Araştırma Makalesi
BibTex RIS Kaynak Göster

3E Analysis of Ejector Compression Absorption Cascade Cycle Working with Environmental Friendly Refrigerants

Yıl 2026, Cilt: 13 Sayı: 1, 112 - 124, 31.01.2026

Öz

The low electrical consumption of the compression absorption cascade cycle and its potential to work with low-grade generation temperature qualify it to become an attractive system for refrigeration production, in this work, the performance of the ejector compression absorption cascade cycle (ECACC) was studied using 11 refrigerants with low GWP and ODP for vapor compressor section, the performance comparison results show that the R744 has the better COP and the exergy efficiency then the effect of generation temperature on the performance of ECACC is carried out. Also, the destruction of exergy destruction of the main component of ECACC is analyzed. The annual cost includes the investment, operating, and environmental costs considered. Also, the following results found in the studied cycle show that the thermodynamic performance is at maximum in a specific generation temperature and then decreases with an increase in the generation temperature, contrary to the annual cost. The absorber, the generator, the cascade heat exchanger, the solution heat exchanger, and the condenser are responsible for almost all exergy destruction of ECACC followed by the compressor and the ejector, respectively

Kaynakça

  • [1] Khelifa S., Korichi M., and Elsaid K., Thermodynamic and thermo-economic analysis of compression-absorption cascade refrigeration system using low-GWP HFO fluids powered by geothermal energy, International Journal of Refrigeration, 2018, 94.
  • [2] Du Y., Chi C., and Wang X., Energy, exergy, and economic analysis of compression-absorption cascade refrigeration cycle using different working fluids, Energy Storage and Saving, 2024, 3(2), pp. 87-95.
  • [3] Khan Y., Naqib-Ul-Islam S.M., Faruque M.W., and Ehsan M.M., Advanced Cascaded Recompression Absorption System Equipped with Ejector and Vapor-Injection Enhanced Vapor Compression Refrigeration System: ANN based Multi-Objective Optimization, Thermal Science and Engineering Progress, 2024, 49, pp. 102485.
  • [4] Zhang H., Pan X., Chen J., and Xie J., Energy, exergy, economic and environmental analyses of a cascade absorption-compression refrigeration system using two-stage compression with complete intercooling, Applied Thermal Engineering, 2023, 225, pp. 120185.
  • [5] Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 Text with EEA relevance, E. Parliament, Editor, 2014.
  • [6] Final Rule - Protection of Stratospheric Ozone: Change of Listing Status for Certain Substitutes under the Significant New Alternatives Policy Program 2016, United State EnvironmentaL Protection Agency.
  • [7] Caliskan O., Bilir Sag N., and Ersoy H.K., Thermodynamic, environmental, and exergoeconomic analysis of multi-ejector expansion transcritical CO2 supermarket refrigeration cycles in different climate regions of Türkiye, International Journal of Refrigeration, 2024, 165, pp. 466-484.
  • [8] Song J., Li X.-s., Ren X.-d., and Gu C.-w., Performance improvement of a preheating supercritical CO2 (S-CO2) cycle based system for engine waste heat recovery, Energy Conversion and Management, 2018, 161, pp. 225-233.
  • [9] Zhi L.-H., Hu P., Chen L.-X., and Zhao G., Thermodynamic analysis of an innovative transcritical CO2 parallel Rankine cycle driven by engine waste heat and liquefied natural gas cold, Energy Conversion and Management, 2020, 209, pp. 112583.
  • [10] Cimsit C., Ozturk I.T., and Kincay O., Thermoeconomic optimization of LiBr/H2O-R134a compression-absorption cascade refrigeration cycle, Applied Thermal Engineering, 2015, 76, pp. 105-115.
  • [11] Seyfouri Z. and Ameri M., Analysis of integrated compression–absorption refrigeration systems powered by a microturbine, International Journal of Refrigeration, 2012, 35(6), pp. 1639-1646.
  • [12] Bahrami H.-R. and Fazli S., Comparative exergy and energy analyses of compression-absorption cascade refrigeration cycles with varied configurations and ejector implementations, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2024.
  • [13] Dixit M., ENERGY AND EXERGY ANALYSIS OF ABSORPTION- COMPRESSION CASCADE REFRIGERATION SYSTEM, Journal of Thermal Engineering, 2016, 2.
  • [14] Özen D.N. and Yağcıoğlu K.Ç., Thermodynamic and Exergy Analysis of an Absorptıon Cooling System for Different Refrigerants, El-Cezeri, 2020, 7(1), pp. 93-103.
