Araştırma Makalesi
BibTex RIS Kaynak Göster

Past to Present: Solar Chimney Power Technologies

Yıl 2019, , 220 - 235, 31.01.2019
https://doi.org/10.31202/ecjse.474363

Öz

Bu çalışma, bir güneş termal enerji sistemi olan güneş bacası güç teknolojisini tanıtmaktadır. Yenilenebilir enerji kaynaklarından biri olan bu sistem, güneş enerjisi ve rüzgar enerjisinin birlikte kullanıldığı bir enerji dönüşüm sistemidir. Bu sistemde, güneş enerjisi ile ısıtılan hava, baca emme etkisi ile yukarı doğru hareket ederek ve baca içerisine yerleştirilen türbini döndürerek elektrik enerjisinin üretimini sağlar. Bu derlemede, bu sistemin temel ilkeleri ve özellikleri tartışılmakta ve özellikle son yıllarda dünyanın çeşitli yerlerinde güneş bacaları ile ilgili yapılan deneysel ve teorik incelemelerdeki gelişmeler okuyucularla paylaşılmaktadır. Çalışma ile, bu konuyla ilgilenen okuyuculara güncel bilgi sağlanması amaçlanmıştır.

Kaynakça

  • [1] Backström, T. W., Harte, R., Höffer, R., Krätzig, W.B., Kröger, D.G., Niemann, H.J., Van Zijl, G.P.A.G., State and Recent Advances in Research and Design of Solar Chimney Power Plant Technology, VGB powertech. 88, 2008, pp. 64-71.
  • [2] Wengenmayr, R., Bührke, T., Renewable Energy, John Wiley & Sons, 2011.
  • [3] Ngo, C., Natowitz, J., Our Energy Future: Resources, Alternatives and the Environment, John Wiley & Sons, 2009, pp. 184-186.
  • [4] Schlaich, J., The Solar Chimney, Edition Axel Menges, Stuttgart, 1995, pp. 55.
  • [5] Haaf, W., Solar Chimneys - Part II: Preliminary Test Results from the Manzanares Pilot Plant, International Journal of Solar Energy 2, 1984, pp. 141–161.
  • [6] Krisst, R.J.K., Energy transfer system, Alternative Source Energy 63, 1983, pp. 8-11.
  • [7] Dhahri, A., Omri, A., A Review of solar Chimney Power Generation Technology, International Journal of Engineering and Advanced Technology 2, 2013, pp. 7-12.
  • [8] Ghorbani, B., Ghashami, M., Ashjaee, M., Hosseinzadegan, H., Electricity production with low grade heat in thermal power plants by design improvement of a hybrid dry cooling tower and a solar chimney concept, Energ. Convers. Manage. 94, 2015, pp. 1-11.
  • [9] Shahreza, A.R., Imani, H., Experimental and numerical investigation on an innovative solar chimney, Energ. Convers. Manage. 95, 2015, pp. 446-452.
  • [10] Ghalamchi, M., Kasaeian, A., Experimental study of geometrical and climate effects on the performance of a small solar chimney, Renewable and Sustainable Energy Reviews 43, 2015, pp. 425-431.
  • [11] Maia, C.B., Silva, G.O.C., Cabezas-Gómez, L., Hanriot, S.M., Ferreira, A.G, Energy and exergy analysis of the airflow inside a solar chimney, Renewable and Sustainable Energy Reviews 27, 2013, pp. 350-361.
  • [12] Zuo, L., Yuan, Y., Zheng, Z.Li.Y., Experimental research on solar chimneys integrated with seawater desalination under practical weather condition, Desalination 298, 2012, pp. 22-33.
  • [13] Kasaeian, A. B., Heidari, E.,. Vatan, S. N., Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant, Renewable and Sustainable Energy Reviews 15, 2011, pp. 5202-5206.
  • [14] M. Ghalamchi , A. Kasaeian , M. Ghalamchi , N. Fadaei , R. Daneshazarian, Optimizing of solar chimney performance using electrohydrodynamic system based on array geometry, Energy Conversion and Management 135 (2017) 261–269.
  • [15] Hussain H. Al-Kayiema, K.V. Sreejayaa, Aja O. Chikereba, Experimental and numerical analysis of the influence of inletconfiguration on the performance of a roof top solar chimney, Energy and Buildings 159 (2018) 89–98.
