Araştırma Makalesi
BibTex RIS Kaynak Göster

Al-Mg-SiC Kompozitlerin Görünür Yoğunluklarının Taguchi Analizi

Yıl 2020, , 773 - 780, 31.05.2020
https://doi.org/10.31202/ecjse.695249

Öz

Toz metalurjisi yöntemi, alüminyum alaşımı esaslı metal matris kompozitlerinin üretimi için diğer geleneksel yöntemlere göre umut vadeden alternatif bir yöntemdir. Bu çalışmada, toz metalurjisi yöntemi ile hazırlanan SiC içeren alüminyum alaşım esaslı metal matris kompozitlerin işlem parametrelerinin Taguchi ve Varyans Analizi (ANOVA) yaklaşımı ile görünür yoğunluk üzerine etkisi araştırılmıştır. Taguchi’nin L16 dikey dizisi, minimum görünür yoğunluk elde etmek için işlem parametrelerini optimize etmek için kullanılmıştır. Dikkate alınan parametreler; ağırlıkça SiC oranı (%15 ve 30), sıkıştırma basıncı (260 ve 520 MPa), sinterleme sıcaklığı (300 ve 500°C) ve sinterleme zamanıdır (30 ve 90 dk.) ve bununla birlikte çıkış parametresi de görünür yoğunluktur. ANOVA, her bir değişken parametrenin çıkış parametresi üzerindeki etkisini belirlemek için deneysel veriler kullanılarak gerçekleştirilmiştir. Sinyal-gürültü oranlarının ve ANOVA analizine dayanarak, toz metalürjisi işlem parametrelerinin optimum değerleri (yani ağırlıkça SiC oranı, sıkıştırma basıncı, sinterleme sıcaklığı ve sinterleme zamanı) belirlenmiştir. Mevcut çalışmanın sonuçları, ağırlıkça SiC oranının görünür yoğunluk üzerinde en fazla etkiye sahip faktör olduğunu göstermektedir. İşlem parametrelerinin görünür yoğunluk üzerindeki etkisini incelemek için etkileşim grafikleri oluşturulmuştur. Buna ek olarak; görünür yoğunluğu tahmin etmek için deneysel bir model, regresyon analizi kullanılarak geliştirilmiştir.

Teşekkür

10-12 Ekim 2019 tarihlerinde Gaziantep Üniversitesi'nde düzenlenen konferansta sunulan çalışmamızın seçimi dolayısıyla TICMET’19 organizasyon komitesine en derin teşekkürlerimizi sunmak istiyoruz.

