  • [2] Yigit N. C. and Karagoz I., A review of recent advances in bio-based polymer composite filaments for 3D printing, Polymer-Plastics Technology and Materials, 2023, 62(9), pp. 1077–1095.
  • [3] Bozkurt Y., Gülsoy H. O. and Karayel E., The use of additive manufacturing technologies in medical equipment production, El-Cezeri Journal of Science and Engineering, 2021, 8(2), pp. 962–980.
  • [4] Karagöz İ., Bekdemir A. D. and Tuna Ö., 3B yazıcı teknolojilerinde kullanılan yöntemler ve gelişmeler üzerine bir derleme, Düzce University Journal of Science and Technology, 2021, 9(4), pp. 1186–1213.
  • [5] Dawood A., Marti B., Sauret-Jackson V. and Darwood A., 3D printing in dentistry, British Dental Journal, 2015, 219(11), pp. 521–529, DOI: 10.1038/sj.bdj.2015.914.
  • [6] Uygunoğlu T. and Özgüven S. B., 3D yazıcılar için tasarlanan harçlarının ekstrüde edilebilirlikleri, El-Cezeri Journal of Science and Engineering, 2021, 8(1), pp. 410–420.
  • [7] Güney B. and Erden M. A., Effect of heat treatments on microstructural and tribological properties of 3D printed 18Ni- 300 Maraging tool steel made by Selective Laser Sintering process, Science of Sintering, 2025, advance online publication, DOI: 10.2298/SOS240601026G.
  • [8] Yilmaz M., Ekrem M. and Avci A., Impact resistance of composite to aluminum single lap joints reinforced with graphene doped nylon 6.6 nanofibers, International Journal of Adhesion and Adhesives, 2024, 128, p. 103565.
  • [9] Yılmaz M. and Ekrem M., Effect of low velocity impact at different temperatures on hybrid adhesives in aluminiumcomposite single lap joints, Journal of Composite Materials, 2024, 59(6), pp. 807–820.
  • [10] Ekrem M., Hekzagonal bor nitrür nanoplate–nano Ag/epoksi kompozitler: üretimi, mekanik ve termal özellikleri, El- Cezeri Journal of Science and Engineering, 2019, 6(3), pp. 585–593.
  • [11] Feyzullahoğlu E. and Recep İ., Wear behavior of glass fiber-reinforced polyester composite materials at different loads and speeds, El-Cezeri Journal of Science and Engineering, 2018, 5(1), pp. 259–266.
  • [12] Kavuncu M. R., Ekrem M. and Yazıcı N., Mechanical properties and damage behavior of MWCNT reinforced polyurethane nanocomposites, El-Cezeri Journal of Science and Engineering, 2022, 9(3), pp. 988–995, DOI: 10.31202/ecjse.1018789.
  • [13] Güney B., Küçüksarıyıldız H. and Mutlu İ., Investigation of microstructural and tribological properties of a commercial brake pad, Science of Sintering, 2025, advance online publication, DOI: 10.2298/SOS241217010G.
  • [14] Gopinathan J. and Noh I., Recent trends in bioinks for 3D printing, Biomaterials Research, 2018, 22.
  • [15] Jagtap A. R. and More A., Developments in reactive diluents: a review, Polymer Bulletin, 2021, 79, pp. 5667–5708.
  • [16] Wu G., Zang H. and Zhang H., Preparation and performance of UV-curable waterborne polyurethane prepared using dipentaerythritol hexaacrylate/dipropylene glycol diacrylate monomers, Journal of Macromolecular Science Part A, 2020, 57, pp. 927–934.
  • [17] Çakır M., Akın E. and Ulak P., Properties of UV-curable bisphenol-A glycerolate diacrylate coatings containing 1H,1H,2H,2H-perfluorodecyl acrylate monomer, El-Cezeri Journal of Science and Engineering, 2018, 5(3), pp. 836– 844.
  • [18] Akın E. and Çakır M., Effect of various reactive diluents on the mechanical properties of the acrylate-based polymers produced by DLP/LCD-type 3D printing, Journal of Innovative Engineering and Natural Sciences, 2024, 4(2), pp. 439– 447.
  • [19] Çakır M. and Akın E., Nanocomposites obtained from various acrylate resins with DPGDA reactive diluent filled with fumed silica particles produced by using a DLP/LCD-type 3D printer, Journal of Innovative Engineering and Natural Sciences, 2024, 4(2), pp. 672–683.
