Derleme
BibTex RIS Kaynak Göster

Environmental and Physiochemical Properties of Gaseous Dielectrics Alternatives to SF6

Yıl 2020, , 1460 - 1470, 30.09.2020
https://doi.org/10.31202/ecjse.742492

Öz

Research on alternative dielectric gases to eliminate the disadvantages of SF6, which is widely used in GIS and switching systems in the power system engineering, has been an important study topic in the literature for nearly 40 years. Because of environmental priorities defined by international agreements such as the Kyoto Protocol and Doha Amendment, the restrictions on the use of SF6 make these studies an obligation. Although the number of alternative dielectric gases studied for this purpose is quite high, these gases can be classified under the titles of non-synthetics, hydrocarbons (HCs), fluorocarbons (FCs), hydrofluorocarbons (HFCs), fluoronitriles (FNs), fluoroketones (FKs) and other synthetic gases. In this study, the gases classified under these titles are compared using the dielectric constant relative to SF6, Global Warming Potential (GWP), atmospheric lifetime, boiling point and toxicity parameters used in the comparison of dielectric gases. When compared with these parameters, non-synthetic air, CO2, and N2, C3F7CN from FNs, and C5F10O and C6F12O from FKs stand out among alternative gases to SF6. These alternatives are used in some innovative power system industry applications and have a widespread use potential in the insulating gas industry instead of SF6.