  • [16] A. Bouabidi , A. Ayadi , H. Nasraoui , Z. Driss , M. S. Abid, Study of solar chimney in Tunisia: Effect of the chimney configurations on the local flow characteristics, Energy & Buildings 169 (2018) 27–38.
  • [17] N. Fadaei , A. Kasaeian , A. Akbarzadeh , S. H. Hashemabadi, Experimental investigation of solar chimney with phase change material (PCM), Renewable Energy 123 (2018) 26-35.
  • [18] Pasumarthi, N., Sherif, S.A., Experimental and theoretical performance of a demonstration solar chimney model Part I: Mathematical model development, International Journal Energy Research 22, 1998, pp. 277-288.
  • [19] Bernardes, M. A., Voss, A., Weinrebe, G., Thermal and technical analyses of solar chimneys, Solar Energy 75, 2003, pp. 511-524.
  • [20] Backström, T.W., Fluri, T.P., Maximum fluid power condition in solar chimney power plants – An analytical approach, Solar Energy 80, 2006, pp. 1417–1423.
  • [21] Sakonidou, E. P., Karapantsios, T. D., Balouktsis, A. I., Chassapis, D., Modeling of the optimum tilt of a solar chimney for maximum air flow, Solar Energy 82, 2008, pp. 80–94.
  • [22] Ming, T., Liu, W., Pan, Y., Xu, G., Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer, Energ. Convers. Manage. 49, 2008, pp. 2872-2879.
  • [23] Tingzhen, M., Wei, L., Guoling, X., Yanbin, X., Xuhu, G., Yuan, P., Numerical simulation of the solar chimney power plant systems coupled with turbine, Renewable Energy 33, 2008, pp. 897-905.
  • [24] Fluri, T.P., Backström, T.W., Performance analysis of the power conversion unit of asolar chimney power plant, Solar Energy, 2008, pp. 999-1008.
  • [25] Petela, R., Thermodynamic study of a simplified model of the solar chimney power plant, Solar Energy 94, 2009, pp. 94-107.
  • [26] Maia, C.B., Ferreira, A.G., Valle, R.M., Cortez, M.F.B., Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney, Comput Fluids 38, 2009, pp. 625–636.
  • [27] Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F., Analysis of chimney height for solar chimney power plant, Applied Thermal Engineering 29, 2009, pp. 178–185.
  • [28] Bernardes, M.A., Backström, T.W., Kröger, D.G., Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors, Solar Energy 83, 2009, pp. 267-275.
  • [29] Fluri, T.P., Pretorius, J.P., Van Dyk, C., Backström, T.W., Kröger, D.G., Van Zijl, G.P.A.G., Cost analysis of solar chimney power plants, Solar Energy, 2009, pp. 246-256.
  • [30] Zhou, X., Yang, J., Ochieng, R., Xiao, X. Li. B., Numerical investigation of a plumefrom a power generating solar chimney in an atmospheric cross flow, Atmospheric Research 91, 2009, pp. 26-35.
  • [31] Ghorbani, B., Ghashami, M., Ashjaee, M., Hosseinzadegan, H., Electricity production with low grade heat in thermal power plants by design improvement of a hybrid dry cooling tower and a solar chimney concept, Energ. Convers. Manage. 94, 2015, pp. 1-11.
  • [32] Zou, Z., He, S., Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system, Energ. Convers. Manage. 95, 2015, pp. 59-68.
  • [33] Zandian, A., Ashjaee, M., The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept, Renewable Energy 51, 2013, pp. 465-473.
  • [34] Naraghi, M. H., Blanchard, S., Twenty-four hour simulation of solar chimneys, Energyand Buildings. 94, 2015, pp. 218-226.
  • [35] Guo, P., Li, J., Wang, Y., Annual performance analysis of the solar chimney power plant in Sinkiang, China, Energ. Convers. Manage. 87, 2014, pp. 392-399.
  • [36] Kasaeian, A., Ghalamchi, M., Simulation and optimization of geometric parameters of a solar chimney in Tehran, Energ. Convers. Manage. 83, 2014, pp. 28-34.
  • [37] Dehghani, S., Mohammadi, A. H., Optimum dimension of geometric parameters of solar chimney power plants – A multi-objective optimization approach, Solar Energy 105, 2014, pp. 603-612.
