Araştırma Makalesi
BibTex RIS Kaynak Göster

A Numerical Approach to Estimate the Tensile Strength of Structural Lightweight Concrete

Yıl 2020, , 690 - 699, 31.05.2020
https://doi.org/10.31202/ecjse.690882

Öz

Since lightweight concrete has many advantages over traditional concrete, it is of great importance for the building industry to investigate more and examine its mechanical properties. It is considered that it will be very useful to use lightweight concretes in special concrete class if they have sufficient strength properties. Structural lightweight concrete can be produced from different lightweight aggregates. Expanded clay aggregate, which is one of them, is thought to have an important place in the production of structural light concrete with its high reserve and easy availability. At the same time, structural lightweight concrete can improve the properties of structures such as earthquake resistance and thermal insulation. The aim of this study; a series of concrete specimens produced with different mixing ratios containing lightweight expanded clay aggregate is to develop a numerical model using the tensile strength test results in the literature. For this purpose, the studies on structural lightweight concrete have been investigated in detail in the literature. With this numerical model, it is hoped that the tensile strength can be easily calculated depending on the content of cement, aggregate, powder/filler, silica fume, water, lightweight expanded clay aggregate and super plasticizer. In this context, the parameters affecting tensile strength were determined. The effects of these parameters on tensile strength were interpreted with related graphics. In the numerical model developed in this study, tensile strength affected by the related parameters is included as output. As a result; with the numerical model developed using nonlinear statistical analysis, it is planned to develop a practical equation with high precision that can be easily used by application engineers.