  • [15] Liu Z., Zeng Z., Deng C., and Xie N., Advanced Exergy Analysis of an Absorption Chiller/Kalina Cycle Integrated System for Low-Grade Waste Heat Recovery, Processes, 2022, 10, 2608, DOI: 10.3390/pr10122608.
  • [16] Kumar A. and Modi A., Energy and exergy analysis of a novel ejector-assisted compression–absorption–resorption refrigeration system, Energy, 2023, 263, pp. 125760.
  • [17] Yuksel Y.E., Thermodynamic and performance evaluation of an integrated geothermal energy based multigeneration plant, El-Cezeri, 2020, 7(2), pp. 381-401.
  • [18] Tunay M., Okwose C.F., Abid M., Adedeji M., Adebayo V.O., Ratlamwala T.A.H., and Rabbani M.A., Thermodynamic and Optimization Comparison of a Solar-Powered Compressor-Assisted Combined Absorption Refrigeration and Power Systems, El-Cezeri, 2024, 11(3), pp. 267-282.
  • [19] Faruque M.W., Khan Y., Nabil M.H., and Ehsan M.M., Parametric analysis and optimization of a novel cascade compression-absorption refrigeration system integrated with a flash tank and a reheater, Results in Engineering, 2023, 17, pp. 101008.
  • [20] Mukhtar H. and Ghani S., Hybrid Ejector-Absorption Refrigeration Systems: A Review, Energies, 2021, 14, pp. 6576.
  • [21] Huang B.J., Chang J.M., Wang C.P., and Petrenko V.A., A 1-D analysis of ejector performance, International Journal of Refrigeration, 1999, 22(5), pp. 354-364.
  • [22] Soytürk G., Çelik Toker S., and Kızılkan Ö., Thermodynamic Analysis of Ammonia Based Direct Steam Generation Trigeneration System, El-Cezeri, 2022, 9(2), pp. 721-739.
  • [23] Gomri R., Simulation study on the performance of solar/natural gas absorption cooling chillers, Energy Conversion and Management, 2013, 65, pp. 675-681.
  • [24] Mebarki B., Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle, International Journal of Thermodynamics, 2023, 26(3), pp. 15-24.
  • [25] Milovancevic U., Jacimovic B., Genic S., El-Sagier F., Otović M., and Stevanovic S., Thermoeconomic analysis of spiral heat exchanger with constant wall temperature, Thermal Science, 2018, 2018, pp. 150-150.
  • [26] Baghernejad A. and Yaghoubi M., Thermoeconomic Methodology for Analysis and Optimization of a Hybrid Solar Thermal Power Plant, International Journal of Green Energy - INT J GREEN ENERGY, 2012, 10.
  • [27] Chinnappa J.C.V., Crees M.R., Srinivasa Murthy S., and Srinivasan K., Solar-assisted vapor compression/absorption cascaded air-conditioning systems, Solar Energy, 1993, 50(5), pp. 453-458.
  • [28] Cimsit C. and Ozturk I.T., Analysis of compression–absorption cascade refrigeration cycles, Applied Thermal Engineering, 2012, 40, pp. 311-317.
  • [29] Caliskan O. and Ersoy H.K., Energy analysis and performance comparison of transcritical CO2 supermarket refrigeration cycles, The Journal of Supercritical Fluids, 2022, 189, pp. 105698.
  • [30] Jain V., Sachdeva G., and Kachhwaha S.S., Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system, Energy, 2015, 91, pp. 816-832.
  • [31] Aminyavari M., Najafi B., Shirazi A., and Rinaldi F., Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system, Applied Thermal Engineering, 2014, 65(1), pp. 42-50.
  • [32] Gebreslassie B.H., Guillén-Gosálbez G., Jiménez L., and Boer D., Design of environmentally conscious absorption cooling systems via multiobjective optimization and life cycle assessment, Applied Energy, 2009, 86(9), pp. 1712-1722.
  • [33] Wang J., Zhai Z., Jing Y., and Zhang C., Particle swarm optimization for redundant building cooling heating and power system, Applied Energy, 2010, 87(12), pp. 3668-3679.
  • [34] Cheng Y., Wang M., and Yu J., Thermodynamic analysis of a novel solar-driven booster-assisted ejector refrigeration cycle, Solar Energy, 2021, 218, pp. 85-94.
  • [35] Yang Z., Feng B., Ma H., Zhang L., Duan C., Liu B., Zhang Y., Chen S., and Yang Z., Analysis of lower GWP and flammable alternative refrigerants, International Journal of Refrigeration, 2021, 126, pp. 12-22.
  • [36] Miraj Arefin M., Mondal D., and Ashraful Islam M., Optimizing cascade refrigeration systems with low GWP refrigerants for Low-Temperature Applications: A thermodynamic analysis, Energy Conversion and Management: X, 2024, 24, pp. 100722.
  • [37] Sánchez D., Andreu-Nácher A., Calleja-Anta D., Llopis R., and Cabello R., Energy impact evaluation of different low-GWP alternatives to replace R134a in a beverage cooler. Experimental analysis and optimization for the pure refrigerants R152a, R1234yf, R290, R1270, R600a and R744, Energy Conversion and Management, 2022, 256, pp. 115388.

