Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Wear Performance of Different Amounts ZrO2 Reinforced Al-2Gr Matrix Composite Materials Produced by Mechanical Alloying Method

Yıl 2019, , 594 - 605, 30.09.2019
https://doi.org/10.31202/ecjse.560741

Öz

In this study, wear
behavior of composite materials produced by adding different amounts of ZrO2
to Al-2Gr matrix by mechanical alloying method was investigated. After adding
2% (vol.) graphite to the aluminum matrix, 4 different amounts (3%, 6%, 9%, and
12%) of ZrO2 were added. The mechanically alloyed composite powders
for 60 minutes were cold-pressed under 700 MPa pressure and green parts were
produced. The green parts produced were sintered at 600 °C
under argon for 120 minutes. The sintered ZrO2 reinforced
aluminum composite materials (AMCs) are characterized by the scanning electron
microscope, X-ray diffraction, and hardness and density measurements. Wear
tests were performed on a standard pin-on-disc wear testing device with three
different loads (10-20-30 N) at a sliding speed of 0.6 ms-1 and four
different sliding distances (
53, 72 and 94 m) according to ASTM G77
standard. As a result of the studies, the microhardness and density increases
as the amount of ZrO2 in the composite material increases. As a
result of the wear tests, the highest weight loss was obtained in the non-reinforced
Al-2Gr matrix alloy, while the lowest weight loss was obtained in 12% ZrO2
reinforced composite materials. However, it was observed that there was a
decrease in the friction coefficient with increasing amount of reinforcement.