Kaynakça

  • [1] Perez-Arriaga, J., The Transmission of the Future: The Impact of Distributed Energy Resources on the Network, IEEE Power Energy Mag., 2016, 14(4): 41-53.
  • [2] Yokomizu, Y.; Matsumoto, S.; Hirata, S.; Matsumura, T.; Ishikawa, A.; Furuhata, T.; Mitsukuchi, K., Arc Behavior in Rotary-arc Type of Load-break Switch and its Current-interrupting Capability for Different Environmentally Benign Gases and Electrode Materials, EIIJ Trans. Power and Energy, 2005, 125(11): 1070-1076.
  • [3] Wang, W.; Murphy, A.B.; Rong, M.; Looe, H.M.; Spencer, J.W., Investigation on Critical Breakdown Electric Field of Hot Sulfur Hexafluoride/Carbon Tetrafluoride Mixtures for High Voltage Circuit Breaker Applications, J. Appl. Phys., 2013, 114: 103301.
  • [4] Li, X.; Zhao, H.; Murphy, A.B., SF6-alternative Gases for Application in Gas-insulated Switchgear, J. Phys. D: Appl. Phys., 2018, 51: 153001.
  • [5] Christophorou, L.G.; Olthoff, J.K.; Electron Interactions with SF6, J. Phys. Chem. Ref. Data, 2000, 29(3): 267-330.
  • [6] Christophorou, L.G.; van Brunt, R.J., SF6/N2 Mixtures Basic and HV Insulation Properties, IEEE Trans. Dielectr. Electr. Insul., 1995, 2(5): 952-1003.
  • [7] Tezcan, S.S.; Akcayol, M.A.; Ozerdem, O.C.; Dincer, M.S., Calculation of Electron Energy Distribution Functions from Electron Swarm Parameters using Artificial Neural Network in SF6 and Argon, IEEE Plasma Sci., 2010, 38(9): 2332-2339.
  • [8] Kuczek, T.; Stosur, M.; Szewczyk, M.; Piasecki, W.; Steiger, M., Investigation on New Mitigation Method for Lightning Overvoltages in High-Voltage Power Substations, IET Gener. Transm. Distrib., 2013, 7(10): 1055-1062.
  • [9] Okabe, S.; Yuasa, S.; Kaneko, S.; Ueta, G., Evaluation of Breakdown Characteristics of Gas Insulated Switchgears for Non-standard Lightning Impulse Waveforms - Method for Converting Non-standard Lightning Impulse Waveforms into Standard Lightning Impulse Waveforms-, IEEE Trans. Dielectr. Electr. Insul., 2009, 16(1): 42-51.
  • [10] Nam, S.H.; Rahaman, H.; Heo, H.; Park, S.S.; Shin, J.W.; So, J.H.; Wang, W., Empirical Analysis of High Pressure SF6 Gas Breakdown Strength in a Spark Gap Switch, IEEE Trans. Dielectr. Electr. Insul., 2009, 16(4): 1106-1110.
  • [11] Zhao, H.; Li, X.; Jia, S.; Murphy, A.B., Dielectric breakdown properties of SF6–N2 mixtures at 0.01–1.6 MPa and 300–3000 K, J. Appl. Phys., 2013, 113: 143301.
  • [12] Lu, G.; Su, Z.X.; Xu, O.; Zhang, L.; Lan, G.Y.; Liu, Y.; Zhang, H.D., Experimental Study on Performance of SF6+N2 Mixed Gas Insulation, MATEC Web Conf., 2016, 63: 03017.
  • [13] Vial, L.; Casanovas, A.M.; Coll, I.; Casanovas, J., Decomposition Products from Negative and 50 Hz AC Corona Discharges in Compressed SF6 and SF6/N2 (10:90) Mixtures. Effect of Water Vapour added to the Gas, J. Phys. D: Appl. Phys., 1999, 32: 1681-1692.
  • [14] Dervos, C.T.; Vassiliou, P., Sulfur hexafluoride (SF6): Global Environmental Effects and Toxic Byproduct Formation, J. Air & Waste Manage Assoc., 2000, 50: 137-141.
  • [15] Bullister, J.L., Atmospheric Histories (1765–2015) for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O, NOAA Natl. Cent. Environ. Inf., 2015.
  • [16] IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 2014.
  • [17] United Nations (UN), Kyoto Protocol to the United Nations Framework Convention on Climate Change, UN, Kyoto, Japan, 1997, 19-20.
  • [18] United Nations, Doha amendment to the Kyoto Protocol, UN, Doha, Qatar, 2012, 1-6.
  • [19] Beroual, A.; Haddad, A., Recent Advances in the Quest for a New Insulation Gas with a Low Impact on the Environment to Replace Sulfur hexafluoride (SF6) Gas in High-Voltage Power Network Applications, Energies, 2017, 10: 1216.
  • [20] Xiao, S.; Tian, S.; Zhang, X.; Cressault, Y.; Tang, J.; Deng, Z.; Li, Y., The Influence of O2 on Decomposition Characteristics of c-C4F8/N2 Environmental Friendly Insulating Gas, Processes, 2018, 6: 174.
  • [21] Rabie, M.; Franck, C.M., Computational Screening of New High Voltage Insulation Gases with Low Global Warming Potential, IEEE Trans. Dielectr. Electr. Insul., 2015, 22(1): 296-302.
  • [22] Wang, Y.; Huang, D.; Liu, J.; Zhang, Y.; Zeng, L., Alternative Environmentally Friendly Insulating Gases for SF6, Processes, 2019, 7: 216.
  • [23] Dincer, M.S.; Tezcan, S.S.; Duzkaya, H., Suppression of Electron Avalanches in Ultra-dilute SF6-N2 Mixtures Subjected to Time-invariant Crossed Fields, Energies, 2018, 11: 3247.
  • [24] Haefliger, P.; Franck, C.M., Comparison of Swarm and Breakdown data in Mixtures of Nitrogen, Carbon Dioxide, Argon and Oxygen, J. Phys. D: Appl. Phys., 2018, 52: 025204.
  • [25] Matsumura, T.; Yokomizu, Y.; Kanda, D.; Kumazawa, T.; Furuhata, T.; Mitsukuchi, K., Effect of Magnetic Field Strength and Admixture Gas on Current Interrupting Capability of a CO2 Rotary-arc Load-break Switch, Electr. Eng. Jpn., 2009, 167(2): 21-27.