  • [38] Nizetic, S., Ninic, N., Klarin, B., Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region, Energy 33, 2008, pp. 1680-1690.
  • [39] Okoye, C.O., Atikol, U., A parametric study on the feasibility of solar chimney power plants in North Cyprus conditions, Energ. Convers. Manage. 80, 2014, pp. 178-187.
  • [40] Sangi, R., Amidpour, M., Hosseinizadeh, B., Modeling and numerical simulation of solar chimney power plants, Solar Energy 85, 2011, pp. 829-838.
  • [41] Gholamalizadeh, E., Kim, M., Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model, Renewable Energy 63, 2014, pp. 498-506.
  • [42] Cao, F., Li, H., Ma, O., Zhao, L., Design and simulation of a geothermal–solar combined chimney power plant, Energ. Convers. Manage. 84, 2014, pp. 186-195.
  • [43] Li, W., Wei, P., Zhou, X., A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant, Energ. Convers. Manage.79, 2014, pp. 104-113.
  • [44] Patel, S.K., Prasad, D., Ahmed, M.R., Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant, Energ. Convers. Manage. 77, 2014, pp. 424-431.
  • [45] Lebbi, M., Chergui, T., Boualit, H., Boutina, I., Influence of geometric parameters on the hydrodynamics control of solar chimney, International Journal of Hydrogen Energy 39, 2014, pp.15246-15255.
  • [46] Guo, P., Li, J., Wang, Y., Numerical simulations of solar chimney power plant with radiation model, Renewable Energy 62, 2014, pp. 24-30.
  • [47] Chen, K., Wang, J., Dai, Y., Liu, Y., Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney, Energ. Convers.Manage.80, 2014, pp. 78-86.
  • [48] Cao, F., Li, H., Zhao, L., Bao, T., Guo, L., Design and simulation of the solar chimney power plants with TRNSYS, Solar Energy 98, 2013, pp. 23-33.
  • [49] Guo, P., Li,J., Wang,Y., Liu,Y., Numerical analysis of the optimal turbine pressuredrop ratio in a solar chimney power plant, Solar Energy 98, 2013, pp. 42-48.
  • [50] Koonsrisuk, A., Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis, Solar Energy 98, 2013, pp. 78-84.
  • [51] Fasel, H.F., Meng, F., Shams, E., Gross, A., CFD analysis for solar chimney power plants, Solar Energy 98, 2013, pp. 12-22.
  • [52] Hamdan, M.O., Analysis of solar chimney power plant utilizing chimney discrete model, Renewable Energy 56, 2013, pp. 50-54.
  • [53] Cao, F., Zhao, L., Li, H., Guo, L., Performance analysis of conventional and sloped solar chimney power plants in China, Applied Thermal Engineering 50, 2013, pp. 582-592.
  • [54] Koonsrisuk, A., Chitsomboon, T., Effects of flow area changes on the potential of solar chimney power plants, Energy 51, 2013, pp. 400-406.
  • [55] Koonsrisuk, A., Chitsomboon, T., Mathematical modeling of solar chimney power plants, Energy 51, 2013, pp. 314-322.
  • [56] Gholamalizadeh, E., Mansouri, S. H., A comprehensive approach to design and improve a solar chimney power plant: A special case – Kerman Project, Applied Energy 102, 2013, pp. 975-982.
  • [57] Sangi, R., Performance evaluation of solar chimney power plants in Iran, Renewable and Sustainable Energy Reviews 16, 2012, pp. 704-710.
  • [58] Li, J., Guo, P., Wang, Y., Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines, Renewable Energy 47, 2012, pp. 21-28.
  • [59] Koonsrisuk, A., Mathematical modeling of sloped solar chimney power plants, Energy47, 2012, pp. 582-589.
  • [60] Hurtado, F.J., Kaiser, A.S., Zamora, B., Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant, Energy 47, 2012, pp. 213-224.
  • [61] Zuo, L., Zheng, Y., Li, Z., Sha, Y., Solar chimneys integrated with sea water desalination, Desalination 276, 2011, pp. 207-213.
  • [62] Saifi, N., Settou, N., Dokkar, B., Negrou, B., Chennouf, N., Experimental Study And Simulation Of Airflow In Solar Chimneys, Energy Procedia 18, 2012, pp. 1289-1298.