Kaynakça

  • Hashim, J., Looney, L. ve Hashmi, M.S.J., “Metal matrix composites: production by the stir casting method”, Journal of Materials Processing Technology, 1999. 92: p. 1-7.
  • Casati, R. ve Vedani, M. “Metal matrix composites reinforced by nano-particles—a review”, Metals, 2014. 4: p. 65-83.
  • Tjong, S.C., “Novel nanoparticle‐reinforced metal matrix composites with enhanced mechanical properties”, Advanced engineering materials, 2007. 9(8): p. 639-652.
  • Tjong, S.C., “8 - Processing and Deformation Characteristics of Metals Reinforced with Ceramic Nanoparticles”, in Nanocrystalline Materials (Second Edition), S.-C. Tjong, Editor. 2014, Elsevier: Oxford. p. 269-304.
  • Molina, J.M., Saravanan, R.A., Arpon, R., Garcia-Cordovilla, C, Louis, E. ve Narciso, J., “Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution”, Acta Materialia, 2002. 50(2): p. 247-257.
  • Zhang, Q., Ma, X.ve Wu, G., “Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique”, Ceramics International, 2013. 39(5): p. 4893-4897.
  • Geiger, A.L., Hasselman, D.P.H., ve Welch, P., “Electrical and thermal conductivity of discontinuously reinforced aluminum composites at sub-ambient temperatures”, Acta Materialia, 1997. 45(9): p. 3911-3914.
  • Abbasipour, B., Niroumand, B. ve Monir Vaghefi, S.M., “Compocasting of A356-CNT composite”, Transactions of Nonferrous Metals Society of China, 2010. 20(9): p. 1561-1566.
  • Abdizadeh, H., Vajargah, P. ve Baghchesara, M., “Fabrication of MgO nanoparticulates reinforced aluminum matrix composites using stir-casting method”, Kovove Materialy-Metallic Materials, 2015. 53(5): p. 319-326.
  • Anvari, S.R., Karimzadeh, F.ve Enayati, M.H., “Wear characteristics of Al–Cr–O surface nano-composite layer fabricated on Al6061 plate by friction stir processing”, Wear, 2013. 304(1–2): p. 144-151.
  • Liu, B., Liu, Y., He, X.Y., Tang, H.P., Chen, L.F. ve Huang, B.Y., “Preparation and Mechanical Properties of Particulate-Reinforced Powder Metallurgy Titanium Matrix Composites”, Metallurgical and Materials Transactions A, 2007. 38A: p. 2825-2831.
  • Angelo, P.C. ve Subramanian, R., “Powder Metallurgy: Science, Technology and Applications”, 2008: PHI Learning.
  • Jia, H., Feng, X. ve Yang, Y., “Effect of grain morphology on the degradation behavior of Mg-4 wt% Zn alloy in Hank's solution”, Materials Science and Engineering: C, 2020. 106: p. 110013.
  • Zhang, Y.H., Ye, C.Y., Shen, Y.P. , Chang, W., StJohn, D.H., Wang, G. ve Zhai, Q.J., “Grain refinement of hypoeutectic Al-7wt.%Si alloy induced by an Al–V–B master alloy”, Journal of Alloys and Compounds, 2020. 812: p. 152022.
  • Kurt, M., “SiC ve Al2O3 takviyeli Al-Mg kompozitin toz metalurjisi yöntemi ile üretiminin araştırılması”, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, 2017.
  • Roy, R.K., “A primer on the Taguchi method”, 2010: Society of Manufacturing Engineers.
  • Rama, R.S. ve Padmanabhan, G., “Application of Taguchi methods and ANOVA in optimization of process parameters for metal removal rate in electrochemical machining of Al/5% SiC composites”, International Journal of Engineering Research and Applications (IJERA), 2012. 2(3): p. 192-197.
  • Masmiati, N. ve Sarhan, A.A.D., “Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach”, Measurement, 2015. 60: p. 267–275.
  • Yilmaz, N.F., Kurt, H.İ, Oduncuoglu, M. ve Ergul, E., “Experimental and theoretical analysis of the welding process parameters for UTS with different methods”, Materials Research Express, 2018. 6(1): p. 016524.
  • Rosa, J.L., Robin, A., Silva, M.B., Baldan, C.A. ve Peres, M.P., “Electrodeposition of copper on titanium wires: Taguchi experimental design approach”, Journal of Materials Processing Technology, 2009. 209(3): p. 1181-1188.

Taguchi Analysis of Apparent Densities of Al-Mg-SiC Composites

Yıl 2020, , 773 - 780, 31.05.2020
https://doi.org/10.31202/ecjse.695249

Öz

Powder metallurgy processing is a promising alternative to other conventional methods for the production of aluminum alloy based metal matrix composites. In this study, the influence of process parameters on the apparent density values of the aluminum alloy based metal matrix composites containing SiC prepared via powder metallurgy method was investigated using the Taguchi and Analysis of Variance (ANOVA) approach. A Taguchi’s L16 orthogonal array was used to optimize process parameters to obtain minimum apparent density. The parameters considered were wt.% of SiC (15 and 30%), compaction pressure (260 and 520 MPa), sintering temperature (300 and 500°C) and sintering time (30 and 90 min) with apparent density as the response factor. ANOVA was performed using the experimental data to determine the effect of each parameter on the response parameter. Based on an analysis of the signal-to-noise ratios and ANOVA, the optimal values of powder metallurgy processing parameters (i.e., wt.% of SiC, compaction pressure, sintering temperature and time) were determined. The results indicate that wt.% of SiC is the factor having the most effect on apparent density. Interaction plots were generated to study the interaction effect of process parameters on apparent density. In addition to this, an empirical model for predicting apparent density was developed by using regression analysis.