Çevre Dostu Soğutucularla Çalışan Ejektör Sıkıştırma Absorpsiyon Kademeli Döngüsünün 3E Analizi

Yıl 2026, Cilt: 13 Sayı: 1, 112 - 124, 31.01.2026

Öz

Sıkıştırma emilimli kademeli çevrimin düşük elektrik tüketimi ve düşük dereceli üretim sıcaklığıyla çalışma potansiyeli, onu soğutma üretimi için çekici bir sistem haline getirmektedir. Bu çalışmada, ejektör sıkıştırma emilimli kademeli çevrimin (ECACC) performansı, buhar kompresör bölümü için düşük GWP ve ODP'ye sahip 11 soğutucu kullanılarak incelenmiştir. Performans karşılaştırma sonuçları, R744'ün daha iyi COP ve ekserji verimliliğine sahip olduğunu göstermiştir, ardından üretim sıcaklığının ECACC'nin performansı üzerindeki etkisi incelenmiştir. Ayrıca, ECACC'nin ana bileşeninin ekserji yıkımının yıkımı analiz edilmiştir. Yıllık maliyet, dikkate alınan yatırım, işletme ve çevre maliyetlerini içerir. Ayrıca, incelenen çevrimde bulunan aşağıdaki sonuçlar, termodinamik performansın belirli bir üretim sıcaklığında maksimum olduğunu ve daha sonra yıllık maliyetin aksine üretim sıcaklığındaki artışla azaldığını göstermektedir. ECACC'nin ekserji yıkımının neredeyse tamamından absorber, jeneratör, kaskad ısı değiştirici, çözelti ısı değiştirici ve kondenser sorumludur, bunları sırasıyla kompresör ve ejektör takip eder.