  • [63] Bilgen, E., Rheault, J., Solar chimney power plants for high latitudes, Solar Energy 79, 2005, pp. 449–458.
  • [64] Al-Kayiem, H.H., Sreejaya, K.V., Gilani, S.I., Mathematical analysis of the influence of the chimney height and collector area on the performance of a roof top solar chimney, Energy and Buildings 68, 2014, pp. 305-311.
  • [65] Panse, S.V., Jadhav, A.S., Gudekar, A.S., Joshi, J. B., Inclined solar chimney for power production, Energ. Convers. Manage. 52, 2011, pp. 3096-3102. [66] Cao, F., Zhao, L., Guo, L., Simulation of a sloped solar chimney power plant in Lanzhou, Energ. Convers. Manage. 52, 2011, pp. 2360-2366.
  • [67] Hamdan, M. O., Analysis of a solar chimney power plant in the Arabian Gulf region,Renewable Energy 36, 2011, pp. 2593-2598.
  • [68] Xu, G., Ming, T., Pan, Y., Meng, F., Zhou, C., Numerical analysis on the performance of solar chimney power plant system, Energ. Convers. Manage. 52, 2011, pp. 876-883.
  • [69] Bernardes, M. A., Backström, T.W., Evaluation of operational control strategies applicable to solar chimney power plants, Solar Energy 84, 2010, pp. 277-288.
  • [70] Koonsrisuk, A., Lorente, S., Bejan, A., Constructal solar chimney configuration, International Journal of Heat and Mass Transfer 53, 2010, pp. 327-333.
  • [71] Zhou, X., Wang, F., Fan, J., Ochieng, R.M., Performance of solar chimney powe plant in Qinghai-Tibet Plateau, Renewable and Sustainable Energy Reviews 14, 2010, pp. 2249-225
  • [72] Larbi, S., Bouhdjar, A., Chergui, T., Performance analysis of a solar chimney power plant in the southwestern region of Algeria, Renewable and Sustainable Energy Reviews 14, 2010, pp. 470-477.
  • [73] Nizetic, S., Klarin, B., A simplified analytical approach for evaluation of the optimal ratio of pressure drop across the turbine in solar chimney power plants, Applied Energy 87, 2010, pp. 587-591.
  • [74] Zuo, L., Ding, L., Chen, J, Xiaotian Zhou, Bofeng Xu, Zihan Liu, Comprehensive study of wind supercharged solar chimney power plant combined with seawater desalination, Solar Energy 166, 2018, pp. 59–70.
  • [75] Omar, A., Najm, S. Shaaban, Numerical investigation and optimization of the solar chimney collector performance and power density, Energy Conversion and Management 168, 2018, pp. 150–161.
  • [76] Aakash, H., Majid, A., Adeel, W, Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle , Energy 142, 2018,pp. 411-425.
  • [77] Ayadi, A., Bouabidi, A., Driss, Z., Abid, M.S, Experimental and numerical analysis of the collector roof height effect on the solar chimney performance, Renewable Energy 115, 2018, pp. 649-662.
  • [78] Cao, F., Liu, Q., Yang, T., Zhu, T., Bai, J., Zhao, L, Full-year simulation of solar chimney power plants in Northwest China, Renewable Energy 119, 2018, pp. 421-428.
  • [79] Rabehi, R., Chaker, A., Ming, T., Gong, T, Numerical simulation of solar chimney power plant adopting the fan model, Renewable Energy 126, 2018, pp. 1093-1101.
  • [80] Ahmed Ayadi, Haithem Nasraoui, Abdallah Bouabidi, Zied Driss, Moubarak Bsisa, Mohamed Salah Abid, Effect of the turbulence model on the simulation of the air flow in a solar chimney, International Journal of Thermal Sciences 130 (2018) 423–434.
  • [81] Hua, ZH., Luo, B., He, W., Hub, D., Ji, J., Ma, J, Performance study of a dual-function roof solar collector for Chinese traditional buildings application, Applied Thermal Engineering 128, 2018,pp. 179–188.
  • [82] Mostafa A.H. Abdelmohimen, Salem A. Algarni, Numerical investigation of solar chimney power plants performance for Saudi Arabia weather conditions, Sustainable Cities and Society 38, 2018, pp.1–8.