  • [20] Çakır M. and Akın E., 3D-printed nanocomposites filled with untreated and surface-modified PTFE powders treated by a Na-naphthalene-system, Journal of Innovative Engineering and Natural Sciences, 2024, 4(2), pp. 530–540.
  • [21] Schuster M., Turecek C., Kaiser B., Stampfl J., Liska R. and Varga F., Evaluation of biocompatible photopolymers I: photoreactivity and mechanical properties of reactive diluents, Journal of Macromolecular Science Part A, 2007, 44, pp. 547–557.
  • [22] Schuster M., Turecek C., Mateos A., Stampfl J., Liska R. and Varga F., Evaluation of biocompatible photopolymers II: further reactive diluents, Monatshefte für Chemie, 2007, 138, pp. 261–268.
  • [23] Kim D. S. and Seo W. H., Ultraviolet-curing behavior and mechanical properties of a polyester acrylate resin, Journal of Applied Polymer Science, 2004, 92, pp. 3921–3928.
  • [24] Hevus I. et al., Furanic (meth)acrylate monomers as sustainable reactive diluents for stereolithography, ACS Applied Polymer Materials, 2023, 5, pp. 9659–9670.
  • [25] Rade P. et al., Effect of functionality of diluents on digital light processing (DLP)-based three-dimensional (3D) printing of UV-curable bisphenol A-based epoxy acrylate resin, Polymer Engineering and Science, 2024, 64(5), pp. 2202–2213.
  • [26] Yu Y., Liao B., Jiang S., Li G. and Sun F., Synthesis and characterization of photosensitive-fluorosilicone–urethane acrylate prepolymers, Designed Monomers and Polymers, 2015, 18, pp. 199–209.
  • [27] Ali K. M. I., Khan M. A., Zaman M. M. and Hossain M. A., Reactive diluent effect on properties of UV-cured films, Journal of Applied Polymer Science, 1994, 54, pp. 309–315.
  • [28] Liu H. B., Zhang W. Y., Lin F., Qing N. and Xu L., The influence of reactive diluents on the properties of UV dualcured polyurethane-modified epoxy monoacrylates films, Journal of Applied Mechanics, 2013, 477–478, pp. 1169– 1174.
  • [29] Uğur M. H., Kılıç H., Berkem M. L. and Güngör A., Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries, Chemical Papers, 2014, 68(11), pp. 1561–1572.
  • [30] Yildiz Z., Onen H. A., Gungor A., Wang Y. and Jacob K., Effects of NCO/OH ratio and reactive diluent type on the adhesion strength of polyurethane methacrylates for cord/rubber composites, Polymer-Plastics Technology and Engineering, 2018, 57(10), pp. 935–944.
  • [31] Çakir M. and Akin E., Wear, thermal, and physical properties of fluorine-containing polyimide/silica hybrid nanocomposite coatings, Journal of Applied Polymer Science, 2019, 136(16), p. 47399.
  • [32] Li G., Jiang S., Gao Y., Liu X. and Sun F., Synthesis and property of water-soluble hyperbranched photosensitive polysiloxane urethane acrylate, Industrial and Engineering Chemistry Research, 2013, 52, pp. 2220–2227.
  • [33] Idrees M., Yoon H., Palmese G. R. and Alvarez N. J., Engineering toughness in a brittle vinyl ester resin using urethane acrylate for additive manufacturing, Polymers, 2023, 15, p. 3501.
  • [34] Zhang Y., Li Y., Wang L., Gao Z. and Kessler M. R., Synthesis and characterization of methacrylated eugenol as a sustainable reactive diluent for a maleinated acrylated epoxidized soybean oil resin, ACS Sustainable Chemistry and Engineering, 2017, 5(9), pp. 7591–7599, DOI: 10.1021/acssuschemeng.7b01673.
  • [35] Maiorana A., Yue L., Manas-Zloczower I. and Gross R., Structure–property relationships of a bio-based reactive diluent in a bio-based epoxy resin, Journal of Applied Polymer Science, 2016, 133(31), p. 43635, DOI: 10.1002/app.43635
  • [36] Uysal E., Çakır M. and Ekici B., Synthesizing UV-curable silicon acrylate resins for SLA type 3D printers and characterization of mechanical, thermal and morphological properties, Journal of Engineering Science and Technology, 2019, 5(1), pp. 47–56.