Kaynakça

  • [1] Khelifa S., Korichi M., and Elsaid K., Thermodynamic and thermo-economic analysis of compression-absorption cascade refrigeration system using low-GWP HFO fluids powered by geothermal energy, International Journal of Refrigeration, 2018, 94.
  • [2] Du Y., Chi C., and Wang X., Energy, exergy, and economic analysis of compression-absorption cascade refrigeration cycle using different working fluids, Energy Storage and Saving, 2024, 3(2), pp. 87-95.
  • [3] Khan Y., Naqib-Ul-Islam S.M., Faruque M.W., and Ehsan M.M., Advanced Cascaded Recompression Absorption System Equipped with Ejector and Vapor-Injection Enhanced Vapor Compression Refrigeration System: ANN based Multi-Objective Optimization, Thermal Science and Engineering Progress, 2024, 49, pp. 102485.
  • [4] Zhang H., Pan X., Chen J., and Xie J., Energy, exergy, economic and environmental analyses of a cascade absorption-compression refrigeration system using two-stage compression with complete intercooling, Applied Thermal Engineering, 2023, 225, pp. 120185.
  • [5] Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 Text with EEA relevance, E. Parliament, Editor, 2014.
  • [6] Final Rule - Protection of Stratospheric Ozone: Change of Listing Status for Certain Substitutes under the Significant New Alternatives Policy Program 2016, United State EnvironmentaL Protection Agency.
  • [7] Caliskan O., Bilir Sag N., and Ersoy H.K., Thermodynamic, environmental, and exergoeconomic analysis of multi-ejector expansion transcritical CO2 supermarket refrigeration cycles in different climate regions of Türkiye, International Journal of Refrigeration, 2024, 165, pp. 466-484.
  • [8] Song J., Li X.-s., Ren X.-d., and Gu C.-w., Performance improvement of a preheating supercritical CO2 (S-CO2) cycle based system for engine waste heat recovery, Energy Conversion and Management, 2018, 161, pp. 225-233.
  • [9] Zhi L.-H., Hu P., Chen L.-X., and Zhao G., Thermodynamic analysis of an innovative transcritical CO2 parallel Rankine cycle driven by engine waste heat and liquefied natural gas cold, Energy Conversion and Management, 2020, 209, pp. 112583.
  • [10] Cimsit C., Ozturk I.T., and Kincay O., Thermoeconomic optimization of LiBr/H2O-R134a compression-absorption cascade refrigeration cycle, Applied Thermal Engineering, 2015, 76, pp. 105-115.
  • [11] Seyfouri Z. and Ameri M., Analysis of integrated compression–absorption refrigeration systems powered by a microturbine, International Journal of Refrigeration, 2012, 35(6), pp. 1639-1646.
  • [12] Bahrami H.-R. and Fazli S., Comparative exergy and energy analyses of compression-absorption cascade refrigeration cycles with varied configurations and ejector implementations, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2024.
  • [13] Dixit M., ENERGY AND EXERGY ANALYSIS OF ABSORPTION- COMPRESSION CASCADE REFRIGERATION SYSTEM, Journal of Thermal Engineering, 2016, 2.
  • [14] Özen D.N. and Yağcıoğlu K.Ç., Thermodynamic and Exergy Analysis of an Absorptıon Cooling System for Different Refrigerants, El-Cezeri, 2020, 7(1), pp. 93-103.
  • [15] Liu Z., Zeng Z., Deng C., and Xie N., Advanced Exergy Analysis of an Absorption Chiller/Kalina Cycle Integrated System for Low-Grade Waste Heat Recovery, Processes, 2022, 10, 2608, DOI: 10.3390/pr10122608.
  • [16] Kumar A. and Modi A., Energy and exergy analysis of a novel ejector-assisted compression–absorption–resorption refrigeration system, Energy, 2023, 263, pp. 125760.
  • [17] Yuksel Y.E., Thermodynamic and performance evaluation of an integrated geothermal energy based multigeneration plant, El-Cezeri, 2020, 7(2), pp. 381-401.
  • [18] Tunay M., Okwose C.F., Abid M., Adedeji M., Adebayo V.O., Ratlamwala T.A.H., and Rabbani M.A., Thermodynamic and Optimization Comparison of a Solar-Powered Compressor-Assisted Combined Absorption Refrigeration and Power Systems, El-Cezeri, 2024, 11(3), pp. 267-282.
  • [19] Faruque M.W., Khan Y., Nabil M.H., and Ehsan M.M., Parametric analysis and optimization of a novel cascade compression-absorption refrigeration system integrated with a flash tank and a reheater, Results in Engineering, 2023, 17, pp. 101008.
