Araştırma Makalesi
BibTex RIS Kaynak Göster

Poly(glycidyl methacrylate-co-styrene) : Synthesis, Characterization, Reaction With Aminated MWCNT and Thermal investigation

Yıl 2018, , 537 - 546, 31.05.2018
https://doi.org/10.31202/ecjse.404638

Öz

In four different compositions, glycidyl methacrylate (GMA)-styrene (St) copolymers were prepared by free radical polymerization. These copolymers were reacted with aminated MWCNT (multi wall carbon nano tube). The GMA ratios in the copolymers were determined by 1 H-NMR to be 6.5%, 14%, 21% and 28% by mol. FT-IR spectra, 1 H-NMR spectra, and SEM images of these copolymers and reacted copolymers were examined. The average molecular weights of the original copolymers were determined by GPC. Thermal investigation showed that the copolymers reacted with the aminated MWCNT had higher glass transition temperatures than the original copolymers. Further, based on the decomposition start temperatures, it was determined that the thermal stability of the copolymers increased by about 8-10 ° C.

Kaynakça

  • [1] May, C.A. Epoxy resins chemistry and technology. New York: Marcel Dekker; 1988.
  • [2] Chen, Z.; Bao, H.; Liu, J., Synthesis of a well-defined epoxy copolymer byatom transfer radical polymerization. J Polym Sci Part A: Polym Chem 2001, 39:3726–32.
  • [3] Kovar, J.; Navratilova, M.; Skursky, L., Immobilization of horse liver alcohol dehydrogenase on copolymers of glycidyl methacrylate and ethylene dimethacry late. Biotechnol Bioeng 1982, 24: 837–45.
  • [4] Jones, R.G.; Yoon, S.; Nagasaki, Y., Facile synthesis of epoxystyrene and its copolymerisations with styrene by living free radical and atom transfer radical strategies. Polymer 1999, 40: 2411–8.
  • [5] Vijayaraghavan, P.G.; Reddy, B.S.R., 4-Chlorophenyl acrylate and glycidyl methacrylate copolymers: Synthesis, characterization, reactivity ratios, and application. J Macromol Sci Pure Appl Chem1999, 36:1181–95.
  • [6] Godwin, G.G.; Selvamalar, C.S.J.; Penlidis, A.; Nanjundan, S., Homopolymer of 4-propanoylphenyl methacrylate and its copolymers with glycidyl methacrylate: synthesis, characterization, reactivity ratios and application as adhesives. React Funct Polym 2004, 59: 197–209.
  • [7] Zhang, X.; Tanaka, H., Copolymerization of glycidyl methacrylate with styrene and applications of the copolymer as paper-strength additive. J Appl Polym Sci 2001, 80: 334–9.
  • [8] https://www.chemicalsafetyfacts.org/polystyrene-post/
  • [9] Soundararajan, S.; Reddy, B.S.R.; Rajadurai, S., Synthesis and characterization of glycidyl methacrylate-styrene copolymers and determination of monomer reactivity ratios,Polymer 1990, 31(2): 366-370.
  • [10] Wei Wang, W.; Hutchinson, R.A., PLP/SEC/NMR Study of Free Radical Copolymerization of Styrene and Glycidyl Methacrylate, Macromolecules 2008, 41: 9011-9018.
  • [11] Brar, A.S.;Yadav,A.; Hooda, S.,Characterization of glycidyl methacrylate/styrene copolymers by one- and two-dimensional NMR spectroscopy, Eur. Polym. J. 2002, 38: 1683-1690.
  • [12] Brar, A.S.; Goyal, A.K., Characterization and optimization of poly(glycidymethacrylate-co-styrene) synthesized by atom transfer radical polymerizaiton, Eur. Polym. J. 2008, 44: 4082–4091.
  • [13] Zhang, J.; Huang, H.; Wei, D.F.; Guan,Y.; Hu, F.Z.; Zheng, A.;Xıao, H., Further Studies on the Anionic Copolymerization of Styrene and Glycidyl Methacrylate in Toluene J. M. S., Part A: Pure and Appl. Chem. 2010, 47: 626–632.
