Araştırma Makalesi
BibTex RIS Kaynak Göster

Halloysit Nanotüp Takviyeli Kopoliester Termoplastik Elastomer Kompozitler: Isıl ve Mekanik Özelliklerin İncelenmesi

Yıl 2020, , 1343 - 1354, 30.09.2020
https://doi.org/10.31202/ecjse.764528

Öz

Nano dolgular polimerlerin ısıl ve mekanik özelliklerini geliştirmek için sıklıkla kullanılan malzemelerdir. Halloysit (HNT) içi boş tüp şeklinde doğal bir alümina silikat nano dolgudur. Bu çalışmada, termoplastik elastomer ailesinin bir üyesi olan kopoliester (COPE) polimerinin ısıl ve mekanik özellikleri organofilik yüzey modifikasyonu yapılmış HNT (Org-HNT) dolgusu ile geliştirilmeye çalışılmıştır. Değişik oranlarda (3,5 ve 7 phr) Org-HNT içeren kompozitler bir dahili karıştırıcı yardımıyla eriyik harmanlama metodu ile hazırlanmıştır. Elde edilen kompozitlerin morfolojik, reolojik, ısıl ve mekanik karakterizasyonları saf COPE ile karşılaştırmalı olarak incelenmiştir. Taramalı elektron mikroskobu (SEM) analizi, 3 ve 5 phr Org-HNT içeren kompozitlerin matris içinde göreceli daha homojen ve ince bir dağılım sergilediğini, 7 phr Org-HNT kullanıldığında ise nanotüplerin agregat şeklinde kaldığını göstermiştir. Org-HNT varlığında COPE’nin erime sıcaklığı artma eğilimi göstermiş ve bununla birlikte nanotüplerin nükleasyon ajanı etkisi ile kristalizasyon sıcaklığı yaklaşık 8°C artmıştır. Kompozitlerin elastik modül değerleri ve Shore sertlikleri Org-HNT miktarının artması ile doğru orantılı olarak artarak, 7 phr Org-HNT içeren kompozitte saf COPE ile karşılaştırıldığında yaklaşık %55’lik modül artışı bulunmuştur. COPE’nin başlangıç bozunma sıcaklıkları Org-HNT’lerin iyi dağılım gösterdiği 3 ve 5 phr kompozitlerinde gelişme gösterirken 7 phr kompozitinde azalmıştır. Bununla birlikte bütün kompozitlerin maksimum bozunma hızları saf COPE’den daha düşük değerler almıştır.