Kaynakça

  • Hashim, J., Looney, L. ve Hashmi, M.S.J., “Metal matrix composites: production by the stir casting method”, Journal of Materials Processing Technology, 1999. 92: p. 1-7.
  • Casati, R. ve Vedani, M. “Metal matrix composites reinforced by nano-particles—a review”, Metals, 2014. 4: p. 65-83.
  • Tjong, S.C., “Novel nanoparticle‐reinforced metal matrix composites with enhanced mechanical properties”, Advanced engineering materials, 2007. 9(8): p. 639-652.
  • Tjong, S.C., “8 - Processing and Deformation Characteristics of Metals Reinforced with Ceramic Nanoparticles”, in Nanocrystalline Materials (Second Edition), S.-C. Tjong, Editor. 2014, Elsevier: Oxford. p. 269-304.
  • Molina, J.M., Saravanan, R.A., Arpon, R., Garcia-Cordovilla, C, Louis, E. ve Narciso, J., “Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution”, Acta Materialia, 2002. 50(2): p. 247-257.
  • Zhang, Q., Ma, X.ve Wu, G., “Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique”, Ceramics International, 2013. 39(5): p. 4893-4897.
  • Geiger, A.L., Hasselman, D.P.H., ve Welch, P., “Electrical and thermal conductivity of discontinuously reinforced aluminum composites at sub-ambient temperatures”, Acta Materialia, 1997. 45(9): p. 3911-3914.
  • Abbasipour, B., Niroumand, B. ve Monir Vaghefi, S.M., “Compocasting of A356-CNT composite”, Transactions of Nonferrous Metals Society of China, 2010. 20(9): p. 1561-1566.
  • Abdizadeh, H., Vajargah, P. ve Baghchesara, M., “Fabrication of MgO nanoparticulates reinforced aluminum matrix composites using stir-casting method”, Kovove Materialy-Metallic Materials, 2015. 53(5): p. 319-326.
  • Anvari, S.R., Karimzadeh, F.ve Enayati, M.H., “Wear characteristics of Al–Cr–O surface nano-composite layer fabricated on Al6061 plate by friction stir processing”, Wear, 2013. 304(1–2): p. 144-151.
  • Liu, B., Liu, Y., He, X.Y., Tang, H.P., Chen, L.F. ve Huang, B.Y., “Preparation and Mechanical Properties of Particulate-Reinforced Powder Metallurgy Titanium Matrix Composites”, Metallurgical and Materials Transactions A, 2007. 38A: p. 2825-2831.
  • Angelo, P.C. ve Subramanian, R., “Powder Metallurgy: Science, Technology and Applications”, 2008: PHI Learning.
  • Jia, H., Feng, X. ve Yang, Y., “Effect of grain morphology on the degradation behavior of Mg-4 wt% Zn alloy in Hank's solution”, Materials Science and Engineering: C, 2020. 106: p. 110013.
  • Zhang, Y.H., Ye, C.Y., Shen, Y.P. , Chang, W., StJohn, D.H., Wang, G. ve Zhai, Q.J., “Grain refinement of hypoeutectic Al-7wt.%Si alloy induced by an Al–V–B master alloy”, Journal of Alloys and Compounds, 2020. 812: p. 152022.
  • Kurt, M., “SiC ve Al2O3 takviyeli Al-Mg kompozitin toz metalurjisi yöntemi ile üretiminin araştırılması”, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, 2017.
  • Roy, R.K., “A primer on the Taguchi method”, 2010: Society of Manufacturing Engineers.
  • Rama, R.S. ve Padmanabhan, G., “Application of Taguchi methods and ANOVA in optimization of process parameters for metal removal rate in electrochemical machining of Al/5% SiC composites”, International Journal of Engineering Research and Applications (IJERA), 2012. 2(3): p. 192-197.
  • Masmiati, N. ve Sarhan, A.A.D., “Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach”, Measurement, 2015. 60: p. 267–275.
  • Yilmaz, N.F., Kurt, H.İ, Oduncuoglu, M. ve Ergul, E., “Experimental and theoretical analysis of the welding process parameters for UTS with different methods”, Materials Research Express, 2018. 6(1): p. 016524.
  • Rosa, J.L., Robin, A., Silva, M.B., Baldan, C.A. ve Peres, M.P., “Electrodeposition of copper on titanium wires: Taguchi experimental design approach”, Journal of Materials Processing Technology, 2009. 209(3): p. 1181-1188.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdulaziz Kaya 0000-0001-8767-1998

Mikail Aslan 0000-0003-0578-5049

Necip Fazıl Yılmaz 0000-0002-0166-9799

Halil Kurt 0000-0002-5992-8853

Yayımlanma Tarihi 31 Mayıs 2020
Gönderilme Tarihi 26 Şubat 2020
Kabul Tarihi 21 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE A. Kaya, M. Aslan, N. F. Yılmaz, ve H. Kurt, “Al-Mg-SiC Kompozitlerin Görünür Yoğunluklarının Taguchi Analizi”, ECJSE, c. 7, sy. 2, ss. 773–780, 2020, doi: 10.31202/ecjse.695249.