  • [14] Yang, W.; Hu, J.; Tao, Z.; Li, L.; Wang, C.; Fu, S., Dispersion copolymerization of styrene and glycidyl methacrylate in polar solvents, Colloid Polym. Sci. 1999, 277: 446-451.
  • [15] Zhang, X.; Tanaka, H.,Copolymerization of Glycidyl Methacrylate with Styrene and Applications of the Copolymer as Paper-Strength Additive, J. Appl. Polym. Sci. 2001, 80: 334–339.
  • [16] Gao, H.; Elsabahy, M.; Giger, E.V.; Li, D.; Prud’homme, R. E.; Leroux, J.-C. Aminated linear and star-shape poly(glycerol methacrylate)s: synthesis and self-assembling properties. Biomacromolecules, 2010, 11: 889–895.
  • [17] De, S. ; Khan, A., Efficient synthesis of multifunctional polymersviathiol–epoxy “click” chemistry, Chem. Commun., 2012, 48: 3130-3132.
  • [18] Tsarevsky, N. V.; Bencherif, S. A.; Matyjaszewski, K., Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions, Macromolecules, 2007, 40: 4439–4445.
  • [19] Gao, H.; Jones, M.-C.; Tewari, P.; Ranger, M.; Leroux, J.-C., Star-shaped alkylated poly(glycerol methacrylate) reverse micelles: Synthesis and evaluation of their solubilizing properties in dichloromethane, J. Polym. Sci., Part A: Polym. Chem., 2007, 45: 2425–2435.
  • [20] Chang, S.-C.; Chiu, S.-J.; Hsu, C.-Y.; Chang, Y.; Liu, Y.-L., White-light fluorescent nanoparticles from self-assembly of rhodamine B-anchored amphiphilic poly(poly(ethylene glycol)methacrylate)-b-poly(glycidyl methacrylate) block copolymer Polymer, 2012, 53: 4399–4406.
  • [21] Chuo, T.-W.; Wei, T.-C.; Liu, Y.-L., Electrically driven self-healing polymers based on reversible guest–host complexation of β-cyclodextrin and ferrocene, J. Polym. Sci., Part A: Polym. Chem., 2013, 51: 3395–3403.
  • [22] Muzammil,E. M.; Khan, A.; Stuparu, M.C., Post-polymerization modification reactions of poly(glycidyl methacrylate)s, RSC Adv., 2017, 7: 55874–55884.
  • [23] Yılmaz, S.; Pekdemir, M.E.; Coşkun, M., Electrical and Thermal Properties of Bisphenol A Propoxylate Diglycidyl Ether-Piperazine Copolymer/Functionalized MWCNT Composites, J. Serbian Chem. Soc., incelemede.
  • [24] Anakabe, J.; Huici, A.M.Z.; Eceiza, A.; Arbelaiz, A., The effect of the addition of poly(styrene-co-glycidyl methacrylate) copolymer on the properties of polylactide/poly(methyl methacrylate) blend, J. Appl. Polym. Sci. 2016, 133: 43935.
  • [25] Nasirtabrizi, M.H.; Einalizadeh, S., A New Type of Poly(GMA) with Carbazole: Synthesis and Characterization, Hacettepe J. Biol. and Chem., 2017, 45 (2): 237–243.
  • [26] https://polymersource.com/dataSheet/P18993B-GMA.pdf
  • [27] https://www.polymersource.com/dataSheet/P9865A-GMA.pdf
  • [28] Wunderlieh, B., Thermal Analysis, Academic Press, NY 1990.
  • [29] Rieger, J., The Glass Transıtıon Temperature of Polystyrene, Journal of Thermal Analysis 1996, 46: 965-972.
  • [30] Othman, S.H.; Elbarbary, A.M.; Rashad, G.; Fasih, T. W., Radio-iodide uptake by modified poly (glycidyl methacrylate) as anion exchange resin Radiochimica Acta, 2017, 105(1): 75–84.
  • [31] Narasimhaswamy, T.; Sumathi, S.C.; Reddy, B.S.R., 4-Acetylphenyl acrylate-glycidyl methacrylate copolymers: synthesis, characterization and reactivity ratios, Eur. Polym. J. 1991, 27:255-271.
  • [32] Perez-Guerrero, A.; Lısperguer, J.; F. Orellana, F., Influence of Sılıca Nanopartıcles on The Thermomechanıcal Propertıes of Recycled Polystyrene, J. Chil. Chem. Soc., 2011, 56(4): 907-910.