TDI-Based Urethane Diacrylate Reinforced Silicon-Acrylate Resins for LCD 3D Printing

Yıl 2026, Cilt: 13 Sayı: 1, 49 - 58, 31.01.2026

Öz

In this study, silicon acrylate resins were formulated using a 1:1 ratio of silicon diacrylate and dipropylene glycol diacrylate (DPGDA) as the control sample (Si-HTH0), previously tested in earlier work. To enhance mechanical properties, a novel diacrylate monomer, HEMA-terminated TDI-based urethane (HTH), was synthesized by reacting toluene diisocyanate (TDI) with 2-hydroxyethyl methacrylate (HEMA). The synthesized monomer was blended with DPGDA at varying concentrations (20–100%) and integrated into the silicon diacrylate resin. Mechanical characterization revealed significant improvements in tensile strength, Young’s modulus, impact resistance, and hardness. At 60% HTH (Si-HTH60), the material exhibited the best balance of properties, with a 393% increase in ultimate tensile strength, 11.87% elongation at break, and 3.7 kJ/m² impact resistance. SEM analysis confirmed that Si-HTH60 displayed the most ductile fracture morphology among the tested samples, characterized by rougher surfaces, a distinct river-like pattern, and deep fractures, indicating enhanced energy absorption. In contrast, the 100% HTH sample exhibited a unique morphology with a fibrous and slightly porous structure, leading to the highest tensile strength and modulus, though without superior impact resistance. These findings highlight HTH’s effectiveness in enhancing silicon acrylate-based resins for advanced DLP/LCD 3D printing applications.