Kaynakça

  • [1] Bae J., Lee S., Kim B. C., Cho H. H., Chae D. W., "Polyester-based thermoplastic elastomer/MWNT composites: Rheological, thermal, and electrical properties", Fibers and Polymers, 2013, 14 (5), 729-735.
  • [2] Praharaj Bhatnagar M., Mahanwar P., "Investigating the compatibility of thermoplastic polyester elastomer/high-density polyethylene blends and its effect on the horizontal flame propagation", Plastics, Rubber and Composites, 2020, 49 (2), 66-78.
  • [3] Gryshchuk O., "Commercial Condensation and Addition Thermoplastic Elastomers: Composition, Properties, and Applications", Handbook of Condensation Thermoplastic Elastomers, 2005, 489-519.
  • [4] Ekrem M., "Hekzagonal Bor Nitrür Nanoplate-Nano Ag/Epoksi Kompozitler: Üretimi, Mekanik ve Termal Özellikleri", El-Cezeri Journal of Science and Engineering, 6 (3), 585-593.
  • [5] Subaşi A., Zurnaci M., Kahyaoğlu A., DEMİR E., "Polyester/Grafen Kompozitlerin Mekanik ve Termal Özelliklerinin İncelenmesi", El-Cezeri Journal of Science and Engineering, 2017, 4 (3), 472-481.
  • [6] Alosime E. M., Edwards G. A., Martin D. J., "Structure‐property relationships in copolyester elastomer‐layered silicate nanocomposites", Journal of Applied Polymer Science, 2015, 132 (13), 41742.
  • [7] Arman N., Tekay E., Şen S., "Preparation of high-strength SEBS nanocomposites reinforced with halloysite nanotube: Effect of SEBS-g-MA compatibilizer", Journal of Thermoplastic Composite Materials, 2019, 0892705719895055.
  • [8] Guo B., Zou Q., Lei Y., Jia D., "Structure and performance of polyamide 6/halloysite nanotubes nanocomposites", Polymer journal, 2009, 41 (10), 835-842.
  • [9] Liu M., Zhang Y., Zhou C., "Nanocomposites of halloysite and polylactide", Applied Clay Science, 2013, 75 52-59.
  • [10] Ismail H., Pasbakhsh P., Fauzi M. A., Bakar A. A., "Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites", Polymer Testing, 2008, 27 (7), 841-850.
  • [11] Pandey N., Tewari C., Dhali S., Bohra B. S., Rana S., Mehta S., Sahoo N. G., "Effect of graphene oxide on the mechanical and thermal properties of graphene oxide/hytrel nanocomposites", Journal of Thermoplastic Composite Materials, 2019, 0892705719838010.
  • [12] Tekay E., "Preparation of tough, high modulus, and creep-resistant PS/SIS/halloysite blend nanocomposites", Journal of Thermoplastic Composite Materials, 2020, 0892705720930777.
  • [13] Wegner G., Fujii T., Meyer W., Lieser G., "Structure and properties of segmented polyether‐esters. II. Crystallization behavior of polyether‐esters with random distribution of hard segment length", Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1978, 74 (1), 295-316.
  • [14] Tekay E., Nugay N., Nugay T., Şen S., "Revolution/rotation‐type mixing‐assisted masterbatch process for polypropylene‐based high‐impact ternary nanocomposites", Polymer Composites, 2019, 40 (1), 24-36.
  • [15] Bidsorkhi H. C., Adelnia H., Pour R. H., Soheilmoghaddam M., "Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites", Journal of Materials Science, 2015, 50 (8), 3237-3245.
  • [16] Lee K. S., Chang Y. W., "Thermal, mechanical, and rheological properties of poly (ε‐caprolactone)/halloysite nanotube nanocomposites", Journal of Applied Polymer Science, 2013, 128 (5), 2807-2816.
  • [17] Lecouvet B., Gutierrez J., Sclavons M., Bailly C., "Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites", Polymer Degradation and Stability, 2011, 96 (2), 226-235.
  • [18] Lucas-Freile A. d., Sancho-Querol S., Yáñez-Pacios A. J., Marín-Perales L., Martín-Martínez J. M., "Blends of ethylene-co-vinyl acetate and poly (3-hydroxybutyrate) with adhesion property", Express Polymer Letters, 2018, 12(7), 600-615.
  • [19] Kaygusuz I., Kaynak C., "Influences of halloysite nanotubes on crystallisation behaviour of polylactide", Plastics, Rubber and Composites, 2015, 44 (2), 41-49.
  • [20] Doğu S., Tekay E., Şen S., "Effects of EVA-g-MA and EVACO compatibilizers/tougheners on morphological and mechanical properties of PP/EVA/HNT blend polymer nanocomposites", Journal of Composite Materials, 2020, 54 (16), 2195-2215.
  • [21] Sharma S., Singh A. A., Majumdar A., Butola B. S., "Harnessing the ductility of polylactic acid/halloysite nanocomposites by synergistic effects of impact modifier and plasticiser", Composites Part B: Engineering, 2020, 188, 107845.
  • [22] Polanský R., Kadlec P., Slepička P., Kolská Z., Švorčík V., "Testing the applicability of LDPE/HNT composites for cable core insulation", Polymer Testing, 2019, 78, 105993.
  • [23] Joshi M., Butola B. S., Simon G., Kukaleva N., "Rheological and viscoelastic behavior of HDPE/octamethyl-POSS nanocomposites", Macromolecules, 2006, 39 (5), 1839-1849.
  • [24] Durmus A., Alanalp M. B., Aydin I., "Investigation of rheological behaviors of polyolefin blend type thermoplastic elastomers for quantifying microstructure-property relationships", Korea-Australia Rheology Journal, 2019, 31 (2), 97-110.
  • [25] Sanchez‐Solis A., Garcia‐Rejon A., Manero O. Production of nanocomposites of PET‐montmorillonite clay by an extrusion process. In: Macromolecular Symposia 2003, 281-292.
  • [26] Lecouvet B., Sclavons M., Bourbigot S., Devaux J., Bailly C., "Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties", Polymer, 2011, 52 (19), 4284-4295.
  • [27] Şen S., Gündem H. B., Ortaç B., "Property enhancement in unsaturated polyester nanocomposites by using a reactive intercalant for clay modification", Journal of Applied Polymer Science, 2013, 129 (6), 3247-3254.
  • [28] Leszczyńska A., Njuguna J., Pielichowski K., Banerjee J., "Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement", Thermochimica acta, 2007, 453 (2), 75-96.