Kaynakça

  • [1] ASTM C330-69, Standard Specification for lightweight aggregates for structures concrete.
  • [2] TS 2511. Mix design of structural lightweight concrete. T.S.E, Ankara, 1977. (in Turkish).
  • [3] Çetmeli, E. New German Reinforced Concrete Specification (DIN 1045, 1972), Uluğ Bookstore, Istanbul, 1974. (in Turkish).
  • [4] Kalkan, Ş. O., and Gündüz, L., Effect of Porous Aggregate Size on the Techno-Mechanical Properties of Cementless Lightweight Mortars, El-Cezeri Journal of Science and Engineering, 2018, 5(1), 168-175.
  • [5] Seyhan, İ. Expansion clays, eighth five-year development plan, mining specialization commission report industrial raw materials subcommittee building materials III, 2001 (in Turkish).
  • [6] Yıldırım, K., Sümer, M., and Subaşı, S., Investigation of the Availability of Granulated Hazelnut Shells in the Production of Lightweight Concrete, El-Cezeri Journal of Science and Engineering, 2018, 5(2), 501-511 (in Turkish).
  • [7] Lo T. Y., Tang W. C., and Cui H. Z., The effects of aggregate properties on lightweight concrete, Building and Environment, 2007, 42, 3025–3029.
  • [8] Gündüz, L., Şapcı, N., Bekar, M., and Yorgun, S. Utilization of expanded clay as lightweight aggregate. Journal of Clay Science and Technology, Kibited, 2006, 1(2), pp. 115-121 (in Turkish).
  • [9] Lo, T. Y., Cui, H. Z., Tang, W. C., and Leung, W. M. The effect of aggregate absorption on pore area at interfacial zone of lightweight concrete. Construction and Building Materials, 2008, Vol. 22, pp. 623 – 628.
  • [10] Bartolini, R., Filippozzi, S., Princi, E., Schenone, C., and Vicini, S. Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin. Applied Clay Science, 2010, Vol. 48, pp. 460 – 465.
  • [11] Bogas, J.A. and Gomes, A., and Pereira, M. F. C. Self-compacting lightweight concrete produced with expanded clay aggregate. Construction and Building Materials, 2012, Vol. 35, pp. 1013 – 1022.
  • [12] Costa, H., Julio, E., and Lourenço, J. New approach for shrinkage prediction of high-strength lightweight aggregate concrete. Construction and Building Materials, 2012, Vol. 35, pp. 84 – 91.
  • [13] Uglyanitsa, A. V., Gilyazidinova, N. V., Zhikharev, A. A., and Kargin, A. A. Study of reinforcement corrosion in expanded clay concrete. HBRC Journal. 2014.
  • [14] Yang, K. H., Kim, G. H., and Choi, Y. H. An initial trial mixture proportioning procedure for structural lightweight aggregate concrete. Construction and Building Materials, 2014, Vol. 55, pp. 431 – 439.
  • [15] Tunç, E. T., Alyamaç, K. E., Ragıp, İNCE and Ulucan, Z. Ç. Investigation of mechanical properties of high-performance lightweight concrete with pumice aggregate. Engineering Sciences, 2018, 13(4), 344-353.
  • [16] Tunc, E. T., Saglam, R.N., Ulucan, M., Demir, T., Ulucan, Z.Ç. and Alyamac, K.E. A Preliminary Mix Design For Structural Lightweight Concrete Produced With LECA. International Civil Engineering and Architecture Conference (ICEARC 2019), 2019.
  • [17] Saglam, R.N., Tunc, E. T., Demir, T., Ulucan, M. and Alyamac, K.E. Structural Lightweight Concrete Produced With Perlite Aggregate – A Preliminary Mix Design. International Civil Engineering and Architecture Conference (ICEARC 2019), 2019.
  • [18] ACI 213R-03. Guide for structural lightweight-aggregate concrete. ACI Manual of Concrete Practice, Part 1: Materials and General Properties of Concrete. American Concrete Institute, Farmington Hills, Michigan, 2003.
  • [19] Kok, S. C., and Min-Hong, Z. Water Permeability and Chloride Penetrability of High-Strength Lightweight Aggregate Concrete, Cement and Concrete Research, 2002, No 32, pp. 639-645.
  • [20] Sari, D., and Paşamehmetoğlu, A.G. The Effects of Gradation and Admixture on the Pumice Lightweight Aggregate Concrete. Cement and Concrete Research, 2005, No. 35(5), 936-942.
  • [21] Kaldı, C. Structural lightweight concrete design and its utilization in multi-story buildings. Master thesis, Ege University, Institute of Science and Technology, İzmir, 2011 (in Turkish).
  • [22] Arıöz, O., Kılınç, K., Karasu, B., Kaya, G., Arslan, G., Tuncan, M., Tuncan A., Korkut, M., and Kıvrak, S. A preliminary on the properties of lightweight expanded clay aggregate, Journal of the Australian Ceramics Society, 2008, 44(1), 23-30.
  • [23] Chandra, S. and Berntsson, L. Lightweight Aggregate Concrete. Noyes Publications, USA, 2002, 1-430.
  • [24] Statsoft, I. N. C. Statistica. Data analysis software system. Version, 8, 2001.
  • [25] Alduaij, J., Alshaleh, K., Haque, M. N., and Ellaithy, K. Lightweight concrete in hot coastal areas. Cement and Concrete Composites, 1999, 21(5-6), 453-458.
  • [26] Karamloo, M., Mazloom, M., and Payganeh, G. Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete. Construction and Building Materials, 2016, 123, 508-515.
  • [27] Sajedi, F., and Shafigh, P. High-strength lightweight concrete using leca, silica fume, and limestone. Arabian Journal for Science and Engineering, 2012, 37(7), 1885-1893.
  • [28] Tunc, E. T. Recycling of marble waste: A review based on strength of concrete containing marble waste. Journal of environmental management, 2019, 231, 86-97.
  • [29] Brostow, W., and Uygunoğlu, T., Influence of chemical admixture content particle and grade on viscosity of self-leveling mortar, El-Cezerî Journal of Science and Engineering, 2014, 1(2), 12-21.