Poli(glisidil metakrilat-ko-stiren): Sentezi, karakterizasyonu, aminlenmiş MWCNT ile reaksiyonu ve termal inceleme

Yıl 2018, , 537 - 546, 31.05.2018
https://doi.org/10.31202/ecjse.404638

Öz



Dört
farklı bileşimde glisidil metakrilat (GMA)-striren (St) kopolimerleri serbest
radikal polimerizasyonuyla hazırlandı. Bu kopolimerler aminlenmiş MWCNT (multi
Wall carbon nano tube) ile reaksiyona sokuldu. Kopolimerlerdeki GMA oranları
1H-NMR ile mol olarak % 6.5, %14, %21 ve % 28 
olarak belirlendi. Bu kopolimerlerin ve reaksiyona sokulmuş
kopolimerlerin FT-IR spektrumları, 1H-NMR spektrumları, SEM görüntüleri
incelendi. Orijinal kopolimerlerin GPC ile ortalama molekül ağırlıkları
belirlendi. 
Termal
incelemede aminlenmiş MWCNT ile reaksiyona sokulmuş kopolimerlerin orijinal
kopolimerlerden daha yüksek camsı geçiş sıcaklıklarına sahip olduğu görüldü.
Ayrıca parçalanmaya başlama sıcaklıkları esas alındığında reaksiyonla
kopolimerlerin termal kararlılığının yaklaşık 8-10 oC arttığı
belirlendi.