  • [26] Deng, Y.; Xiao, D., Analysis of the Insulation Characteristics of CF3I Gas Mixtures with Ar, Xe, He, N2, and CO2 using Boltzmann Equation Method, Jpn. J. Appl. Phys., 2014, 53: 096201.
  • [27] Brand, K.P., Dielectric Strength, Boiling Point and Toxicity of Gases-different Aspects of the same Basic Molecular Properties, IEEE Trans. Electr. Insul., 1982, EI-17(5): 451-456.
  • [28] Yu, X.; Hou, H.; Wang, B., Prediction on Dielectric Strength and Boiling Point of Gaseous Molecules for Replacement of SF6, J. Comput. Chem., 2017, 38(10): 721-729.
  • [29] Christophorou, L.G.; van Brunt, R.J., SF6 Insulation: Possible Greenhouse Problems and Solutions, NISTIR, MD, USA, no. 5685, 1995.
  • [30] Wu, Y.; Wang, C.; Sun, H.; Rong, M.; Murphy, A.B.; Li, T.; Zhong, J.; Chen, Z.; Yang, F.; Niu, C., Evaluation of SF6-alternative Gas C5-PFK Based on Arc Extinguishing Performance and Electric Strength, J. Phys. D: Appl. Phys., 2017, 50: 385202.
  • [31] Ehhalt, F.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, E.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M., Atmospheric Chemistry and Greenhouse Gases, in J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, K. Maskell and C.A.E. Johnson (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. NW, USA, 2001, 241–287.
  • [32] Dincer, M.S.; Tezcan, S.S.; Duzkaya, H., Magnetic Insulation in Nitrogen subjected to Crossed Fields, AIP Advances, 2018, 8: 095026.
  • [33] ABB, Live Tank Circuit Breaker-LTA 72.5 kV, Available: http://new.abb.com/high-voltage/AIS/selector/lta, 2018.
  • [34] Song, M.Y.; Yoon, J.S.; Cho, H.; Itikawa, Y.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J., Cross Sections for Electron Collisions with Methane, J. Phys. Chem. Ref. Data, 2015, 44(2): 023101.
  • [35] Nakanishi, K.; Christophorou, L.G.; Carter, J.G.; Hunter, S.R., Penning Ionization Ternary Gas Mixtures for Diffuse Discharge Switching Applications, J. Appl. Phys., 1985, 58: 633-641.
  • [36] Wang, Y.F.; Shih, M.; Tsai, C.H.; Tsai, P.J., Total Toxicity Equivalents Emissions of SF6, CHF3, and CCl2F2 Decomposed in a RF Plasma Environment, Chemosphere, 2006, 62: 1681-1688.
  • [37] Li, Y.; Zhang, X.; Zhang, J.; Cui, H.; Zhang, Y.; Chen, D.; Xiao, S.; Tang, J., Thermal Decomposition Properties of Fluoronitriles-N2 Gas Mixture as Alternative Gas for SF6, J. Fluor. Chem., 2020, 229: 109434.
  • [38] Zhang, X.; Tian, S.; Xiao, S.; Deng, Z.; Li, Y.; Tang, J., Insulation Strength and Decomposition Characteristics of a C6F12O and N2 Gas Mixture, Energies, 2017, 10: 1170.
  • [39] Muhle, J.; Ganesan, A.L.; Miller, B.R.; Salameh, P.K.; Harth, C.M.; Greally, B.R.; Rigby, M.; Porter, L.W.; Steele, L.P.; Trudinger, C.M.; Krummel, P.B.; O’Doherty, S.; Fraser, P.J.; Simmonds, P.G.; Prinn, R.G.; Weiss, R.E., Perfluorocarbons in the Global Atmosphere: Tetrafluoromethane, Hexafluoroethane, and Octafluoropropane, Atmos. Chem. Phys., 2010, 10: 5145–5164.
  • [40] Devins, J.C., Replacement Gases for SF6, IEEE Trans. Electr. Insul., 1980, EI-15(2): 81-86.
  • [41] Kline, L.E., Performance Predictions for Electron-beam Controlled on/off Switches, IEEE Trans. Plasma Sci., 1982, PS-10(4): 224-233.
  • [42] Park, S.W.; Hwang, C.H.; Kim, N.R.; Lee, K.T.; Huh, C.S., Breakdown Characteristics of SF6/CF4 Mixtures in Test Chamber and 25.8 kV GIS, Engineering Letters, 2007, 15(1): 22-25.
  • [43] Okubo, H.; Yamada, T.; Hatta, K.; Hayakawa, N.; Yuasa, S.; Okabe, S., Partial Discharge and Breakdown Mechanisms in Ultra-dilute SF6 and PFC Gases Mixed with N2 gas, J. Phys. D: Appl. Phys., 2001, 35: 2760–2765.
  • [44] Zhang, X.; Li, Y.; Xiao, S.; Tian, S.; Deng, Z.; Tang, J., Theoretical Study of the Decomposition Mechanism of Environmentally Friendly Insulating Medium C3F7CN in the presence of H2O in a Discharge, J. Phys. D: Appl. Phys., 2017, 50: 325201.
  • [45] Wang, Y.; Christophorou, L.G.; Olthoff, J.K.; Verbrugge, J.K., Electron Drift and Attachment in CHF3 and its Mixtures with Argon, Chem. Phys. Lett., 1999, 304: 303-308.
  • [46] Zhang, X.; Li, Y.; Chen, D.; Xiao, S.; Tian, S.; Tang, J.; Zhuo, R., Reactive Molecular Dynamics Study of the Decomposition Mechanism of the Environmentally Friendly Insulating Medium C3F7CN, RSC Adv., 2017, 7: 50663-50671.
  • [47] General Electric (GE), g³ Technology - the Alternative to SF6 for High Voltage Applications, United Kingdom, 2019.
  • [48] Mantilla, J.D.; Gariboldi, N.; Grob, S.; Claessens, M., Investigation of the Insulation Performance of a New Gas Mixture with Extremely Low GWP, in Elec. Insul. Conf., June, 2014, Philadelphia, Pennsylvania, USA, 469-473.
  • [49] Juliandhy, T.; Haryono, T.; Suharyanto; Perdana, I., Comparison of CF3CHCl2 Gas with SF6 gas as an Alternative Substitute for Gas Insulated Switchgear Equipment, in ICHVE, Oct., 2017, Bali, Indonesia, 198-203.
  • [50] Hyrenbach, M.; Hintzen, T.; Muller, P.; Owens, J., Alternative Gas Insulation in Medium Voltage Switchgear, in CIRED, June, 2015, Lyon, France, no. 0587.