Yapısal Hafif Betonun Çekme Dayanımına Sayısal Bir Yaklaşım

Yıl 2020, , 690 - 699, 31.05.2020
https://doi.org/10.31202/ecjse.690882

Öz

Hafif betonun geleneksel betona göre birçok avantajı olduğundan dolayı daha çok araştırılması ve mekanik özelliklerinin incelenmesi inşaat sektörü açısından büyük bir önem taşımaktadır. Özel beton sınıfına giren hafif betonların yeterli dayanım özelliklerine sahip olması durumunda, yapılarda kullanımının çok faydalı olacağı düşünülmektedir. Yapısal hafif beton, farklı hafif agregalardan imal edilebilmektedir. Bunlardan biri olan genleştirilmiş kil agregasının (LECA), rezervinin çok fazla olması ve kolay elde edilebilirliği ile yapısal hafif beton üretiminde önemli bir yere sahip olduğu düşünülmektedir. Aynı zamanda yapısal hafif beton ile yapıların, depreme karşı dayanıklılık ve ısı yalıtımı gibi özelliklerinin de iyileştirilmesi sağlanabilmektedir. Bu çalışmanın amacı; LECA içeren farklı karışım oranları ile üretilen bir dizi beton numunenin, literatürdeki çekme dayanımı deney sonuçları kullanarak sayısal bir model geliştirmektir. Bu amaçla literatürde yapısal hafif beton üzerine yapılan çalışmalar detaylı bir şekilde incelenmiştir. Geliştirilen bu model ile çimento, agrega, bağlayıcı, silis dumanı, su, LECA ve katkı içeriğine bağlı olarak çekme dayanımının kolayca hesaplanabileceği umut edilmektedir. Bu kapsamda, çekme dayanımını etkileyen parametreler belirlenmiştir. Bu parametrelerin çekme dayanımına etkileri ilgili grafiklerle yorumlanmıştır. Bu çalışmada geliştirilen sayısal modelde, ilgili parametrelerin etkilediği çekme dayanımı çıktı olarak yer almaktadır. Sonuç olarak; doğrusal olmayan istatistiksel analiz kullanılarak geliştirilen sayısal model ile uygulama mühendisleri tarafından kolaylıkla kullanılabilecek pratik ve yüksek hassasiyetli denklem geliştirilmesi planlanmıştır. 