Kaynakça

  • [1] Hassan, S.F., Gupta, M., Development of high strength magnesium based composites using elemental nickel particulates as reinforcement,bJournal of Materials Science, 2002, 37(12), 2467-2474.[2] Saravanan, R.A., Surappa, M.K., Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite, Materials Science and Engineering, 2000, A, 276(1-2), 108-116.[3] Girish, K.B., Shobha, B.N., Synthesis and mechanical properties of zirconium nano-reinforced with aluminium alloy matrix composites, Materials Today Proceedings, 2018, 5(1), 3008-3013.[4] Gupta, M., Lai, M.O., Saravanaranganathan, D., Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites, Journal of Materials Science, 2000, 35(9), 2155-2165. [5] Yamamoto, T., Sasamoto, H., Inagaki, M., Extrusion of Al based composites. Journal of Materials Science Letters, 2000, 19, 1053-1064.[6] Chawla, N., Shen, Y.L. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 2001, 3(6), 357-370.[7] Bagherzadeh, E.S., Dopita, M., Mütze, T., Peuker, U. A., Morphological and structural studies on Al reinforced by Al2O3 via mechanical alloying, Advanced Powder Technology, 2015, 26(2), 487-493.[8] Özyürek, D., Tekeli, S., Güral, A., Meyveci, A., Gürü, M., Effect of Al2O3 amount on microstructure and wear properties of Al-Al2O3 metal matrix composites prepared using mechanical alloying method, Powder Metallurgy and Metal Ceramics, 2010, 49(5-6), 289-294.[9] Girisha, K.B., Chittappa, H.C., Wear performance and hardness property of A356. 1 Aluminium alloy reinforced with zirconium oxide nano particle, International Journal of Engineering Sciences & Research Technology, 2014, 3(6), 725-731. [10] Wannasin, J., Flemings, M.C., Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process, Journal of Materials Processing Technology, 2005, 169(2), 143-149.[11] Rajan, T.P.D., Pillai, R.M., Pai, B.C., Reinforcement coatings and interfaces in aluminium metal matrix composites, Journal of Materials Science, 1998, 33(14), 3491-3503.[12] Hesabi, Z.R., Simchi, A., Reihani, S.S., Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites, Materials Science and Engineering, A, 2006, 428(1-2), 159-168.[13] Şimşek, İ., Şimşek, D., Özyürek, D., Production and characterization of Al-SiC composites prepared by mechanical milling and pressureless sintering, BEÜ Fen Bilimleri Dergisi, 2019, 8(1), 227-233.[14] Ay, H., Özyürek, D., Yıldırım, M., Bostan, B., The effects of B4C amount on hardness and wear behaviours of 7075-B4C composites produced by powder metallurgy method, Acta Physica Polonica, A, 2016, 129(4),565-568.[15] Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J., Ramli, M.I., Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy a review, Materials & Design, 2014, 55, 165-175.[16] Park, S., Vohs, J.M., Gorte, R. J., Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 2000, 404(6775), 265.[17] Li, Y., He, D., Cheng, Z., Su, C., Li, J., Zhu, Q., Effect of calcium salts on isosynthesis over ZrO2 catalysts, Journal of Molecular Catalysis A: Chemical, 2001, 175(1-2), 267-275.[18] Zhang, Q., Shen, J., Wang, J., Wu, G., Chen, L., Sol-gel derived ZrO2-SiO2 highly reflective coatings, International Journal of Inorganic Materials, 2000, 2(4), 319-323.[19] Piconi, C., Maccauro, G., Zirconia as a ceramic biomaterial, Biomaterials, 1999, 20(1), 1-25.[20] Rahaman, M.N., Gross, J.R., Dutton, R.E., Wang, H., Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications, Acta Materialia, 2006, 54(6), 1615-1621.[21] Gao, P., Meng, L.J., Dos Santos, M.P., Teixeira, V., Andritschky, M., Study of ZrO2-Y2O3 films prepared by rf magnetron reactive sputtering, Thin Solid Films, 2000, 377, 32-36.[22] Ames, W., Alpas, A.T., Wear mechanisms in hybrid composites of graphite-20 Pct SiC in A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg), Metallurgical and Materials Transactions A, 1995, 26(1), 85-98. [23] Kestursatya, M., Kim, J.K., Rohatgi, P.K., Wear performance of copper-graphite composite and a leaded copper alloy, Materials Science and Engineering: A, 2003, 339(1-2), 150-158.[24] Yang, J. B., Lin, C.B., Wang, T.C., Chu, H.Y., The tribological characteristics of A356, 2Al alloy/Gr (p) composites, Wear, 2004, 257(9-10), 941-952.[25] Baradeswaran, A., Perumal, A.E., Wear and mechanical characteristics of Al 7075/graphite composites, Composites Part B: Engineering, 2014, 56, 472-476.[26] Chu, H.S., Liu, K.S., Yeh, J.W., Damping behavior of in situ Al-(graphite, Al4C3) composites produced by reciprocating extrusion, Journal of Materials Research, 2001, 16(5), 1372-1380.[27] Ramachandra, M., Abhishek, A., Siddeshwar, P., Bharathi, V., Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy, Procedia Materials Science, 2015, 10, 212-219.[28] Baghchesara, M.A., Baharvandi, H.R., Abdizadeh, H, Investigation on mechanical properties and surfaces fracture of Al/ZrO2 composite, In International Conference on Smart Materials and Nanotechnology in Engineering (Vol. 6423, p. 642368). International Society for Optics and Photonics, 2008, January. [29] Mandal, A., Das, K., Das, S., Characterization of microstructure and properties of Al-Al3Zr-Al2O3 composite, Bulletin of Materials Science, 2016, 39(4), 913-924.[30] Arik, H., Production and characterization of in situ Al4C3 reinforced aluminum-based composite produced by mechanical alloying technique, Materials & Design, 2004, 25(1), 31-40[31] Alpas, A.T., Zhang, J., Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys (A356), Wear, 1992, 155(1), 83-104.[32] Özyürek, D., Kalyon, A., Yıldırım, M., Tuncay, T., Ciftci, I., Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using artificial neural networks, Materials & Design, 2014, 63, 270-277.[33] Ghandvar, H., Farahany, S., Idris, M. H., Daroonparvar, M., Dry sliding wear behavior of A356-ZrO2 metal matrix composite, In Advanced Materials Research (Vol. 1125, pp. 116-120). Trans Tech Publications, 2015.[34] Dursun, Ö., Tansel, T., Hatice, E., İbrahim, Ç., Synthesis, characterization and dry sliding wear behavior of in-situ formed TiAl3 precipitate reinforced A356 alloy produced by mechanical alloying method, Materials Research, 2015, 18(4), 813-820.[35] Ravindran, P., Manisekar, K., Kumar, S.V., Rathika, P, Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant, Materials & Design, 2013, 51, 448-456.[36] Omrani, E., Moghadam, A.D., Menezes, P.L., Rohatgi, P.K., Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency-a review, The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4), 325-346.