SF6 Alternatifi Yalıtkan Gazların Çevresel ve Fizyokimyasal Özellikleri

Yıl 2020, , 1460 - 1470, 30.09.2020
https://doi.org/10.31202/ecjse.742492

Öz

Güç sistem mühendisliğinde GIS ve anahtarlama sistemlerinde yaygın olarak kullanılan SF6’nın dezavantajlarını ortadan kaldırmak için alternatif yalıtkan gaz araştırmaları, yaklaşık 40 yıldır literatürde önemli araştırma konularından birisidir. Kyoto Protokolü ve Doha Değişikliği gibi uluslararası anlaşmalarla tanımlanan çevresel önceliklerin bir sonucu olarak, SF6'nın kullanımına ilişkin sınırlamalar bu çalışmaları bir zorunluluk haline getirmektedir. Bu amaçla alternatif yalıtkan gazlarla ilgili çalışmalarının sayısı oldukça fazla olmasına rağmen, bu gazlar sentetik olmayan, hidrokarbonlar (HCs), florokarbonlar (FCs), hidroflorokarbonlar (HFcs), floronitriller (FNs), floroketonlar (FKs) ve diğer sentetik gazlar başlıkları altında sınıflandırılabilmektedir. Bu çalışma, bu başlıklar altında sınıflandırılan gazların yalıtkan gazların sınıflandırılmasında kullanılan SF6’ya göre yalıtkanlık katsayısı, Küresel Isınma Potansiyeli, atmosferik yaşam ömrü, kaynama noktası ve toksiklik parametrelerini kullanarak karşılaştırmaktadır. Bu karşılaştırmada, SF6’ya alternatif gazlar arasında sentetik olmayan gazlardan hava, CO2 ve N2, floronitrillerden C3F7N ve floroketonlardan C5F10O ve C6F12O öne çıkmaktadır. Bu alternatifler bazı yenilikçi güç sistem endüstrisi uygulamalarında kullanılmakta ve SF6’nın yerine yalıtkan gaz endüstrisinde yaygın bir kullanım potansiyeline sahiptir.