  • [20] Mukhtar H. and Ghani S., Hybrid Ejector-Absorption Refrigeration Systems: A Review, Energies, 2021, 14, pp. 6576.
  • [21] Huang B.J., Chang J.M., Wang C.P., and Petrenko V.A., A 1-D analysis of ejector performance, International Journal of Refrigeration, 1999, 22(5), pp. 354-364.
  • [22] Soytürk G., Çelik Toker S., and Kızılkan Ö., Thermodynamic Analysis of Ammonia Based Direct Steam Generation Trigeneration System, El-Cezeri, 2022, 9(2), pp. 721-739.
  • [23] Gomri R., Simulation study on the performance of solar/natural gas absorption cooling chillers, Energy Conversion and Management, 2013, 65, pp. 675-681.
  • [24] Mebarki B., Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle, International Journal of Thermodynamics, 2023, 26(3), pp. 15-24.
  • [25] Milovancevic U., Jacimovic B., Genic S., El-Sagier F., Otović M., and Stevanovic S., Thermoeconomic analysis of spiral heat exchanger with constant wall temperature, Thermal Science, 2018, 2018, pp. 150-150.
  • [26] Baghernejad A. and Yaghoubi M., Thermoeconomic Methodology for Analysis and Optimization of a Hybrid Solar Thermal Power Plant, International Journal of Green Energy - INT J GREEN ENERGY, 2012, 10.
  • [27] Chinnappa J.C.V., Crees M.R., Srinivasa Murthy S., and Srinivasan K., Solar-assisted vapor compression/absorption cascaded air-conditioning systems, Solar Energy, 1993, 50(5), pp. 453-458.
  • [28] Cimsit C. and Ozturk I.T., Analysis of compression–absorption cascade refrigeration cycles, Applied Thermal Engineering, 2012, 40, pp. 311-317.
  • [29] Caliskan O. and Ersoy H.K., Energy analysis and performance comparison of transcritical CO2 supermarket refrigeration cycles, The Journal of Supercritical Fluids, 2022, 189, pp. 105698.
  • [30] Jain V., Sachdeva G., and Kachhwaha S.S., Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system, Energy, 2015, 91, pp. 816-832.
  • [31] Aminyavari M., Najafi B., Shirazi A., and Rinaldi F., Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system, Applied Thermal Engineering, 2014, 65(1), pp. 42-50.
  • [32] Gebreslassie B.H., Guillén-Gosálbez G., Jiménez L., and Boer D., Design of environmentally conscious absorption cooling systems via multiobjective optimization and life cycle assessment, Applied Energy, 2009, 86(9), pp. 1712-1722.
  • [33] Wang J., Zhai Z., Jing Y., and Zhang C., Particle swarm optimization for redundant building cooling heating and power system, Applied Energy, 2010, 87(12), pp. 3668-3679.
  • [34] Cheng Y., Wang M., and Yu J., Thermodynamic analysis of a novel solar-driven booster-assisted ejector refrigeration cycle, Solar Energy, 2021, 218, pp. 85-94.
  • [35] Yang Z., Feng B., Ma H., Zhang L., Duan C., Liu B., Zhang Y., Chen S., and Yang Z., Analysis of lower GWP and flammable alternative refrigerants, International Journal of Refrigeration, 2021, 126, pp. 12-22.
  • [36] Miraj Arefin M., Mondal D., and Ashraful Islam M., Optimizing cascade refrigeration systems with low GWP refrigerants for Low-Temperature Applications: A thermodynamic analysis, Energy Conversion and Management: X, 2024, 24, pp. 100722.
  • [37] Sánchez D., Andreu-Nácher A., Calleja-Anta D., Llopis R., and Cabello R., Energy impact evaluation of different low-GWP alternatives to replace R134a in a beverage cooler. Experimental analysis and optimization for the pure refrigerants R152a, R1234yf, R290, R1270, R600a and R744, Energy Conversion and Management, 2022, 256, pp. 115388.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Tasarımı
Bölüm Araştırma Makalesi
Yazarlar

Billal Mebarki 0000-0002-0364-6101

Gönderilme Tarihi 10 Mayıs 2025
Kabul Tarihi 8 Aralık 2025
Yayımlanma Tarihi 31 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 13 Sayı: 1

Kaynak Göster

IEEE [1]B. Mebarki, “3E Analysis of Ejector Compression Absorption Cascade Cycle Working with Environmental Friendly Refrigerants”, ECJSE, c. 13, sy 1, ss. 112–124, Oca. 2026, doi: 10.31202/ecjse.1696630.