Geçmişten günümüze: Güneş Bacası Güç Teknolojileri

Yıl 2019, , 220 - 235, 31.01.2019
https://doi.org/10.31202/ecjse.474363

Öz

This study introduces the solar chimney power technology, which is a solar thermal energy system. One of the renewable energy resources, this system is an energy transformation system in which solar energy and wind energy are used together. In this system, the air that is heated with solar energy ensures the production of electric energy by moving upwards with the suction effect of the chimney and rotating the turbine that is placed inside the chimney. In this review, the main principles and characteristics of this system are discussed and the developments on the experimental and theoretical investigations carried out with regard to the solar chimneys around the world especially in recent years are shared with the readers. With the study, it is aimed to provide up-to-date information to readers who are interested in this subject.

Kaynakça

  • [1] Backström, T. W., Harte, R., Höffer, R., Krätzig, W.B., Kröger, D.G., Niemann, H.J., Van Zijl, G.P.A.G., State and Recent Advances in Research and Design of Solar Chimney Power Plant Technology, VGB powertech. 88, 2008, pp. 64-71.
  • [2] Wengenmayr, R., Bührke, T., Renewable Energy, John Wiley & Sons, 2011.
  • [3] Ngo, C., Natowitz, J., Our Energy Future: Resources, Alternatives and the Environment, John Wiley & Sons, 2009, pp. 184-186.
  • [4] Schlaich, J., The Solar Chimney, Edition Axel Menges, Stuttgart, 1995, pp. 55.
  • [5] Haaf, W., Solar Chimneys - Part II: Preliminary Test Results from the Manzanares Pilot Plant, International Journal of Solar Energy 2, 1984, pp. 141–161.
  • [6] Krisst, R.J.K., Energy transfer system, Alternative Source Energy 63, 1983, pp. 8-11.
  • [7] Dhahri, A., Omri, A., A Review of solar Chimney Power Generation Technology, International Journal of Engineering and Advanced Technology 2, 2013, pp. 7-12.
  • [8] Ghorbani, B., Ghashami, M., Ashjaee, M., Hosseinzadegan, H., Electricity production with low grade heat in thermal power plants by design improvement of a hybrid dry cooling tower and a solar chimney concept, Energ. Convers. Manage. 94, 2015, pp. 1-11.
  • [9] Shahreza, A.R., Imani, H., Experimental and numerical investigation on an innovative solar chimney, Energ. Convers. Manage. 95, 2015, pp. 446-452.
  • [10] Ghalamchi, M., Kasaeian, A., Experimental study of geometrical and climate effects on the performance of a small solar chimney, Renewable and Sustainable Energy Reviews 43, 2015, pp. 425-431.
  • [11] Maia, C.B., Silva, G.O.C., Cabezas-Gómez, L., Hanriot, S.M., Ferreira, A.G, Energy and exergy analysis of the airflow inside a solar chimney, Renewable and Sustainable Energy Reviews 27, 2013, pp. 350-361.
  • [12] Zuo, L., Yuan, Y., Zheng, Z.Li.Y., Experimental research on solar chimneys integrated with seawater desalination under practical weather condition, Desalination 298, 2012, pp. 22-33.
  • [13] Kasaeian, A. B., Heidari, E.,. Vatan, S. N., Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant, Renewable and Sustainable Energy Reviews 15, 2011, pp. 5202-5206.
  • [14] M. Ghalamchi , A. Kasaeian , M. Ghalamchi , N. Fadaei , R. Daneshazarian, Optimizing of solar chimney performance using electrohydrodynamic system based on array geometry, Energy Conversion and Management 135 (2017) 261–269.
  • [15] Hussain H. Al-Kayiema, K.V. Sreejayaa, Aja O. Chikereba, Experimental and numerical analysis of the influence of inletconfiguration on the performance of a roof top solar chimney, Energy and Buildings 159 (2018) 89–98.
  • [16] A. Bouabidi , A. Ayadi , H. Nasraoui , Z. Driss , M. S. Abid, Study of solar chimney in Tunisia: Effect of the chimney configurations on the local flow characteristics, Energy & Buildings 169 (2018) 27–38.
  • [17] N. Fadaei , A. Kasaeian , A. Akbarzadeh , S. H. Hashemabadi, Experimental investigation of solar chimney with phase change material (PCM), Renewable Energy 123 (2018) 26-35.