Kaynakça

  • [1] Perez-Arriaga, J., The Transmission of the Future: The Impact of Distributed Energy Resources on the Network, IEEE Power Energy Mag., 2016, 14(4): 41-53.
  • [2] Yokomizu, Y.; Matsumoto, S.; Hirata, S.; Matsumura, T.; Ishikawa, A.; Furuhata, T.; Mitsukuchi, K., Arc Behavior in Rotary-arc Type of Load-break Switch and its Current-interrupting Capability for Different Environmentally Benign Gases and Electrode Materials, EIIJ Trans. Power and Energy, 2005, 125(11): 1070-1076.
  • [3] Wang, W.; Murphy, A.B.; Rong, M.; Looe, H.M.; Spencer, J.W., Investigation on Critical Breakdown Electric Field of Hot Sulfur Hexafluoride/Carbon Tetrafluoride Mixtures for High Voltage Circuit Breaker Applications, J. Appl. Phys., 2013, 114: 103301.
  • [4] Li, X.; Zhao, H.; Murphy, A.B., SF6-alternative Gases for Application in Gas-insulated Switchgear, J. Phys. D: Appl. Phys., 2018, 51: 153001.
  • [5] Christophorou, L.G.; Olthoff, J.K.; Electron Interactions with SF6, J. Phys. Chem. Ref. Data, 2000, 29(3): 267-330.
  • [6] Christophorou, L.G.; van Brunt, R.J., SF6/N2 Mixtures Basic and HV Insulation Properties, IEEE Trans. Dielectr. Electr. Insul., 1995, 2(5): 952-1003.
  • [7] Tezcan, S.S.; Akcayol, M.A.; Ozerdem, O.C.; Dincer, M.S., Calculation of Electron Energy Distribution Functions from Electron Swarm Parameters using Artificial Neural Network in SF6 and Argon, IEEE Plasma Sci., 2010, 38(9): 2332-2339.
  • [8] Kuczek, T.; Stosur, M.; Szewczyk, M.; Piasecki, W.; Steiger, M., Investigation on New Mitigation Method for Lightning Overvoltages in High-Voltage Power Substations, IET Gener. Transm. Distrib., 2013, 7(10): 1055-1062.
  • [9] Okabe, S.; Yuasa, S.; Kaneko, S.; Ueta, G., Evaluation of Breakdown Characteristics of Gas Insulated Switchgears for Non-standard Lightning Impulse Waveforms - Method for Converting Non-standard Lightning Impulse Waveforms into Standard Lightning Impulse Waveforms-, IEEE Trans. Dielectr. Electr. Insul., 2009, 16(1): 42-51.
  • [10] Nam, S.H.; Rahaman, H.; Heo, H.; Park, S.S.; Shin, J.W.; So, J.H.; Wang, W., Empirical Analysis of High Pressure SF6 Gas Breakdown Strength in a Spark Gap Switch, IEEE Trans. Dielectr. Electr. Insul., 2009, 16(4): 1106-1110.
  • [11] Zhao, H.; Li, X.; Jia, S.; Murphy, A.B., Dielectric breakdown properties of SF6–N2 mixtures at 0.01–1.6 MPa and 300–3000 K, J. Appl. Phys., 2013, 113: 143301.
  • [12] Lu, G.; Su, Z.X.; Xu, O.; Zhang, L.; Lan, G.Y.; Liu, Y.; Zhang, H.D., Experimental Study on Performance of SF6+N2 Mixed Gas Insulation, MATEC Web Conf., 2016, 63: 03017.
  • [13] Vial, L.; Casanovas, A.M.; Coll, I.; Casanovas, J., Decomposition Products from Negative and 50 Hz AC Corona Discharges in Compressed SF6 and SF6/N2 (10:90) Mixtures. Effect of Water Vapour added to the Gas, J. Phys. D: Appl. Phys., 1999, 32: 1681-1692.
  • [14] Dervos, C.T.; Vassiliou, P., Sulfur hexafluoride (SF6): Global Environmental Effects and Toxic Byproduct Formation, J. Air & Waste Manage Assoc., 2000, 50: 137-141.
  • [15] Bullister, J.L., Atmospheric Histories (1765–2015) for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O, NOAA Natl. Cent. Environ. Inf., 2015.
  • [16] IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 2014.
  • [17] United Nations (UN), Kyoto Protocol to the United Nations Framework Convention on Climate Change, UN, Kyoto, Japan, 1997, 19-20.
  • [18] United Nations, Doha amendment to the Kyoto Protocol, UN, Doha, Qatar, 2012, 1-6.