Kaynakça

  • [1] ASTM C330-69, Standard Specification for lightweight aggregates for structures concrete.
  • [2] TS 2511. Mix design of structural lightweight concrete. T.S.E, Ankara, 1977. (in Turkish).
  • [3] Çetmeli, E. New German Reinforced Concrete Specification (DIN 1045, 1972), Uluğ Bookstore, Istanbul, 1974. (in Turkish).
  • [4] Kalkan, Ş. O., and Gündüz, L., Effect of Porous Aggregate Size on the Techno-Mechanical Properties of Cementless Lightweight Mortars, El-Cezeri Journal of Science and Engineering, 2018, 5(1), 168-175.
  • [5] Seyhan, İ. Expansion clays, eighth five-year development plan, mining specialization commission report industrial raw materials subcommittee building materials III, 2001 (in Turkish).
  • [6] Yıldırım, K., Sümer, M., and Subaşı, S., Investigation of the Availability of Granulated Hazelnut Shells in the Production of Lightweight Concrete, El-Cezeri Journal of Science and Engineering, 2018, 5(2), 501-511 (in Turkish).
  • [7] Lo T. Y., Tang W. C., and Cui H. Z., The effects of aggregate properties on lightweight concrete, Building and Environment, 2007, 42, 3025–3029.
  • [8] Gündüz, L., Şapcı, N., Bekar, M., and Yorgun, S. Utilization of expanded clay as lightweight aggregate. Journal of Clay Science and Technology, Kibited, 2006, 1(2), pp. 115-121 (in Turkish).
  • [9] Lo, T. Y., Cui, H. Z., Tang, W. C., and Leung, W. M. The effect of aggregate absorption on pore area at interfacial zone of lightweight concrete. Construction and Building Materials, 2008, Vol. 22, pp. 623 – 628.
  • [10] Bartolini, R., Filippozzi, S., Princi, E., Schenone, C., and Vicini, S. Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin. Applied Clay Science, 2010, Vol. 48, pp. 460 – 465.
  • [11] Bogas, J.A. and Gomes, A., and Pereira, M. F. C. Self-compacting lightweight concrete produced with expanded clay aggregate. Construction and Building Materials, 2012, Vol. 35, pp. 1013 – 1022.
  • [12] Costa, H., Julio, E., and Lourenço, J. New approach for shrinkage prediction of high-strength lightweight aggregate concrete. Construction and Building Materials, 2012, Vol. 35, pp. 84 – 91.
  • [13] Uglyanitsa, A. V., Gilyazidinova, N. V., Zhikharev, A. A., and Kargin, A. A. Study of reinforcement corrosion in expanded clay concrete. HBRC Journal. 2014.
  • [14] Yang, K. H., Kim, G. H., and Choi, Y. H. An initial trial mixture proportioning procedure for structural lightweight aggregate concrete. Construction and Building Materials, 2014, Vol. 55, pp. 431 – 439.
  • [15] Tunç, E. T., Alyamaç, K. E., Ragıp, İNCE and Ulucan, Z. Ç. Investigation of mechanical properties of high-performance lightweight concrete with pumice aggregate. Engineering Sciences, 2018, 13(4), 344-353.
  • [16] Tunc, E. T., Saglam, R.N., Ulucan, M., Demir, T., Ulucan, Z.Ç. and Alyamac, K.E. A Preliminary Mix Design For Structural Lightweight Concrete Produced With LECA. International Civil Engineering and Architecture Conference (ICEARC 2019), 2019.
  • [17] Saglam, R.N., Tunc, E. T., Demir, T., Ulucan, M. and Alyamac, K.E. Structural Lightweight Concrete Produced With Perlite Aggregate – A Preliminary Mix Design. International Civil Engineering and Architecture Conference (ICEARC 2019), 2019.
  • [18] ACI 213R-03. Guide for structural lightweight-aggregate concrete. ACI Manual of Concrete Practice, Part 1: Materials and General Properties of Concrete. American Concrete Institute, Farmington Hills, Michigan, 2003.
  • [19] Kok, S. C., and Min-Hong, Z. Water Permeability and Chloride Penetrability of High-Strength Lightweight Aggregate Concrete, Cement and Concrete Research, 2002, No 32, pp. 639-645.
  • [20] Sari, D., and Paşamehmetoğlu, A.G. The Effects of Gradation and Admixture on the Pumice Lightweight Aggregate Concrete. Cement and Concrete Research, 2005, No. 35(5), 936-942.
  • [21] Kaldı, C. Structural lightweight concrete design and its utilization in multi-story buildings. Master thesis, Ege University, Institute of Science and Technology, İzmir, 2011 (in Turkish).
  • [22] Arıöz, O., Kılınç, K., Karasu, B., Kaya, G., Arslan, G., Tuncan, M., Tuncan A., Korkut, M., and Kıvrak, S. A preliminary on the properties of lightweight expanded clay aggregate, Journal of the Australian Ceramics Society, 2008, 44(1), 23-30.
  • [23] Chandra, S. and Berntsson, L. Lightweight Aggregate Concrete. Noyes Publications, USA, 2002, 1-430.
  • [24] Statsoft, I. N. C. Statistica. Data analysis software system. Version, 8, 2001.
  • [25] Alduaij, J., Alshaleh, K., Haque, M. N., and Ellaithy, K. Lightweight concrete in hot coastal areas. Cement and Concrete Composites, 1999, 21(5-6), 453-458.
  • [26] Karamloo, M., Mazloom, M., and Payganeh, G. Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete. Construction and Building Materials, 2016, 123, 508-515.
  • [27] Sajedi, F., and Shafigh, P. High-strength lightweight concrete using leca, silica fume, and limestone. Arabian Journal for Science and Engineering, 2012, 37(7), 1885-1893.
  • [28] Tunc, E. T. Recycling of marble waste: A review based on strength of concrete containing marble waste. Journal of environmental management, 2019, 231, 86-97.
  • [29] Brostow, W., and Uygunoğlu, T., Influence of chemical admixture content particle and grade on viscosity of self-leveling mortar, El-Cezerî Journal of Science and Engineering, 2014, 1(2), 12-21.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Esra Tugrul Tunc 0000-0001-9071-774X

Kürşat Esat Alyamaç 0000-0002-3226-4073

Zülfü Ulucan 0000-0003-3605-9728

Yayımlanma Tarihi 31 Mayıs 2020
Gönderilme Tarihi 18 Şubat 2020
Kabul Tarihi 9 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE E. Tugrul Tunc, K. E. Alyamaç, ve Z. Ulucan, “A Numerical Approach to Estimate the Tensile Strength of Structural Lightweight Concrete”, ECJSE, c. 7, sy. 2, ss. 690–699, 2020, doi: 10.31202/ecjse.690882.