Araştırma Makalesi
BibTex RIS Kaynak Göster

Energy Recovery and Greenhouse Gas Emission Reduction Potential of Bio-Waste in the Mediterranean Region of Turkey

Yıl 2019, , 482 - 490, 30.09.2019
https://doi.org/10.31202/ecjse.551780

Öz

Continuous demand for global power generation has increased the attention on renewable energy sources. Biogas is one of the viable options for conversion of organic waste materials into green power and valuable products. In this study, the impact of biogas production from agricultural residues (wheat straw, barley straw, corn stover, cotton residue, olive residue, banana peel, sugarcane bagasse, tomato residue) and municipal solid waste (MSW) on reduction of greenhouse gas (GHG) emissions in Mediterranean Region of Turkey (Antalya, Burdur, Isparta, Mersin, Adana, Hatay, Osmaniye and Kahramanmaraş) has estimated. The results revealed that the Region has 1942.6 million m3/year biogas production potential corresponding to 11.11 TWh energy generating capacity. Biogas generation in the Region has annual 27 million tons of COemission reduction potential to contribute 7.4 % reduction in total GHG emissions in Turkey. Bio-waste is a favorable renewable substitute to energy production from fossil fuels.


Kaynakça

  • Masebinu, S.O., Akinlabi, E.T., Muzenda, E., Aboyade, A.O., Mbohwa, C. “Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market”, Waste Management, 2018, 75, 236-250.
  • Wang, D., Ai, J., Shen, F., Yang, G., Zhang, Y., Deng, S., Zhang, J., Zeng, Y., Song, C. “Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost”, Bioresource Technology, 2017, 227, 286–296.
  • Bachmaier, H., Effenberger, M., Gronauer, A., Boxberger, J. “Changes in greenhouse gas balance and resource demand of biogas plants in southern Germany after a period of three years”, Waste Management & Research 2012, 31 (4), 368-375.
  • Moreda, I.L. “Biogas Potential of Uruguay. Renewable and Sustainable Energy Reviews”, 2016, 54, 1580-1591.
  • Wheeldon, I., Caners, C., Karan, K., Peppley, B. “Utilization of biogas generated from Ontario waste water treatment plants in solid oxide fuel cell systems: a process modeling study”, Int J Green Energy, 2007, 4 (2), 221–31.
  • Lyytimäki, J. “Renewable energy in the news: Environmental, economic, policy and technology discussion of biogas”, Sustainable Production and Consumption, 2018, 15, 65-73.
  • Yentekakis, I.V., Grammatiki, G. “Biogas Management: Advanced Utilization for Production of Renewable Energy and Added-value Chemical”, Frontiers in Environmental Science, 2017, 5, 1-18.
  • Rahman, K.M., Harder, M.K., Woodard, R. “Energy yield potentials from anaerobic digestion of common animal manure in Bangladesh”, Energy and Environment, 2018, 29(8), 1338-1353.
  • Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P. “The future of anaerobic digestion and biogas utilization”, Bioresource Technology, 2009, 100, 5478-5484.
  • Rao, V., Baral, S.S., Dey, R., Mutnuri, S. “Biogas generation potential by anaerobic digestion for sustainable energy development in India”, Renewable and Sustainable Energy Reviews, 2010, 14, 2086–2094.
  • EPA, 2005 Emission Facts: Metrics for Expressing Greenhouse Gas Emissions: Carbon Equivalents and Carbon Dioxide Equivalents. http://www.epa.gov/otaq/ climate/420f05002.htm
  • Ankathi, S.K., Potter, J.S., Shonnarda, D.R. “Carbon Footprint and Energy Analysis of Bio-CH4 from a Mixture of Food Waste and Dairy Manure in Denver, Colorado”, Environmental Progress & Sustainable Energy, 2018, 37 (3), 1101-1111.
  • Liu, X, Gao X, Wang W, Zheng L, Zhou Y, Sun Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy, 2012; 44: 463-468.
  • Massé DI, Talbot G, Gilbert Y. On farm biogas production: A method to reduce GHG emissions and develop more sustainable livestock operations. Animal Feed Science and Technology, 2011; 166–167: 436-445.
  • Szabo G, Fazekas I, Szabo S, Szabo G, Buday T, Paladi M, Kisari K, Kerenyi A. The carbon footprint of a biogas plant, Environmental Engineeering and Management Journal, 2014; 13: 2867-2884.