  • [19] Beroual, A.; Haddad, A., Recent Advances in the Quest for a New Insulation Gas with a Low Impact on the Environment to Replace Sulfur hexafluoride (SF6) Gas in High-Voltage Power Network Applications, Energies, 2017, 10: 1216.
  • [20] Xiao, S.; Tian, S.; Zhang, X.; Cressault, Y.; Tang, J.; Deng, Z.; Li, Y., The Influence of O2 on Decomposition Characteristics of c-C4F8/N2 Environmental Friendly Insulating Gas, Processes, 2018, 6: 174.
  • [21] Rabie, M.; Franck, C.M., Computational Screening of New High Voltage Insulation Gases with Low Global Warming Potential, IEEE Trans. Dielectr. Electr. Insul., 2015, 22(1): 296-302.
  • [22] Wang, Y.; Huang, D.; Liu, J.; Zhang, Y.; Zeng, L., Alternative Environmentally Friendly Insulating Gases for SF6, Processes, 2019, 7: 216.
  • [23] Dincer, M.S.; Tezcan, S.S.; Duzkaya, H., Suppression of Electron Avalanches in Ultra-dilute SF6-N2 Mixtures Subjected to Time-invariant Crossed Fields, Energies, 2018, 11: 3247.
  • [24] Haefliger, P.; Franck, C.M., Comparison of Swarm and Breakdown data in Mixtures of Nitrogen, Carbon Dioxide, Argon and Oxygen, J. Phys. D: Appl. Phys., 2018, 52: 025204.
  • [25] Matsumura, T.; Yokomizu, Y.; Kanda, D.; Kumazawa, T.; Furuhata, T.; Mitsukuchi, K., Effect of Magnetic Field Strength and Admixture Gas on Current Interrupting Capability of a CO2 Rotary-arc Load-break Switch, Electr. Eng. Jpn., 2009, 167(2): 21-27.
  • [26] Deng, Y.; Xiao, D., Analysis of the Insulation Characteristics of CF3I Gas Mixtures with Ar, Xe, He, N2, and CO2 using Boltzmann Equation Method, Jpn. J. Appl. Phys., 2014, 53: 096201.
  • [27] Brand, K.P., Dielectric Strength, Boiling Point and Toxicity of Gases-different Aspects of the same Basic Molecular Properties, IEEE Trans. Electr. Insul., 1982, EI-17(5): 451-456.
  • [28] Yu, X.; Hou, H.; Wang, B., Prediction on Dielectric Strength and Boiling Point of Gaseous Molecules for Replacement of SF6, J. Comput. Chem., 2017, 38(10): 721-729.
  • [29] Christophorou, L.G.; van Brunt, R.J., SF6 Insulation: Possible Greenhouse Problems and Solutions, NISTIR, MD, USA, no. 5685, 1995.
  • [30] Wu, Y.; Wang, C.; Sun, H.; Rong, M.; Murphy, A.B.; Li, T.; Zhong, J.; Chen, Z.; Yang, F.; Niu, C., Evaluation of SF6-alternative Gas C5-PFK Based on Arc Extinguishing Performance and Electric Strength, J. Phys. D: Appl. Phys., 2017, 50: 385202.
  • [31] Ehhalt, F.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, E.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M., Atmospheric Chemistry and Greenhouse Gases, in J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, K. Maskell and C.A.E. Johnson (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. NW, USA, 2001, 241–287.
  • [32] Dincer, M.S.; Tezcan, S.S.; Duzkaya, H., Magnetic Insulation in Nitrogen subjected to Crossed Fields, AIP Advances, 2018, 8: 095026.
  • [33] ABB, Live Tank Circuit Breaker-LTA 72.5 kV, Available: http://new.abb.com/high-voltage/AIS/selector/lta, 2018.
  • [34] Song, M.Y.; Yoon, J.S.; Cho, H.; Itikawa, Y.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J., Cross Sections for Electron Collisions with Methane, J. Phys. Chem. Ref. Data, 2015, 44(2): 023101.
  • [35] Nakanishi, K.; Christophorou, L.G.; Carter, J.G.; Hunter, S.R., Penning Ionization Ternary Gas Mixtures for Diffuse Discharge Switching Applications, J. Appl. Phys., 1985, 58: 633-641.
  • [36] Wang, Y.F.; Shih, M.; Tsai, C.H.; Tsai, P.J., Total Toxicity Equivalents Emissions of SF6, CHF3, and CCl2F2 Decomposed in a RF Plasma Environment, Chemosphere, 2006, 62: 1681-1688.