Proje Numarası

yok

Kaynakça

  • [1] Schittecatte L., Geertsen V., Bonamy D., Nguyen T. T. and Guénoun P., From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials, MRS Communications, 2023, 13(3), pp. 357–377.
  • [2] Yigit N. C. and Karagoz I., A review of recent advances in bio-based polymer composite filaments for 3D printing, Polymer-Plastics Technology and Materials, 2023, 62(9), pp. 1077–1095.
  • [3] Bozkurt Y., Gülsoy H. O. and Karayel E., The use of additive manufacturing technologies in medical equipment production, El-Cezeri Journal of Science and Engineering, 2021, 8(2), pp. 962–980.
  • [4] Karagöz İ., Bekdemir A. D. and Tuna Ö., 3B yazıcı teknolojilerinde kullanılan yöntemler ve gelişmeler üzerine bir derleme, Düzce University Journal of Science and Technology, 2021, 9(4), pp. 1186–1213.
  • [5] Dawood A., Marti B., Sauret-Jackson V. and Darwood A., 3D printing in dentistry, British Dental Journal, 2015, 219(11), pp. 521–529, DOI: 10.1038/sj.bdj.2015.914.
  • [6] Uygunoğlu T. and Özgüven S. B., 3D yazıcılar için tasarlanan harçlarının ekstrüde edilebilirlikleri, El-Cezeri Journal of Science and Engineering, 2021, 8(1), pp. 410–420.
  • [7] Güney B. and Erden M. A., Effect of heat treatments on microstructural and tribological properties of 3D printed 18Ni- 300 Maraging tool steel made by Selective Laser Sintering process, Science of Sintering, 2025, advance online publication, DOI: 10.2298/SOS240601026G.
  • [8] Yilmaz M., Ekrem M. and Avci A., Impact resistance of composite to aluminum single lap joints reinforced with graphene doped nylon 6.6 nanofibers, International Journal of Adhesion and Adhesives, 2024, 128, p. 103565.
  • [9] Yılmaz M. and Ekrem M., Effect of low velocity impact at different temperatures on hybrid adhesives in aluminiumcomposite single lap joints, Journal of Composite Materials, 2024, 59(6), pp. 807–820.
  • [10] Ekrem M., Hekzagonal bor nitrür nanoplate–nano Ag/epoksi kompozitler: üretimi, mekanik ve termal özellikleri, El- Cezeri Journal of Science and Engineering, 2019, 6(3), pp. 585–593.
  • [11] Feyzullahoğlu E. and Recep İ., Wear behavior of glass fiber-reinforced polyester composite materials at different loads and speeds, El-Cezeri Journal of Science and Engineering, 2018, 5(1), pp. 259–266.
  • [12] Kavuncu M. R., Ekrem M. and Yazıcı N., Mechanical properties and damage behavior of MWCNT reinforced polyurethane nanocomposites, El-Cezeri Journal of Science and Engineering, 2022, 9(3), pp. 988–995, DOI: 10.31202/ecjse.1018789.
  • [13] Güney B., Küçüksarıyıldız H. and Mutlu İ., Investigation of microstructural and tribological properties of a commercial brake pad, Science of Sintering, 2025, advance online publication, DOI: 10.2298/SOS241217010G.
  • [14] Gopinathan J. and Noh I., Recent trends in bioinks for 3D printing, Biomaterials Research, 2018, 22.
  • [15] Jagtap A. R. and More A., Developments in reactive diluents: a review, Polymer Bulletin, 2021, 79, pp. 5667–5708.
  • [16] Wu G., Zang H. and Zhang H., Preparation and performance of UV-curable waterborne polyurethane prepared using dipentaerythritol hexaacrylate/dipropylene glycol diacrylate monomers, Journal of Macromolecular Science Part A, 2020, 57, pp. 927–934.
  • [17] Çakır M., Akın E. and Ulak P., Properties of UV-curable bisphenol-A glycerolate diacrylate coatings containing 1H,1H,2H,2H-perfluorodecyl acrylate monomer, El-Cezeri Journal of Science and Engineering, 2018, 5(3), pp. 836– 844.
  • [18] Akın E. and Çakır M., Effect of various reactive diluents on the mechanical properties of the acrylate-based polymers produced by DLP/LCD-type 3D printing, Journal of Innovative Engineering and Natural Sciences, 2024, 4(2), pp. 439– 447.
  • [19] Çakır M. and Akın E., Nanocomposites obtained from various acrylate resins with DPGDA reactive diluent filled with fumed silica particles produced by using a DLP/LCD-type 3D printer, Journal of Innovative Engineering and Natural Sciences, 2024, 4(2), pp. 672–683.
  • [20] Çakır M. and Akın E., 3D-printed nanocomposites filled with untreated and surface-modified PTFE powders treated by a Na-naphthalene-system, Journal of Innovative Engineering and Natural Sciences, 2024, 4(2), pp. 530–540.