  • Madsen, M., Holm-Nielsen, J.B., Esbensen, K.H., Monitoring of anaerobic digestion processes: A review perspective”, Renewable and Sustainable Energy Reviews, 2011, 15, 3141-3155.
  • Akyürek, Z. “Potential of biogas energy from animal waste in the Mediterranean Region of Turkey”, Journal of Energy Systems, 2018, 2(4), 159-167.
  • Akyürek, Z., Akyüz, A.Ö., Güngör, A. “Optimizing the Tilt Angle of Solar Panels to Reduce Carbon Footprint: Case for the West Mediterranean Region of Turkey”. International Journal of Engineering, Design and Technology, 2019, 1(1), 10-15.
  • Akyürek, Z., Güngör, A., Akyüz, A.Ö. “Energy potential from gasification of agricultural residues in Burdur, Turkey”, Techno-Science, 2019, 2(1), 15-19.
  • Arthurson, V. “Closing the global energy and nutrient cycles through application of biogas residue to agricultural land - potential benefits and drawbacks”, Energies, 2009, 2, 226–242.
  • Turkish Statistical Institute (TUIK), 2018. www.tuik.gov.tr
  • Rajputa, A.A., Zeshan, Visvanathan, C. “Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw”, Journal of Environmental Management, 2018, 221, 45-52.
  • Dinuccio, E., Balsari, P., Gioelli, F., Menardo, S. “Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses”, Bioresource Technology, 2010, 101, 3780–3783.
  • Wang, Y., Li, G., Chi, M., Sun, Y., Zhang, J., Jiang, S., Cui, Z. “Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion” Bioresource Technology, 2018, 250, 328–336.
  • Zhang, H., Ning, Z., Khalid, H., Zhang, R., Liu, G., Chen, C. “Enhancement of methane production from Cotton Stalk using diferent pretreatment techniques” Scientific Reports, 2018, 8, 3463. DOI:10.1038/s41598-018-21413-x
  • Mustafa, A.M., Li, H., Radwan, A.A., Shenga, K., Chen, X. “Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production”, Bioresource Technology, 2018, 259, 54-60.
  • Valentia, F., Portoa, S.M.C., Selvaggi, R., Pecorino, B. “Evaluation of biomethane potential from by-products and agricultural residues co-digestion in southern Italy”, Journal of Environmental Management, 2018, 223, 834–840.
  • Odedina, M.J., Charnnok, B., Saritpongteeraka, K., Chaiprapat, S. “Effects of size and thermophilic pre-hydrolysis of banana peel during anaerobic digestion, and biomethanation potential of key tropical fruit wastes”, Waste Management 2017, 68, 128–138.
  • Oleszek, M., Tys, J., Wiącek, D., Król, A., Kuna., J. “The Possibility of Meeting Greenhouse Energy and CO2 Demands Through Utilisation of Cucumber and Tomato Residues” Bioenerg. Res., 2016, 9, 624–632.
  • Negi, S., Dhar, H., Hussain, A., Kumar, S. “Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study”, Bioresource Technology, 2018, 254, 139–144.
  • Hills, D.J., Roberts, D.W. “Anaerobic digestion of dairy manure and field crop residues Agricultural Wastes”, 1981, 3 (3), 179-189.
  • Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijanib, P. “Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production”, Renewable and Sustainable Energy Reviews, 2017,79,308–322.
  • Sun, L., Pope, P.B., Eijsink, V.G., Schnürer, A. “Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure”, Microb Biotechnol, 2015, 8, 815–27.
  • Liu, C.F., Yuan, X.Z., Zeng, G.M., Li, W.W., Li, J. “Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste”, Bioresource Technology, 2008, 99, 882–8.
  • Noorollahi, Y., Kheirrouz, M., Asl, H.F., Yousefi, H., Hajinezhad, A. “Biogas production potential from livestock manure in Iran”, Renewable and Sustainable Energy Reviews, 2015, 50, 748–754.
  • International Panel on Climate Change (IPCC) Report 2013. https://www.ipcc.ch/report/ar5/wg1/
  • Gürbüz, Ö., “Low carbon development pathways and priorities for Turkey (2015)” WWF-IPC, WWF-Turkey and Istanbul Policy Center, ISBN: 978-605-9903-05-9
  • Özer, B. “Biogas energy opportunity of Ardahan city of Turkey”, Energy, 2017, 139, 1144-1152.