  • [37] Li, Y.; Zhang, X.; Zhang, J.; Cui, H.; Zhang, Y.; Chen, D.; Xiao, S.; Tang, J., Thermal Decomposition Properties of Fluoronitriles-N2 Gas Mixture as Alternative Gas for SF6, J. Fluor. Chem., 2020, 229: 109434.
  • [38] Zhang, X.; Tian, S.; Xiao, S.; Deng, Z.; Li, Y.; Tang, J., Insulation Strength and Decomposition Characteristics of a C6F12O and N2 Gas Mixture, Energies, 2017, 10: 1170.
  • [39] Muhle, J.; Ganesan, A.L.; Miller, B.R.; Salameh, P.K.; Harth, C.M.; Greally, B.R.; Rigby, M.; Porter, L.W.; Steele, L.P.; Trudinger, C.M.; Krummel, P.B.; O’Doherty, S.; Fraser, P.J.; Simmonds, P.G.; Prinn, R.G.; Weiss, R.E., Perfluorocarbons in the Global Atmosphere: Tetrafluoromethane, Hexafluoroethane, and Octafluoropropane, Atmos. Chem. Phys., 2010, 10: 5145–5164.
  • [40] Devins, J.C., Replacement Gases for SF6, IEEE Trans. Electr. Insul., 1980, EI-15(2): 81-86.
  • [41] Kline, L.E., Performance Predictions for Electron-beam Controlled on/off Switches, IEEE Trans. Plasma Sci., 1982, PS-10(4): 224-233.
  • [42] Park, S.W.; Hwang, C.H.; Kim, N.R.; Lee, K.T.; Huh, C.S., Breakdown Characteristics of SF6/CF4 Mixtures in Test Chamber and 25.8 kV GIS, Engineering Letters, 2007, 15(1): 22-25.
  • [43] Okubo, H.; Yamada, T.; Hatta, K.; Hayakawa, N.; Yuasa, S.; Okabe, S., Partial Discharge and Breakdown Mechanisms in Ultra-dilute SF6 and PFC Gases Mixed with N2 gas, J. Phys. D: Appl. Phys., 2001, 35: 2760–2765.
  • [44] Zhang, X.; Li, Y.; Xiao, S.; Tian, S.; Deng, Z.; Tang, J., Theoretical Study of the Decomposition Mechanism of Environmentally Friendly Insulating Medium C3F7CN in the presence of H2O in a Discharge, J. Phys. D: Appl. Phys., 2017, 50: 325201.
  • [45] Wang, Y.; Christophorou, L.G.; Olthoff, J.K.; Verbrugge, J.K., Electron Drift and Attachment in CHF3 and its Mixtures with Argon, Chem. Phys. Lett., 1999, 304: 303-308.
  • [46] Zhang, X.; Li, Y.; Chen, D.; Xiao, S.; Tian, S.; Tang, J.; Zhuo, R., Reactive Molecular Dynamics Study of the Decomposition Mechanism of the Environmentally Friendly Insulating Medium C3F7CN, RSC Adv., 2017, 7: 50663-50671.
  • [47] General Electric (GE), g³ Technology - the Alternative to SF6 for High Voltage Applications, United Kingdom, 2019.
  • [48] Mantilla, J.D.; Gariboldi, N.; Grob, S.; Claessens, M., Investigation of the Insulation Performance of a New Gas Mixture with Extremely Low GWP, in Elec. Insul. Conf., June, 2014, Philadelphia, Pennsylvania, USA, 469-473.
  • [49] Juliandhy, T.; Haryono, T.; Suharyanto; Perdana, I., Comparison of CF3CHCl2 Gas with SF6 gas as an Alternative Substitute for Gas Insulated Switchgear Equipment, in ICHVE, Oct., 2017, Bali, Indonesia, 198-203.
  • [50] Hyrenbach, M.; Hintzen, T.; Muller, P.; Owens, J., Alternative Gas Insulation in Medium Voltage Switchgear, in CIRED, June, 2015, Lyon, France, no. 0587.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hıdır Düzkaya 0000-0002-2157-0438

Süleyman Sungur Tezcan 0000-0001-6846-8222

Alper Acartürk Bu kişi benim 0000-0001-6015-5483

Mehmet Yılmaz Bu kişi benim 0000-0001-7685-1432

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 25 Mayıs 2020
Kabul Tarihi 7 Temmuz 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE H. Düzkaya, S. S. Tezcan, A. Acartürk, ve M. Yılmaz, “Environmental and Physiochemical Properties of Gaseous Dielectrics Alternatives to SF6”, ECJSE, c. 7, sy. 3, ss. 1460–1470, 2020, doi: 10.31202/ecjse.742492.