Araştırma Makalesi
BibTex RIS Kaynak Göster

Drying Behaviors of Mint Leaves in Vacuum Freeze Drying

Yıl 2020, , 371 - 380, 31.05.2020
https://doi.org/10.31202/ecjse.646875

Öz

In this study, the drying behavior of mint which is one of the medicinal plants in freeze-drying was investigated. The products were dried at three different temperatures (40, 50, 60oC) and three different pressures (30, 50, 80 kPa) in a freeze-drying system designed as a prototype. Drying time is decreased with increasing cabin pressure. Optimal working conditions in the freeze-drying of mint leaves were determined as 30 kPa cabinet pressure and 50°C drying temperature. Four thin layer drying models, namely Newton model, Tow term exponential model, Logarithmic model, and Wang and Singh model are tested to predict the drying behavior. The Wang and Singh model has presented the best prediction that has an R2 value of 0.99687. 

Kaynakça

  • [1] Boggia, R., Zunin, P., Hysenaj, V., Bottino, A., Comite, A., Dehydration of Basil Leaves and Impact of Processing Composition, Processing and Impact on Active Components in Food, 645-653, 2015.
  • [2] Srinivasan, G., Muneeshwaran, M., Raja, B., Numerical Investigation of Heat and Mass Transfer Behavior of Freeze Drying of Milk in Vial, Heat and Mass Transfer, 1(9), 2019.
  • [3] Bourlès, E., de Lannoy, G., Scutellà, B., Fonseca, F., Trelea, I.C., Passot, S., Scale-Up of Freeze-Drying Cycles, the Use of Process Analytical Technology (PAT), and Statistical Analysis, 215-240, 2019.
  • [4] Kovacı, T., Dikmen, E., Şahin, A.Ş., Kurutma Sistemleri, Enerji Tüketimleri ve Ürün Kalitesine Etkileri ve Örnek Sistem Tasarımı, Journal of Technical Sciences, 8(2), 25-39, 2018.
  • [5] Hui, Y.H., Handbook of Fruits and Fruit Processing, Blackwell Publishing, 668, 2006.
  • [6] Wang, W., Wang, S., Pan, Y., Yang, J., Zhang, S., Chen, G., Porous Frozen Material Approach to Freeze-Drying of Instant Coffee, Drying Technology, 1-11, 2019.
  • [7] Younis, M., Abdelkarim, D., Zein El-Abdein, A., Kinetics and Mathematical Modeling of Infrared Thin-Layer Drying of Garlic Slices, Saudi J. Biol. Sci., 25(2), 332-338, 2018.
  • [8] Dziki, D., Polak, R., Rudy, S., Krzykowski, A., Gawlik-Dziki, U., Różyło, R., Miś, A., Combrzyński, M., Simulation of the Process Kinetics and Analysis of Physicochemical Properties in the Freeze Drying of Kale, International Agrophysics, 32(1), 49-56, 2018.
  • [9] Dikmen, E., Ayaz, M., Kovacı, T., Şencan Şahin, A., Mathematical Modelling of Drying Characteristics of Medical Plants in a Vacuum Heat Pump Dryer, International Journal of Ambient Energy, 1-8, 2018.
  • [10] Sharma, G.P., Verma, R.C., Pathare, P., Mathematical Modeling of Infrared Radiation Thin Layer Drying of Onion Slices, Journal of Food Engineering, 71(3), 282-286, 2005.
  • [11] Nireesha, G., Divya, L., Sowmya, C., Venkateshan, N., Babu, M.N., Lavakumar, V., Lyophilization/Freeze Drying-An Review, International Journal of Novel Trends in Pharmaceutical Sciences, 3(4), 2013.
  • [12] Shofian, N.M., Hamid, A.A., Osman, A., Saari, N., Anwar, F., Dek, M.S., Hairuddin, M.R., Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits, Int. J. Mol. Sci., 12(7), 4678-92, 2011.
  • [13] Kovacı, T., Dondurarak Kurutma Sistemi Tasarımı ve Tıbbi Aramotik Ürünlerin Kurutma Parametrelerinin Araştırılması, Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü, 2019
  • [14] Dhanushkodi, S., Wilson, V.H., Sudhakar, K., Mathematical Modeling of Drying Behavior of Cashew in a Solar Biomass Hybrid Dryer, Resource-Efficient Technologies, 3(4), 359-364, 2017.
  • [15] Benseddik, A., Azzi, A., Zidoune, M.N., Allaf, K., Mathematical Empirical Models of Thin-Layer Airflow Drying Kinetics of Pumpkin Slice, Engineering in Agriculture, Environment and Food, 11(4), 220-231, 2018.
  • [16] Argo, B.D., Sandra, S., Ubaidillah, U., Mathematical Modeling on the Thin Layer Drying Kinetics of Cassava Chips in a Multipurpose Convective-Type Tray Dryer Heated by A Gas Burner, Journal of Mechanical Science and Technology, 32(7), 3427-3435, 2018.
  • [17] Jian, F., Jayas, D.S., Characterization of Isotherms and Thin-Layer Drying of Red Kidney Beans, Part I, Choosing Appropriate Empirical and Semitheoretical Models, Drying Technology, 1-11, 2018.
  • [18] Mitra, J., Shrivastava, S.L., Srinivasa Rao, P., Vacuum Dehydration Kinetics of Onion Slices, Food and Bioproducts Processing, 89(1), 1-9, 2011.
  • [19] Artnaseaw, A., Theerakulpisut, S., Benjapiyaporn, C., Drying Characteristics of Shiitake Mushroom and Jinda Chili During Vacuum Heat Pump Drying, Food and Bioproducts Processing, 88(2-3), 105-114, 2010.