Mekanik Alaşımlama Yöntemi ile Üretilen Farklı Miktarlarda ZrO2 Takviyeli Al-2Gr Matrisli Kompozit Malzemelerin Aşınma Performanslarının İncelenmesi

Yıl 2019, , 594 - 605, 30.09.2019
https://doi.org/10.31202/ecjse.560741

Öz

Bu çalışmada,
mekanik alaşımlama yöntemi ile Al-2Gr matrise farklı miktarlarda ZrO2 ilave
edilerek üretilen kompozit malzemelerin farklı yükler altında aşınma
performansı incelenmiştir. Alüminyum matrise hacimce %2 grafit ilave edildikten
sonra, 4 farklı miktarda (%3, %6, %9 ve %12) ZrO2 ilave edilmiştir.
60 dakika süre ile mekanik alaşımlanan kompozit tozlar, 700 MPa basınçla soğuk
preslenerek green kompaktlar üretilmiştir. Üretilen green kompaktlar 600 °C
sıcaklıkta 2 saat sinterlenmiştir. Sinterlenen ZrO2 takviyeli
alüminyum kompozit malzemeler, taramalı elektron mikroskobu, X-ışın kırınımı,
sertlik ve yoğunluk ölçümü ile karakterize edilmiştir. Aşınma testleri standart
blok on ring aşınma test cihazında 3 farklı yük altında (5, 10 ve 20 N), 0,6 ms-1
kayma hızı ve üç farklı (53, 72 ve 94 m) kayma mesafesi
kullanılmıştır. Yapılan çalışmalar sonucunda, kompozit malzemelerin içerisinde
artan ZrO2 miktarı ile sertlik ve yoğunlukları artmaktadır. Aşınma
testleri sonucunda, en yüksek ağırlık kaybı, takviyesiz Al-2Gr matris alaşımda
elde edilirken, en düşük ağırlık kaybı ise %12 ZrO2 ilaveli kompozit
malzemelerde elde edilmiştir. Bununla birlikte artan takviye miktarı ile
sürtünme katsayısında ise azalma olduğu görülmüştür.