  • [18] Pasumarthi, N., Sherif, S.A., Experimental and theoretical performance of a demonstration solar chimney model Part I: Mathematical model development, International Journal Energy Research 22, 1998, pp. 277-288.
  • [19] Bernardes, M. A., Voss, A., Weinrebe, G., Thermal and technical analyses of solar chimneys, Solar Energy 75, 2003, pp. 511-524.
  • [20] Backström, T.W., Fluri, T.P., Maximum fluid power condition in solar chimney power plants – An analytical approach, Solar Energy 80, 2006, pp. 1417–1423.
  • [21] Sakonidou, E. P., Karapantsios, T. D., Balouktsis, A. I., Chassapis, D., Modeling of the optimum tilt of a solar chimney for maximum air flow, Solar Energy 82, 2008, pp. 80–94.
  • [22] Ming, T., Liu, W., Pan, Y., Xu, G., Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer, Energ. Convers. Manage. 49, 2008, pp. 2872-2879.
  • [23] Tingzhen, M., Wei, L., Guoling, X., Yanbin, X., Xuhu, G., Yuan, P., Numerical simulation of the solar chimney power plant systems coupled with turbine, Renewable Energy 33, 2008, pp. 897-905.
  • [24] Fluri, T.P., Backström, T.W., Performance analysis of the power conversion unit of asolar chimney power plant, Solar Energy, 2008, pp. 999-1008.
  • [25] Petela, R., Thermodynamic study of a simplified model of the solar chimney power plant, Solar Energy 94, 2009, pp. 94-107.
  • [26] Maia, C.B., Ferreira, A.G., Valle, R.M., Cortez, M.F.B., Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney, Comput Fluids 38, 2009, pp. 625–636.
  • [27] Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F., Analysis of chimney height for solar chimney power plant, Applied Thermal Engineering 29, 2009, pp. 178–185.
  • [28] Bernardes, M.A., Backström, T.W., Kröger, D.G., Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors, Solar Energy 83, 2009, pp. 267-275.
  • [29] Fluri, T.P., Pretorius, J.P., Van Dyk, C., Backström, T.W., Kröger, D.G., Van Zijl, G.P.A.G., Cost analysis of solar chimney power plants, Solar Energy, 2009, pp. 246-256.
  • [30] Zhou, X., Yang, J., Ochieng, R., Xiao, X. Li. B., Numerical investigation of a plumefrom a power generating solar chimney in an atmospheric cross flow, Atmospheric Research 91, 2009, pp. 26-35.
  • [31] Ghorbani, B., Ghashami, M., Ashjaee, M., Hosseinzadegan, H., Electricity production with low grade heat in thermal power plants by design improvement of a hybrid dry cooling tower and a solar chimney concept, Energ. Convers. Manage. 94, 2015, pp. 1-11.
  • [32] Zou, Z., He, S., Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system, Energ. Convers. Manage. 95, 2015, pp. 59-68.
  • [33] Zandian, A., Ashjaee, M., The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept, Renewable Energy 51, 2013, pp. 465-473.
  • [34] Naraghi, M. H., Blanchard, S., Twenty-four hour simulation of solar chimneys, Energyand Buildings. 94, 2015, pp. 218-226.
  • [35] Guo, P., Li, J., Wang, Y., Annual performance analysis of the solar chimney power plant in Sinkiang, China, Energ. Convers. Manage. 87, 2014, pp. 392-399.
  • [36] Kasaeian, A., Ghalamchi, M., Simulation and optimization of geometric parameters of a solar chimney in Tehran, Energ. Convers. Manage. 83, 2014, pp. 28-34.
  • [37] Dehghani, S., Mohammadi, A. H., Optimum dimension of geometric parameters of solar chimney power plants – A multi-objective optimization approach, Solar Energy 105, 2014, pp. 603-612.
  • [38] Nizetic, S., Ninic, N., Klarin, B., Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region, Energy 33, 2008, pp. 1680-1690.
  • [39] Okoye, C.O., Atikol, U., A parametric study on the feasibility of solar chimney power plants in North Cyprus conditions, Energ. Convers. Manage. 80, 2014, pp. 178-187.
  • [40] Sangi, R., Amidpour, M., Hosseinizadeh, B., Modeling and numerical simulation of solar chimney power plants, Solar Energy 85, 2011, pp. 829-838.