Vakumlu Dondurma Kurutmada Nane Yapraklarının Kuruma Davranışları

Yıl 2020, , 371 - 380, 31.05.2020
https://doi.org/10.31202/ecjse.646875

Öz

Bu çalışmada, dondurarak kurutma fırınında kurutulan nanenin kuruma davranışı incelenmiştir. Ürünler prototip olarak tasarlanan bir dondurarak kurutma sisteminde üç farklı sıcaklıkta (40, 50, 60oC) ve üç farklı basınçta (30, 50, 80 kPa) kurutulmuştur. Ürünlerin kuruma süresi, fırın basıncının artmasıyla azalmıştır. Nane yapraklarının dondurularak kurutulmasında optimum çalışma koşulları, 30 kPa basınç ve 50 ° C kurutma sıcaklığı olarak belirlenmiştir. Kurutma davranışını tahmin etmek için Newton modeli, Tow term üstel modeli, Logaritmik modeli ve Wang ve Singh modeli olmak üzere dört ince tabaka kurutma modeli test edilmiştir. Wang ve Singh modeli, 0.99687’lik bir R2 değeriyle en iyi tahmin modeli olmuştur.

Kaynakça

  • [1] Boggia, R., Zunin, P., Hysenaj, V., Bottino, A., Comite, A., Dehydration of Basil Leaves and Impact of Processing Composition, Processing and Impact on Active Components in Food, 645-653, 2015.
  • [2] Srinivasan, G., Muneeshwaran, M., Raja, B., Numerical Investigation of Heat and Mass Transfer Behavior of Freeze Drying of Milk in Vial, Heat and Mass Transfer, 1(9), 2019.
  • [3] Bourlès, E., de Lannoy, G., Scutellà, B., Fonseca, F., Trelea, I.C., Passot, S., Scale-Up of Freeze-Drying Cycles, the Use of Process Analytical Technology (PAT), and Statistical Analysis, 215-240, 2019.
  • [4] Kovacı, T., Dikmen, E., Şahin, A.Ş., Kurutma Sistemleri, Enerji Tüketimleri ve Ürün Kalitesine Etkileri ve Örnek Sistem Tasarımı, Journal of Technical Sciences, 8(2), 25-39, 2018.
  • [5] Hui, Y.H., Handbook of Fruits and Fruit Processing, Blackwell Publishing, 668, 2006.
  • [6] Wang, W., Wang, S., Pan, Y., Yang, J., Zhang, S., Chen, G., Porous Frozen Material Approach to Freeze-Drying of Instant Coffee, Drying Technology, 1-11, 2019.
  • [7] Younis, M., Abdelkarim, D., Zein El-Abdein, A., Kinetics and Mathematical Modeling of Infrared Thin-Layer Drying of Garlic Slices, Saudi J. Biol. Sci., 25(2), 332-338, 2018.
  • [8] Dziki, D., Polak, R., Rudy, S., Krzykowski, A., Gawlik-Dziki, U., Różyło, R., Miś, A., Combrzyński, M., Simulation of the Process Kinetics and Analysis of Physicochemical Properties in the Freeze Drying of Kale, International Agrophysics, 32(1), 49-56, 2018.
  • [9] Dikmen, E., Ayaz, M., Kovacı, T., Şencan Şahin, A., Mathematical Modelling of Drying Characteristics of Medical Plants in a Vacuum Heat Pump Dryer, International Journal of Ambient Energy, 1-8, 2018.