Kaynakça

  • [1] May, C.A. Epoxy resins chemistry and technology. New York: Marcel Dekker; 1988.
  • [2] Chen, Z.; Bao, H.; Liu, J., Synthesis of a well-defined epoxy copolymer byatom transfer radical polymerization. J Polym Sci Part A: Polym Chem 2001, 39:3726–32.
  • [3] Kovar, J.; Navratilova, M.; Skursky, L., Immobilization of horse liver alcohol dehydrogenase on copolymers of glycidyl methacrylate and ethylene dimethacry late. Biotechnol Bioeng 1982, 24: 837–45.
  • [4] Jones, R.G.; Yoon, S.; Nagasaki, Y., Facile synthesis of epoxystyrene and its copolymerisations with styrene by living free radical and atom transfer radical strategies. Polymer 1999, 40: 2411–8.
  • [5] Vijayaraghavan, P.G.; Reddy, B.S.R., 4-Chlorophenyl acrylate and glycidyl methacrylate copolymers: Synthesis, characterization, reactivity ratios, and application. J Macromol Sci Pure Appl Chem1999, 36:1181–95.
  • [6] Godwin, G.G.; Selvamalar, C.S.J.; Penlidis, A.; Nanjundan, S., Homopolymer of 4-propanoylphenyl methacrylate and its copolymers with glycidyl methacrylate: synthesis, characterization, reactivity ratios and application as adhesives. React Funct Polym 2004, 59: 197–209.
  • [7] Zhang, X.; Tanaka, H., Copolymerization of glycidyl methacrylate with styrene and applications of the copolymer as paper-strength additive. J Appl Polym Sci 2001, 80: 334–9.
  • [8] https://www.chemicalsafetyfacts.org/polystyrene-post/
  • [9] Soundararajan, S.; Reddy, B.S.R.; Rajadurai, S., Synthesis and characterization of glycidyl methacrylate-styrene copolymers and determination of monomer reactivity ratios,Polymer 1990, 31(2): 366-370.
  • [10] Wei Wang, W.; Hutchinson, R.A., PLP/SEC/NMR Study of Free Radical Copolymerization of Styrene and Glycidyl Methacrylate, Macromolecules 2008, 41: 9011-9018.
  • [11] Brar, A.S.;Yadav,A.; Hooda, S.,Characterization of glycidyl methacrylate/styrene copolymers by one- and two-dimensional NMR spectroscopy, Eur. Polym. J. 2002, 38: 1683-1690.
  • [12] Brar, A.S.; Goyal, A.K., Characterization and optimization of poly(glycidymethacrylate-co-styrene) synthesized by atom transfer radical polymerizaiton, Eur. Polym. J. 2008, 44: 4082–4091.
  • [13] Zhang, J.; Huang, H.; Wei, D.F.; Guan,Y.; Hu, F.Z.; Zheng, A.;Xıao, H., Further Studies on the Anionic Copolymerization of Styrene and Glycidyl Methacrylate in Toluene J. M. S., Part A: Pure and Appl. Chem. 2010, 47: 626–632.
  • [14] Yang, W.; Hu, J.; Tao, Z.; Li, L.; Wang, C.; Fu, S., Dispersion copolymerization of styrene and glycidyl methacrylate in polar solvents, Colloid Polym. Sci. 1999, 277: 446-451.
  • [15] Zhang, X.; Tanaka, H.,Copolymerization of Glycidyl Methacrylate with Styrene and Applications of the Copolymer as Paper-Strength Additive, J. Appl. Polym. Sci. 2001, 80: 334–339.
  • [16] Gao, H.; Elsabahy, M.; Giger, E.V.; Li, D.; Prud’homme, R. E.; Leroux, J.-C. Aminated linear and star-shape poly(glycerol methacrylate)s: synthesis and self-assembling properties. Biomacromolecules, 2010, 11: 889–895.
  • [17] De, S. ; Khan, A., Efficient synthesis of multifunctional polymersviathiol–epoxy “click” chemistry, Chem. Commun., 2012, 48: 3130-3132.
  • [18] Tsarevsky, N. V.; Bencherif, S. A.; Matyjaszewski, K., Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions, Macromolecules, 2007, 40: 4439–4445.
  • [19] Gao, H.; Jones, M.-C.; Tewari, P.; Ranger, M.; Leroux, J.-C., Star-shaped alkylated poly(glycerol methacrylate) reverse micelles: Synthesis and evaluation of their solubilizing properties in dichloromethane, J. Polym. Sci., Part A: Polym. Chem., 2007, 45: 2425–2435.
  • [20] Chang, S.-C.; Chiu, S.-J.; Hsu, C.-Y.; Chang, Y.; Liu, Y.-L., White-light fluorescent nanoparticles from self-assembly of rhodamine B-anchored amphiphilic poly(poly(ethylene glycol)methacrylate)-b-poly(glycidyl methacrylate) block copolymer Polymer, 2012, 53: 4399–4406.
  • [21] Chuo, T.-W.; Wei, T.-C.; Liu, Y.-L., Electrically driven self-healing polymers based on reversible guest–host complexation of β-cyclodextrin and ferrocene, J. Polym. Sci., Part A: Polym. Chem., 2013, 51: 3395–3403.
  • [22] Muzammil,E. M.; Khan, A.; Stuparu, M.C., Post-polymerization modification reactions of poly(glycidyl methacrylate)s, RSC Adv., 2017, 7: 55874–55884.
  • [23] Yılmaz, S.; Pekdemir, M.E.; Coşkun, M., Electrical and Thermal Properties of Bisphenol A Propoxylate Diglycidyl Ether-Piperazine Copolymer/Functionalized MWCNT Composites, J. Serbian Chem. Soc., incelemede.
  • [24] Anakabe, J.; Huici, A.M.Z.; Eceiza, A.; Arbelaiz, A., The effect of the addition of poly(styrene-co-glycidyl methacrylate) copolymer on the properties of polylactide/poly(methyl methacrylate) blend, J. Appl. Polym. Sci. 2016, 133: 43935.
  • [25] Nasirtabrizi, M.H.; Einalizadeh, S., A New Type of Poly(GMA) with Carbazole: Synthesis and Characterization, Hacettepe J. Biol. and Chem., 2017, 45 (2): 237–243.
  • [26] https://polymersource.com/dataSheet/P18993B-GMA.pdf
  • [27] https://www.polymersource.com/dataSheet/P9865A-GMA.pdf
  • [28] Wunderlieh, B., Thermal Analysis, Academic Press, NY 1990.
  • [29] Rieger, J., The Glass Transıtıon Temperature of Polystyrene, Journal of Thermal Analysis 1996, 46: 965-972.
  • [30] Othman, S.H.; Elbarbary, A.M.; Rashad, G.; Fasih, T. W., Radio-iodide uptake by modified poly (glycidyl methacrylate) as anion exchange resin Radiochimica Acta, 2017, 105(1): 75–84.
  • [31] Narasimhaswamy, T.; Sumathi, S.C.; Reddy, B.S.R., 4-Acetylphenyl acrylate-glycidyl methacrylate copolymers: synthesis, characterization and reactivity ratios, Eur. Polym. J. 1991, 27:255-271.
  • [32] Perez-Guerrero, A.; Lısperguer, J.; F. Orellana, F., Influence of Sılıca Nanopartıcles on The Thermomechanıcal Propertıes of Recycled Polystyrene, J. Chil. Chem. Soc., 2011, 56(4): 907-910.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Coşkun

Serpil Yılmaz Bu kişi benim

Yayımlanma Tarihi 31 Mayıs 2018
Gönderilme Tarihi 12 Mart 2018
Kabul Tarihi 12 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

IEEE M. Coşkun ve S. Yılmaz, “Poli(glisidil metakrilat-ko-stiren): Sentezi, karakterizasyonu, aminlenmiş MWCNT ile reaksiyonu ve termal inceleme”, ECJSE, c. 5, sy. 2, ss. 537–546, 2018, doi: 10.31202/ecjse.404638.