  • [41] Gholamalizadeh, E., Kim, M., Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model, Renewable Energy 63, 2014, pp. 498-506.
  • [42] Cao, F., Li, H., Ma, O., Zhao, L., Design and simulation of a geothermal–solar combined chimney power plant, Energ. Convers. Manage. 84, 2014, pp. 186-195.
  • [43] Li, W., Wei, P., Zhou, X., A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant, Energ. Convers. Manage.79, 2014, pp. 104-113.
  • [44] Patel, S.K., Prasad, D., Ahmed, M.R., Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant, Energ. Convers. Manage. 77, 2014, pp. 424-431.
  • [45] Lebbi, M., Chergui, T., Boualit, H., Boutina, I., Influence of geometric parameters on the hydrodynamics control of solar chimney, International Journal of Hydrogen Energy 39, 2014, pp.15246-15255.
  • [46] Guo, P., Li, J., Wang, Y., Numerical simulations of solar chimney power plant with radiation model, Renewable Energy 62, 2014, pp. 24-30.
  • [47] Chen, K., Wang, J., Dai, Y., Liu, Y., Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney, Energ. Convers.Manage.80, 2014, pp. 78-86.
  • [48] Cao, F., Li, H., Zhao, L., Bao, T., Guo, L., Design and simulation of the solar chimney power plants with TRNSYS, Solar Energy 98, 2013, pp. 23-33.
  • [49] Guo, P., Li,J., Wang,Y., Liu,Y., Numerical analysis of the optimal turbine pressuredrop ratio in a solar chimney power plant, Solar Energy 98, 2013, pp. 42-48.
  • [50] Koonsrisuk, A., Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis, Solar Energy 98, 2013, pp. 78-84.
  • [51] Fasel, H.F., Meng, F., Shams, E., Gross, A., CFD analysis for solar chimney power plants, Solar Energy 98, 2013, pp. 12-22.
  • [52] Hamdan, M.O., Analysis of solar chimney power plant utilizing chimney discrete model, Renewable Energy 56, 2013, pp. 50-54.
  • [53] Cao, F., Zhao, L., Li, H., Guo, L., Performance analysis of conventional and sloped solar chimney power plants in China, Applied Thermal Engineering 50, 2013, pp. 582-592.
  • [54] Koonsrisuk, A., Chitsomboon, T., Effects of flow area changes on the potential of solar chimney power plants, Energy 51, 2013, pp. 400-406.
  • [55] Koonsrisuk, A., Chitsomboon, T., Mathematical modeling of solar chimney power plants, Energy 51, 2013, pp. 314-322.
  • [56] Gholamalizadeh, E., Mansouri, S. H., A comprehensive approach to design and improve a solar chimney power plant: A special case – Kerman Project, Applied Energy 102, 2013, pp. 975-982.
  • [57] Sangi, R., Performance evaluation of solar chimney power plants in Iran, Renewable and Sustainable Energy Reviews 16, 2012, pp. 704-710.
  • [58] Li, J., Guo, P., Wang, Y., Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines, Renewable Energy 47, 2012, pp. 21-28.
  • [59] Koonsrisuk, A., Mathematical modeling of sloped solar chimney power plants, Energy47, 2012, pp. 582-589.
  • [60] Hurtado, F.J., Kaiser, A.S., Zamora, B., Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant, Energy 47, 2012, pp. 213-224.
  • [61] Zuo, L., Zheng, Y., Li, Z., Sha, Y., Solar chimneys integrated with sea water desalination, Desalination 276, 2011, pp. 207-213.
  • [62] Saifi, N., Settou, N., Dokkar, B., Negrou, B., Chennouf, N., Experimental Study And Simulation Of Airflow In Solar Chimneys, Energy Procedia 18, 2012, pp. 1289-1298.
  • [63] Bilgen, E., Rheault, J., Solar chimney power plants for high latitudes, Solar Energy 79, 2005, pp. 449–458.
  • [64] Al-Kayiem, H.H., Sreejaya, K.V., Gilani, S.I., Mathematical analysis of the influence of the chimney height and collector area on the performance of a roof top solar chimney, Energy and Buildings 68, 2014, pp. 305-311.