Türkiye’nin Akdeniz Bölgesinde Biyo-Atıklardan Enerji Kazanımı ve Sera Gazı Emisyonlarının Azaltım Potansiyeli

Yıl 2019, , 482 - 490, 30.09.2019
https://doi.org/10.31202/ecjse.551780

Öz

Küresel enerji üretimi için sürekli olan talep, yenilenebilir enerji kaynaklarına olan ilgiyi arttırmıştır. Biyogaz, organik atık malzemelerin yeşil enerji ve değerli ürünlere dönüştürülmesi için uygun seçeneklerden biridir. Bu çalışmada, biyogaz üretiminin tarımsal artıklar (buğday samanı, arpa samanı, mısır sobası, pamuk artıkları, zeytin artıkları, muz kabuğu, şeker kamışı küspeleri, domates artıkları) ve belediye katı atıklarından (MSW) sera gazı emisyonu azaltımına etkisi Türkiye'nin Akdeniz Bölgesi (Antalya, Burdur, Isparta, Mersin, Adana, Hatay, Osmaniye ve Kahramanmaraş) tespit edilmiştir. Sonuçlar Bölge'nin 11.11 TWh enerji üretme kapasitesine karşılık gelen 1942.6 milyon m3/yıl biyogaz üretim potansiyeline sahip olduğunu ortaya koymaktadır. Bölge'deki biyogaz üretimi, Türkiye'deki toplam sera gazı emisyonunu % 7,4 oranında azalmaya katkıda bulunacak yıllık 27 milyon ton CO2 emisyonu azaltım potansiyeline sahiptir. Biyo-atık, fosil yakıtlardan elde edilen enerji üretimi için uygun bir yenilenebilir ikame kaynaktır.