  • [10] Sharma, G.P., Verma, R.C., Pathare, P., Mathematical Modeling of Infrared Radiation Thin Layer Drying of Onion Slices, Journal of Food Engineering, 71(3), 282-286, 2005.
  • [11] Nireesha, G., Divya, L., Sowmya, C., Venkateshan, N., Babu, M.N., Lavakumar, V., Lyophilization/Freeze Drying-An Review, International Journal of Novel Trends in Pharmaceutical Sciences, 3(4), 2013.
  • [12] Shofian, N.M., Hamid, A.A., Osman, A., Saari, N., Anwar, F., Dek, M.S., Hairuddin, M.R., Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits, Int. J. Mol. Sci., 12(7), 4678-92, 2011.
  • [13] Kovacı, T., Dondurarak Kurutma Sistemi Tasarımı ve Tıbbi Aramotik Ürünlerin Kurutma Parametrelerinin Araştırılması, Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü, 2019
  • [14] Dhanushkodi, S., Wilson, V.H., Sudhakar, K., Mathematical Modeling of Drying Behavior of Cashew in a Solar Biomass Hybrid Dryer, Resource-Efficient Technologies, 3(4), 359-364, 2017.
  • [15] Benseddik, A., Azzi, A., Zidoune, M.N., Allaf, K., Mathematical Empirical Models of Thin-Layer Airflow Drying Kinetics of Pumpkin Slice, Engineering in Agriculture, Environment and Food, 11(4), 220-231, 2018.
  • [16] Argo, B.D., Sandra, S., Ubaidillah, U., Mathematical Modeling on the Thin Layer Drying Kinetics of Cassava Chips in a Multipurpose Convective-Type Tray Dryer Heated by A Gas Burner, Journal of Mechanical Science and Technology, 32(7), 3427-3435, 2018.
  • [17] Jian, F., Jayas, D.S., Characterization of Isotherms and Thin-Layer Drying of Red Kidney Beans, Part I, Choosing Appropriate Empirical and Semitheoretical Models, Drying Technology, 1-11, 2018.
  • [18] Mitra, J., Shrivastava, S.L., Srinivasa Rao, P., Vacuum Dehydration Kinetics of Onion Slices, Food and Bioproducts Processing, 89(1), 1-9, 2011.
  • [19] Artnaseaw, A., Theerakulpisut, S., Benjapiyaporn, C., Drying Characteristics of Shiitake Mushroom and Jinda Chili During Vacuum Heat Pump Drying, Food and Bioproducts Processing, 88(2-3), 105-114, 2010.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuğba Kovacı 0000-0002-0974-1660

Erkan Dikmen 0000-0002-6804-8612

Arzu Şencan Şahin

Yayımlanma Tarihi 31 Mayıs 2020
Gönderilme Tarihi 14 Kasım 2019
Kabul Tarihi 5 Şubat 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE T. Kovacı, E. Dikmen, ve A. Şencan Şahin, “Drying Behaviors of Mint Leaves in Vacuum Freeze Drying”, ECJSE, c. 7, sy. 2, ss. 371–380, 2020, doi: 10.31202/ecjse.646875.