Araştırma Makalesi
BibTex RIS Kaynak Göster

Shearlet Dönüşümü ve Görüntü İşleme Teknikleri Kullanılarak Kot Kumaşlar Üzerinde Gerçek Zamanlı Hata Tespiti

Yıl 2019, , 491 - 502, 30.09.2019
https://doi.org/10.31202/ecjse.553849

Öz

Tekstil sektörünün ara mamul maddesi olan kumaşlar,
farklı üretim teknikleri ile elde edilen ve temeli elyaf olan ürünlerdir. Tekstil sektöründe kumaş üretimindeki payı, üretim
çeşitliliği ve kullanma alanı göz önüne alındığında en geniş kumaş sınıfını
oluşturan dokuma kumaşlar, atkı ve çözgü ipliği denilen iki paralel iplik
dizisinin birbiriyle dik olarak kesişmesi sonucu oluşan bağlantıların
oluşturduğu örgülerdir. Dokuma teknolojisinde yaşanan gelişmeler sayesinde
oluşabilecek bazı kumaş hatalarının tamamen ortadan kaldırılması ya da
önlenebilmesi mümkün olsa da
günümüzde
hala kumaş üretimi esnasında hatalar oluşmaktadır.
Bu çalışmada görüntü
işleme tekniklerinden faydalanılarak dokuma kumaş üzerinde gerçek zamanlı hata
tespiti yapabilecek bir sistem geliştirilmiştir. Bu sistem yüksek çözünürlüklü
kamera vasıtası ile anlık kaydedilen dokuma kumaş görüntüleri üzerinde görüntü
işleme tekniklerinden Shearlet dönüşümü öznitelik çıkarma yöntemi kullanılarak
gerçek zamanlı dokuma kumaş hata kontrolünün yapılmasını sağlayan düzenekten
oluşmaktadır. Oluşturulan bu düzenekle yapılan gerçek zamanlı hata tespit
çalışmalarında bilindik kumaş hatası türlerinden çözgü kopuğu, atkı kopuğu,
delik, yırtık ve leke hatalarının başarılı bir şekilde tespiti yapılmıştır.

Kaynakça

  • Ngan, H. Y. T., Grantham, K. H. P., Nelson, H. C. Y., "Automated fabric defect detection-A review", Image And Vision Computing, 2011,29(7), 442-458.
  • Hanbay, K., Talu, M. F., Özgüven, Ö. M., "Fabric defect detection systems and methods-A systematic literature review", Optik, 2016,127(24), 11960-11973.
  • Ala, D. M.,"Dokuma Kumaş Hatalarının Görüntü Analizi Yöntemiyle Sayısallaştırılması", (Yüksek Lisans Tezi), Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, (2008).
  • Kumar, A., "Computer-Vision-Based Fabric Defect Detection: A Survey", IEEE Transactions on Industrial Electronics, 2008,55(1), 348-363.
  • Malek, A. S.,"Online Fabric Inspection by Image Processing Technology", (PhD Thesis), Mechanical Engineering. Haute Alsace University, Mulhouse, Sud Alsace, France, (2012).
  • Chan, C. H., Pang, G. K. H., "Fabric Defect Detection by Fourier Analysis", IEEE Transactions on Industrial Electronics, 2000,36(5), 1267-1276.
  • Pan, Z., He, N., Jiao, Z. "FFT used for fabric defect detection based on CUDA", 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) Chongqing, China, 2014-2017, (2017).
  • Bodnarova, A., Bennamoun, M., Latham, S., "Optimal Gabor Filters for Textile Flaw Detection", Pattern Recognition, 2002,35(12), 2973-2991.
  • Mak, K. L., Peng, P., Lau, H. Y. K. "Optimal morphological filter design for fabric defect detection", International Conference on Industrial Technology, Hong Kong, China., 799-804, (2005).
  • Han, R., Zhang, L. "Fabric Defect Detection Method Based on Gabor Filter Mask", WRI Global Congress on Intelligent Systems, Xiamen, China, 184-188, (2009).
  • Karayiannis, Y. A., Stojanovic, R., Mitropoulos, P., Koulamas, C., Stouraitis, T., Koubias, S., Papadopoulos, G. "Defect detection and classification on web textile fabric using multiresolution decomposition and neural networks", 6th IEEE International Conference on Electronics, Circuits and Systems, Pafos, Cyprus, 765-768, (1999).
  • Hu, M. C., Tsai, I. S., "Fabric Inspection Based on Best Wavelet Packet Bases.", Textile Research Journal, 2000,70(8), 663-670.
  • Ngan, H. Y. T., Grantham, K. H. P., Yung, S. P., Michael, K. N., "Wavelet based methods on patterned fabric defect detection", Pattern Recognition, 2005,38(4), 559-576.
  • Serdaroglu, A., Ertuzun, A., Ercil, A., "Defect detection in textile fabric images using subband domain subspace analysis", Pattern Recognition and Image Analysis, 2007,17(4), 663-674.
  • Liu, S. G., Qu, P. G. "Inspection of fabric defects based on wavelet analysis and BP neural network", International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 232-236, (2008).
  • Guan, S., Shi, X. "Fabric Defect Detection Based on Wavelet Decomposition with One Resolution Level", International Symposium on Information Science and Engineering, Shanghai, China, 281-285, (2008).
  • Cho, C. S., Chung, B. M., Park, M. J., "Development of Real-Time Vision-Based Fabric Inspection System", IEEE Transactions on Industrial Electronics, 2005,52(4), 1073-1079.
  • Guo, K., Kutyniok, G., Labate, D. "Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators", International Conference on the Interaction between Wavelets and Splines Athens, Greece, 189-201, (2005).
  • Häuser, S., Steidl, G., "Fast Finite Shearlet Transform: a tutorial".University of Kaiserslautern, Department of Mathematics,,Erişim Tarihi:12.01.2019, https://arxiv.org/abs/1202.1773
  • Kumar, A., "Neural network based detection of local textile defects", Pattern Recognition, 2003,37(7), 1645-1659.
  • Sağıroğlu, Ş., "Identifying Three Linear Systems Using Only Single Neural Model", Journal of Polytechnic, 2012,15(4), 191-198.
  • Kubat, C., "MATLAB: Yapay Zeka ve Mühendislik Uygulamaları", 4.Baskı, Abaküs Yayıncılık, İstanbul, (2019).
  • Gunasegaran, T., Cheah, Y. "Evolutionary cross validation", 8th International Conference on Information Technology (ICIT), Amman, Jordan, 89-95, (2017).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erdal Güvenoğlu 0000-0003-1333-5953

Muhammet Bağırgan Bu kişi benim 0000-0001-8756-5642

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 15 Nisan 2019
Kabul Tarihi 28 Haziran 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE E. Güvenoğlu ve M. Bağırgan, “Shearlet Dönüşümü ve Görüntü İşleme Teknikleri Kullanılarak Kot Kumaşlar Üzerinde Gerçek Zamanlı Hata Tespiti”, ECJSE, c. 6, sy. 3, ss. 491–502, 2019, doi: 10.31202/ecjse.553849.