Kaynakça

  • Masebinu, S.O., Akinlabi, E.T., Muzenda, E., Aboyade, A.O., Mbohwa, C. “Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market”, Waste Management, 2018, 75, 236-250.
  • Wang, D., Ai, J., Shen, F., Yang, G., Zhang, Y., Deng, S., Zhang, J., Zeng, Y., Song, C. “Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost”, Bioresource Technology, 2017, 227, 286–296.
  • Bachmaier, H., Effenberger, M., Gronauer, A., Boxberger, J. “Changes in greenhouse gas balance and resource demand of biogas plants in southern Germany after a period of three years”, Waste Management & Research 2012, 31 (4), 368-375.
  • Moreda, I.L. “Biogas Potential of Uruguay. Renewable and Sustainable Energy Reviews”, 2016, 54, 1580-1591.
  • Wheeldon, I., Caners, C., Karan, K., Peppley, B. “Utilization of biogas generated from Ontario waste water treatment plants in solid oxide fuel cell systems: a process modeling study”, Int J Green Energy, 2007, 4 (2), 221–31.
  • Lyytimäki, J. “Renewable energy in the news: Environmental, economic, policy and technology discussion of biogas”, Sustainable Production and Consumption, 2018, 15, 65-73.
  • Yentekakis, I.V., Grammatiki, G. “Biogas Management: Advanced Utilization for Production of Renewable Energy and Added-value Chemical”, Frontiers in Environmental Science, 2017, 5, 1-18.
  • Rahman, K.M., Harder, M.K., Woodard, R. “Energy yield potentials from anaerobic digestion of common animal manure in Bangladesh”, Energy and Environment, 2018, 29(8), 1338-1353.
  • Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P. “The future of anaerobic digestion and biogas utilization”, Bioresource Technology, 2009, 100, 5478-5484.
  • Rao, V., Baral, S.S., Dey, R., Mutnuri, S. “Biogas generation potential by anaerobic digestion for sustainable energy development in India”, Renewable and Sustainable Energy Reviews, 2010, 14, 2086–2094.
  • EPA, 2005 Emission Facts: Metrics for Expressing Greenhouse Gas Emissions: Carbon Equivalents and Carbon Dioxide Equivalents. http://www.epa.gov/otaq/ climate/420f05002.htm
  • Ankathi, S.K., Potter, J.S., Shonnarda, D.R. “Carbon Footprint and Energy Analysis of Bio-CH4 from a Mixture of Food Waste and Dairy Manure in Denver, Colorado”, Environmental Progress & Sustainable Energy, 2018, 37 (3), 1101-1111.
  • Liu, X, Gao X, Wang W, Zheng L, Zhou Y, Sun Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy, 2012; 44: 463-468.
  • Massé DI, Talbot G, Gilbert Y. On farm biogas production: A method to reduce GHG emissions and develop more sustainable livestock operations. Animal Feed Science and Technology, 2011; 166–167: 436-445.
  • Szabo G, Fazekas I, Szabo S, Szabo G, Buday T, Paladi M, Kisari K, Kerenyi A. The carbon footprint of a biogas plant, Environmental Engineeering and Management Journal, 2014; 13: 2867-2884.
  • Madsen, M., Holm-Nielsen, J.B., Esbensen, K.H., Monitoring of anaerobic digestion processes: A review perspective”, Renewable and Sustainable Energy Reviews, 2011, 15, 3141-3155.
  • Akyürek, Z. “Potential of biogas energy from animal waste in the Mediterranean Region of Turkey”, Journal of Energy Systems, 2018, 2(4), 159-167.
  • Akyürek, Z., Akyüz, A.Ö., Güngör, A. “Optimizing the Tilt Angle of Solar Panels to Reduce Carbon Footprint: Case for the West Mediterranean Region of Turkey”. International Journal of Engineering, Design and Technology, 2019, 1(1), 10-15.
  • Akyürek, Z., Güngör, A., Akyüz, A.Ö. “Energy potential from gasification of agricultural residues in Burdur, Turkey”, Techno-Science, 2019, 2(1), 15-19.
  • Arthurson, V. “Closing the global energy and nutrient cycles through application of biogas residue to agricultural land - potential benefits and drawbacks”, Energies, 2009, 2, 226–242.
  • Turkish Statistical Institute (TUIK), 2018. www.tuik.gov.tr
  • Rajputa, A.A., Zeshan, Visvanathan, C. “Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw”, Journal of Environmental Management, 2018, 221, 45-52.
  • Dinuccio, E., Balsari, P., Gioelli, F., Menardo, S. “Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses”, Bioresource Technology, 2010, 101, 3780–3783.
  • Wang, Y., Li, G., Chi, M., Sun, Y., Zhang, J., Jiang, S., Cui, Z. “Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion” Bioresource Technology, 2018, 250, 328–336.
  • Zhang, H., Ning, Z., Khalid, H., Zhang, R., Liu, G., Chen, C. “Enhancement of methane production from Cotton Stalk using diferent pretreatment techniques” Scientific Reports, 2018, 8, 3463. DOI:10.1038/s41598-018-21413-x
  • Mustafa, A.M., Li, H., Radwan, A.A., Shenga, K., Chen, X. “Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production”, Bioresource Technology, 2018, 259, 54-60.
  • Valentia, F., Portoa, S.M.C., Selvaggi, R., Pecorino, B. “Evaluation of biomethane potential from by-products and agricultural residues co-digestion in southern Italy”, Journal of Environmental Management, 2018, 223, 834–840.
  • Odedina, M.J., Charnnok, B., Saritpongteeraka, K., Chaiprapat, S. “Effects of size and thermophilic pre-hydrolysis of banana peel during anaerobic digestion, and biomethanation potential of key tropical fruit wastes”, Waste Management 2017, 68, 128–138.
  • Oleszek, M., Tys, J., Wiącek, D., Król, A., Kuna., J. “The Possibility of Meeting Greenhouse Energy and CO2 Demands Through Utilisation of Cucumber and Tomato Residues” Bioenerg. Res., 2016, 9, 624–632.
  • Negi, S., Dhar, H., Hussain, A., Kumar, S. “Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study”, Bioresource Technology, 2018, 254, 139–144.
  • Hills, D.J., Roberts, D.W. “Anaerobic digestion of dairy manure and field crop residues Agricultural Wastes”, 1981, 3 (3), 179-189.
  • Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijanib, P. “Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production”, Renewable and Sustainable Energy Reviews, 2017,79,308–322.
  • Sun, L., Pope, P.B., Eijsink, V.G., Schnürer, A. “Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure”, Microb Biotechnol, 2015, 8, 815–27.
  • Liu, C.F., Yuan, X.Z., Zeng, G.M., Li, W.W., Li, J. “Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste”, Bioresource Technology, 2008, 99, 882–8.
  • Noorollahi, Y., Kheirrouz, M., Asl, H.F., Yousefi, H., Hajinezhad, A. “Biogas production potential from livestock manure in Iran”, Renewable and Sustainable Energy Reviews, 2015, 50, 748–754.
  • International Panel on Climate Change (IPCC) Report 2013. https://www.ipcc.ch/report/ar5/wg1/
  • Gürbüz, Ö., “Low carbon development pathways and priorities for Turkey (2015)” WWF-IPC, WWF-Turkey and Istanbul Policy Center, ISBN: 978-605-9903-05-9
  • Özer, B. “Biogas energy opportunity of Ardahan city of Turkey”, Energy, 2017, 139, 1144-1152.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Zuhal Akyürek 0000-0003-3102-4278

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 10 Nisan 2019
Kabul Tarihi 12 Haziran 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE Z. Akyürek, “Energy Recovery and Greenhouse Gas Emission Reduction Potential of Bio-Waste in the Mediterranean Region of Turkey”, ECJSE, c. 6, sy. 3, ss. 482–490, 2019, doi: 10.31202/ecjse.551780.