Halloysite Nanotube Reinforced Copolyester Thermoplastic Elastomer Composites: Examination of Thermal and Mechanical Properties

Yıl 2020, , 1343 - 1354, 30.09.2020
https://doi.org/10.31202/ecjse.764528

Öz

Nano fillers are frequently used materials to improve the thermal and mechanical properties of polymers. Halloysite (HNT) is a natural alumina silicate nano filler that has the form of a hollow tube. In this study, the thermal and mechanical properties of the copolyester (COPE) polymer which is a member of the thermoplastic elastomer family, was tried to be improved with using organophilic surface modified HNT (Org-HNT) filler. Composites containing Org-HNT in different proportions (3,5 and 7 phr) were prepared by melt blending method with help of an internal mixer. Morphological, rheological, thermal and mechanical characterizations of the composites were examined in comparison with pure COPE. Scanning electron microscopy (SEM) analysis showed that composites containing 3 and 5 phr Org-HNT exhibit a relatively more homogeneous and fine distribution in the matrix, and nanotubes remain aggregated when using 7 phr Org-HNT. In the presence of Org-HNT, the melting temperature of the COPE tended to increase and the crystallization temperature of the increased by about 8 ° C with the effect of the nucleation agent effect of nanotubes. The elastic modulus and Shore hardness values of the composites increased with increasing amount of Org-HNT, and a increment of % 55 in modulus was found with the composite containing 7 phr Org-HNT compared to pure COPE. Initial decomposition temperature of the COPE increased with using 3 and 5 phr HNT due to Org-HNTs showed good distribution in these composites. On the other hand, the all composites exhibited lower maximum degradation rates in comparison to pure COPE.