Kaynakça

  • [1] Hassan, S.F., Gupta, M., Development of high strength magnesium based composites using elemental nickel particulates as reinforcement,bJournal of Materials Science, 2002, 37(12), 2467-2474.[2] Saravanan, R.A., Surappa, M.K., Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite, Materials Science and Engineering, 2000, A, 276(1-2), 108-116.[3] Girish, K.B., Shobha, B.N., Synthesis and mechanical properties of zirconium nano-reinforced with aluminium alloy matrix composites, Materials Today Proceedings, 2018, 5(1), 3008-3013.[4] Gupta, M., Lai, M.O., Saravanaranganathan, D., Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites, Journal of Materials Science, 2000, 35(9), 2155-2165. [5] Yamamoto, T., Sasamoto, H., Inagaki, M., Extrusion of Al based composites. Journal of Materials Science Letters, 2000, 19, 1053-1064.[6] Chawla, N., Shen, Y.L. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 2001, 3(6), 357-370.[7] Bagherzadeh, E.S., Dopita, M., Mütze, T., Peuker, U. A., Morphological and structural studies on Al reinforced by Al2O3 via mechanical alloying, Advanced Powder Technology, 2015, 26(2), 487-493.[8] Özyürek, D., Tekeli, S., Güral, A., Meyveci, A., Gürü, M., Effect of Al2O3 amount on microstructure and wear properties of Al-Al2O3 metal matrix composites prepared using mechanical alloying method, Powder Metallurgy and Metal Ceramics, 2010, 49(5-6), 289-294.[9] Girisha, K.B., Chittappa, H.C., Wear performance and hardness property of A356. 1 Aluminium alloy reinforced with zirconium oxide nano particle, International Journal of Engineering Sciences & Research Technology, 2014, 3(6), 725-731. [10] Wannasin, J., Flemings, M.C., Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process, Journal of Materials Processing Technology, 2005, 169(2), 143-149.[11] Rajan, T.P.D., Pillai, R.M., Pai, B.C., Reinforcement coatings and interfaces in aluminium metal matrix composites, Journal of Materials Science, 1998, 33(14), 3491-3503.[12] Hesabi, Z.R., Simchi, A., Reihani, S.S., Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites, Materials Science and Engineering, A, 2006, 428(1-2), 159-168.[13] Şimşek, İ., Şimşek, D., Özyürek, D., Production and characterization of Al-SiC composites prepared by mechanical milling and pressureless sintering, BEÜ Fen Bilimleri Dergisi, 2019, 8(1), 227-233.[14] Ay, H., Özyürek, D., Yıldırım, M., Bostan, B., The effects of B4C amount on hardness and wear behaviours of 7075-B4C composites produced by powder metallurgy method, Acta Physica Polonica, A, 2016, 129(4),565-568.[15] Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J., Ramli, M.I., Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy a review, Materials & Design, 2014, 55, 165-175.[16] Park, S., Vohs, J.M., Gorte, R. J., Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 2000, 404(6775), 265.[17] Li, Y., He, D., Cheng, Z., Su, C., Li, J., Zhu, Q., Effect of calcium salts on isosynthesis over ZrO2 catalysts, Journal of Molecular Catalysis A: Chemical, 2001, 175(1-2), 267-275.[18] Zhang, Q., Shen, J., Wang, J., Wu, G., Chen, L., Sol-gel derived ZrO2-SiO2 highly reflective coatings, International Journal of Inorganic Materials, 2000, 2(4), 319-323.[19] Piconi, C., Maccauro, G., Zirconia as a ceramic biomaterial, Biomaterials, 1999, 20(1), 1-25.[20] Rahaman, M.N., Gross, J.R., Dutton, R.E., Wang, H., Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications, Acta Materialia, 2006, 54(6), 1615-1621.[21] Gao, P., Meng, L.J., Dos Santos, M.P., Teixeira, V., Andritschky, M., Study of ZrO2-Y2O3 films prepared by rf magnetron reactive sputtering, Thin Solid Films, 2000, 377, 32-36.[22] Ames, W., Alpas, A.T., Wear mechanisms in hybrid composites of graphite-20 Pct SiC in A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg), Metallurgical and Materials Transactions A, 1995, 26(1), 85-98. [23] Kestursatya, M., Kim, J.K., Rohatgi, P.K., Wear performance of copper-graphite composite and a leaded copper alloy, Materials Science and Engineering: A, 2003, 339(1-2), 150-158.[24] Yang, J. B., Lin, C.B., Wang, T.C., Chu, H.Y., The tribological characteristics of A356, 2Al alloy/Gr (p) composites, Wear, 2004, 257(9-10), 941-952.[25] Baradeswaran, A., Perumal, A.E., Wear and mechanical characteristics of Al 7075/graphite composites, Composites Part B: Engineering, 2014, 56, 472-476.[26] Chu, H.S., Liu, K.S., Yeh, J.W., Damping behavior of in situ Al-(graphite, Al4C3) composites produced by reciprocating extrusion, Journal of Materials Research, 2001, 16(5), 1372-1380.[27] Ramachandra, M., Abhishek, A., Siddeshwar, P., Bharathi, V., Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy, Procedia Materials Science, 2015, 10, 212-219.[28] Baghchesara, M.A., Baharvandi, H.R., Abdizadeh, H, Investigation on mechanical properties and surfaces fracture of Al/ZrO2 composite, In International Conference on Smart Materials and Nanotechnology in Engineering (Vol. 6423, p. 642368). International Society for Optics and Photonics, 2008, January. [29] Mandal, A., Das, K., Das, S., Characterization of microstructure and properties of Al-Al3Zr-Al2O3 composite, Bulletin of Materials Science, 2016, 39(4), 913-924.[30] Arik, H., Production and characterization of in situ Al4C3 reinforced aluminum-based composite produced by mechanical alloying technique, Materials & Design, 2004, 25(1), 31-40[31] Alpas, A.T., Zhang, J., Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys (A356), Wear, 1992, 155(1), 83-104.[32] Özyürek, D., Kalyon, A., Yıldırım, M., Tuncay, T., Ciftci, I., Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using artificial neural networks, Materials & Design, 2014, 63, 270-277.[33] Ghandvar, H., Farahany, S., Idris, M. H., Daroonparvar, M., Dry sliding wear behavior of A356-ZrO2 metal matrix composite, In Advanced Materials Research (Vol. 1125, pp. 116-120). Trans Tech Publications, 2015.[34] Dursun, Ö., Tansel, T., Hatice, E., İbrahim, Ç., Synthesis, characterization and dry sliding wear behavior of in-situ formed TiAl3 precipitate reinforced A356 alloy produced by mechanical alloying method, Materials Research, 2015, 18(4), 813-820.[35] Ravindran, P., Manisekar, K., Kumar, S.V., Rathika, P, Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant, Materials & Design, 2013, 51, 448-456.[36] Omrani, E., Moghadam, A.D., Menezes, P.L., Rohatgi, P.K., Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency-a review, The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4), 325-346.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İjlal Şimşek 0000-0001-6542-8567

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 5 Mayıs 2019
Kabul Tarihi 16 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE İ. Şimşek, “Mekanik Alaşımlama Yöntemi ile Üretilen Farklı Miktarlarda ZrO2 Takviyeli Al-2Gr Matrisli Kompozit Malzemelerin Aşınma Performanslarının İncelenmesi”, ECJSE, c. 6, sy. 3, ss. 594–605, 2019, doi: 10.31202/ecjse.560741.