  • [21] Schuster M., Turecek C., Kaiser B., Stampfl J., Liska R. and Varga F., Evaluation of biocompatible photopolymers I: photoreactivity and mechanical properties of reactive diluents, Journal of Macromolecular Science Part A, 2007, 44, pp. 547–557.
  • [22] Schuster M., Turecek C., Mateos A., Stampfl J., Liska R. and Varga F., Evaluation of biocompatible photopolymers II: further reactive diluents, Monatshefte für Chemie, 2007, 138, pp. 261–268.
  • [23] Kim D. S. and Seo W. H., Ultraviolet-curing behavior and mechanical properties of a polyester acrylate resin, Journal of Applied Polymer Science, 2004, 92, pp. 3921–3928.
  • [24] Hevus I. et al., Furanic (meth)acrylate monomers as sustainable reactive diluents for stereolithography, ACS Applied Polymer Materials, 2023, 5, pp. 9659–9670.
  • [25] Rade P. et al., Effect of functionality of diluents on digital light processing (DLP)-based three-dimensional (3D) printing of UV-curable bisphenol A-based epoxy acrylate resin, Polymer Engineering and Science, 2024, 64(5), pp. 2202–2213.
  • [26] Yu Y., Liao B., Jiang S., Li G. and Sun F., Synthesis and characterization of photosensitive-fluorosilicone–urethane acrylate prepolymers, Designed Monomers and Polymers, 2015, 18, pp. 199–209.
  • [27] Ali K. M. I., Khan M. A., Zaman M. M. and Hossain M. A., Reactive diluent effect on properties of UV-cured films, Journal of Applied Polymer Science, 1994, 54, pp. 309–315.
  • [28] Liu H. B., Zhang W. Y., Lin F., Qing N. and Xu L., The influence of reactive diluents on the properties of UV dualcured polyurethane-modified epoxy monoacrylates films, Journal of Applied Mechanics, 2013, 477–478, pp. 1169– 1174.
  • [29] Uğur M. H., Kılıç H., Berkem M. L. and Güngör A., Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries, Chemical Papers, 2014, 68(11), pp. 1561–1572.
  • [30] Yildiz Z., Onen H. A., Gungor A., Wang Y. and Jacob K., Effects of NCO/OH ratio and reactive diluent type on the adhesion strength of polyurethane methacrylates for cord/rubber composites, Polymer-Plastics Technology and Engineering, 2018, 57(10), pp. 935–944.
  • [31] Çakir M. and Akin E., Wear, thermal, and physical properties of fluorine-containing polyimide/silica hybrid nanocomposite coatings, Journal of Applied Polymer Science, 2019, 136(16), p. 47399.
  • [32] Li G., Jiang S., Gao Y., Liu X. and Sun F., Synthesis and property of water-soluble hyperbranched photosensitive polysiloxane urethane acrylate, Industrial and Engineering Chemistry Research, 2013, 52, pp. 2220–2227.
  • [33] Idrees M., Yoon H., Palmese G. R. and Alvarez N. J., Engineering toughness in a brittle vinyl ester resin using urethane acrylate for additive manufacturing, Polymers, 2023, 15, p. 3501.
  • [34] Zhang Y., Li Y., Wang L., Gao Z. and Kessler M. R., Synthesis and characterization of methacrylated eugenol as a sustainable reactive diluent for a maleinated acrylated epoxidized soybean oil resin, ACS Sustainable Chemistry and Engineering, 2017, 5(9), pp. 7591–7599, DOI: 10.1021/acssuschemeng.7b01673.
  • [35] Maiorana A., Yue L., Manas-Zloczower I. and Gross R., Structure–property relationships of a bio-based reactive diluent in a bio-based epoxy resin, Journal of Applied Polymer Science, 2016, 133(31), p. 43635, DOI: 10.1002/app.43635
  • [36] Uysal E., Çakır M. and Ekici B., Synthesizing UV-curable silicon acrylate resins for SLA type 3D printers and characterization of mechanical, thermal and morphological properties, Journal of Engineering Science and Technology, 2019, 5(1), pp. 47–56.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Uygulaması
Bölüm Araştırma Makalesi
Yazarlar

Emre Akın 0000-0003-2067-1488

Mustafa Çakır 0000-0002-9409-2684

Proje Numarası yok
Gönderilme Tarihi 5 Şubat 2025
Kabul Tarihi 15 Temmuz 2025
Yayımlanma Tarihi 31 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 13 Sayı: 1

Kaynak Göster

IEEE [1]E. Akın ve M. Çakır, “TDI-Based Urethane Diacrylate Reinforced Silicon-Acrylate Resins for LCD 3D Printing”, ECJSE, c. 13, sy 1, ss. 49–58, Oca. 2026, doi: 10.31202/ecjse.1633913.