  • [65] Panse, S.V., Jadhav, A.S., Gudekar, A.S., Joshi, J. B., Inclined solar chimney for power production, Energ. Convers. Manage. 52, 2011, pp. 3096-3102. [66] Cao, F., Zhao, L., Guo, L., Simulation of a sloped solar chimney power plant in Lanzhou, Energ. Convers. Manage. 52, 2011, pp. 2360-2366.
  • [67] Hamdan, M. O., Analysis of a solar chimney power plant in the Arabian Gulf region,Renewable Energy 36, 2011, pp. 2593-2598.
  • [68] Xu, G., Ming, T., Pan, Y., Meng, F., Zhou, C., Numerical analysis on the performance of solar chimney power plant system, Energ. Convers. Manage. 52, 2011, pp. 876-883.
  • [69] Bernardes, M. A., Backström, T.W., Evaluation of operational control strategies applicable to solar chimney power plants, Solar Energy 84, 2010, pp. 277-288.
  • [70] Koonsrisuk, A., Lorente, S., Bejan, A., Constructal solar chimney configuration, International Journal of Heat and Mass Transfer 53, 2010, pp. 327-333.
  • [71] Zhou, X., Wang, F., Fan, J., Ochieng, R.M., Performance of solar chimney powe plant in Qinghai-Tibet Plateau, Renewable and Sustainable Energy Reviews 14, 2010, pp. 2249-225
  • [72] Larbi, S., Bouhdjar, A., Chergui, T., Performance analysis of a solar chimney power plant in the southwestern region of Algeria, Renewable and Sustainable Energy Reviews 14, 2010, pp. 470-477.
  • [73] Nizetic, S., Klarin, B., A simplified analytical approach for evaluation of the optimal ratio of pressure drop across the turbine in solar chimney power plants, Applied Energy 87, 2010, pp. 587-591.
  • [74] Zuo, L., Ding, L., Chen, J, Xiaotian Zhou, Bofeng Xu, Zihan Liu, Comprehensive study of wind supercharged solar chimney power plant combined with seawater desalination, Solar Energy 166, 2018, pp. 59–70.
  • [75] Omar, A., Najm, S. Shaaban, Numerical investigation and optimization of the solar chimney collector performance and power density, Energy Conversion and Management 168, 2018, pp. 150–161.
  • [76] Aakash, H., Majid, A., Adeel, W, Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle , Energy 142, 2018,pp. 411-425.
  • [77] Ayadi, A., Bouabidi, A., Driss, Z., Abid, M.S, Experimental and numerical analysis of the collector roof height effect on the solar chimney performance, Renewable Energy 115, 2018, pp. 649-662.
  • [78] Cao, F., Liu, Q., Yang, T., Zhu, T., Bai, J., Zhao, L, Full-year simulation of solar chimney power plants in Northwest China, Renewable Energy 119, 2018, pp. 421-428.
  • [79] Rabehi, R., Chaker, A., Ming, T., Gong, T, Numerical simulation of solar chimney power plant adopting the fan model, Renewable Energy 126, 2018, pp. 1093-1101.
  • [80] Ahmed Ayadi, Haithem Nasraoui, Abdallah Bouabidi, Zied Driss, Moubarak Bsisa, Mohamed Salah Abid, Effect of the turbulence model on the simulation of the air flow in a solar chimney, International Journal of Thermal Sciences 130 (2018) 423–434.
  • [81] Hua, ZH., Luo, B., He, W., Hub, D., Ji, J., Ma, J, Performance study of a dual-function roof solar collector for Chinese traditional buildings application, Applied Thermal Engineering 128, 2018,pp. 179–188.
  • [82] Mostafa A.H. Abdelmohimen, Salem A. Algarni, Numerical investigation of solar chimney power plants performance for Saudi Arabia weather conditions, Sustainable Cities and Society 38, 2018, pp.1–8.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fuat Tan 0000-0002-4194-5591

Sara Shojaeı 0000-0002-9643-8175

Yayımlanma Tarihi 31 Ocak 2019
Gönderilme Tarihi 22 Kasım 2018
Kabul Tarihi 15 Ocak 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE F. Tan ve S. Shojaeı, “Past to Present: Solar Chimney Power Technologies”, ECJSE, c. 6, sy. 1, ss. 220–235, 2019, doi: 10.31202/ecjse.474363.