Kaynakça

  • [1] Bae J., Lee S., Kim B. C., Cho H. H., Chae D. W., "Polyester-based thermoplastic elastomer/MWNT composites: Rheological, thermal, and electrical properties", Fibers and Polymers, 2013, 14 (5), 729-735.
  • [2] Praharaj Bhatnagar M., Mahanwar P., "Investigating the compatibility of thermoplastic polyester elastomer/high-density polyethylene blends and its effect on the horizontal flame propagation", Plastics, Rubber and Composites, 2020, 49 (2), 66-78.
  • [3] Gryshchuk O., "Commercial Condensation and Addition Thermoplastic Elastomers: Composition, Properties, and Applications", Handbook of Condensation Thermoplastic Elastomers, 2005, 489-519.
  • [4] Ekrem M., "Hekzagonal Bor Nitrür Nanoplate-Nano Ag/Epoksi Kompozitler: Üretimi, Mekanik ve Termal Özellikleri", El-Cezeri Journal of Science and Engineering, 6 (3), 585-593.
  • [5] Subaşi A., Zurnaci M., Kahyaoğlu A., DEMİR E., "Polyester/Grafen Kompozitlerin Mekanik ve Termal Özelliklerinin İncelenmesi", El-Cezeri Journal of Science and Engineering, 2017, 4 (3), 472-481.
  • [6] Alosime E. M., Edwards G. A., Martin D. J., "Structure‐property relationships in copolyester elastomer‐layered silicate nanocomposites", Journal of Applied Polymer Science, 2015, 132 (13), 41742.
  • [7] Arman N., Tekay E., Şen S., "Preparation of high-strength SEBS nanocomposites reinforced with halloysite nanotube: Effect of SEBS-g-MA compatibilizer", Journal of Thermoplastic Composite Materials, 2019, 0892705719895055.
  • [8] Guo B., Zou Q., Lei Y., Jia D., "Structure and performance of polyamide 6/halloysite nanotubes nanocomposites", Polymer journal, 2009, 41 (10), 835-842.
  • [9] Liu M., Zhang Y., Zhou C., "Nanocomposites of halloysite and polylactide", Applied Clay Science, 2013, 75 52-59.
  • [10] Ismail H., Pasbakhsh P., Fauzi M. A., Bakar A. A., "Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites", Polymer Testing, 2008, 27 (7), 841-850.
  • [11] Pandey N., Tewari C., Dhali S., Bohra B. S., Rana S., Mehta S., Sahoo N. G., "Effect of graphene oxide on the mechanical and thermal properties of graphene oxide/hytrel nanocomposites", Journal of Thermoplastic Composite Materials, 2019, 0892705719838010.
  • [12] Tekay E., "Preparation of tough, high modulus, and creep-resistant PS/SIS/halloysite blend nanocomposites", Journal of Thermoplastic Composite Materials, 2020, 0892705720930777.
  • [13] Wegner G., Fujii T., Meyer W., Lieser G., "Structure and properties of segmented polyether‐esters. II. Crystallization behavior of polyether‐esters with random distribution of hard segment length", Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1978, 74 (1), 295-316.
  • [14] Tekay E., Nugay N., Nugay T., Şen S., "Revolution/rotation‐type mixing‐assisted masterbatch process for polypropylene‐based high‐impact ternary nanocomposites", Polymer Composites, 2019, 40 (1), 24-36.
  • [15] Bidsorkhi H. C., Adelnia H., Pour R. H., Soheilmoghaddam M., "Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites", Journal of Materials Science, 2015, 50 (8), 3237-3245.
  • [16] Lee K. S., Chang Y. W., "Thermal, mechanical, and rheological properties of poly (ε‐caprolactone)/halloysite nanotube nanocomposites", Journal of Applied Polymer Science, 2013, 128 (5), 2807-2816.
  • [17] Lecouvet B., Gutierrez J., Sclavons M., Bailly C., "Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites", Polymer Degradation and Stability, 2011, 96 (2), 226-235.
  • [18] Lucas-Freile A. d., Sancho-Querol S., Yáñez-Pacios A. J., Marín-Perales L., Martín-Martínez J. M., "Blends of ethylene-co-vinyl acetate and poly (3-hydroxybutyrate) with adhesion property", Express Polymer Letters, 2018, 12(7), 600-615.
  • [19] Kaygusuz I., Kaynak C., "Influences of halloysite nanotubes on crystallisation behaviour of polylactide", Plastics, Rubber and Composites, 2015, 44 (2), 41-49.
  • [20] Doğu S., Tekay E., Şen S., "Effects of EVA-g-MA and EVACO compatibilizers/tougheners on morphological and mechanical properties of PP/EVA/HNT blend polymer nanocomposites", Journal of Composite Materials, 2020, 54 (16), 2195-2215.
  • [21] Sharma S., Singh A. A., Majumdar A., Butola B. S., "Harnessing the ductility of polylactic acid/halloysite nanocomposites by synergistic effects of impact modifier and plasticiser", Composites Part B: Engineering, 2020, 188, 107845.
  • [22] Polanský R., Kadlec P., Slepička P., Kolská Z., Švorčík V., "Testing the applicability of LDPE/HNT composites for cable core insulation", Polymer Testing, 2019, 78, 105993.
  • [23] Joshi M., Butola B. S., Simon G., Kukaleva N., "Rheological and viscoelastic behavior of HDPE/octamethyl-POSS nanocomposites", Macromolecules, 2006, 39 (5), 1839-1849.
  • [24] Durmus A., Alanalp M. B., Aydin I., "Investigation of rheological behaviors of polyolefin blend type thermoplastic elastomers for quantifying microstructure-property relationships", Korea-Australia Rheology Journal, 2019, 31 (2), 97-110.
  • [25] Sanchez‐Solis A., Garcia‐Rejon A., Manero O. Production of nanocomposites of PET‐montmorillonite clay by an extrusion process. In: Macromolecular Symposia 2003, 281-292.
  • [26] Lecouvet B., Sclavons M., Bourbigot S., Devaux J., Bailly C., "Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties", Polymer, 2011, 52 (19), 4284-4295.
  • [27] Şen S., Gündem H. B., Ortaç B., "Property enhancement in unsaturated polyester nanocomposites by using a reactive intercalant for clay modification", Journal of Applied Polymer Science, 2013, 129 (6), 3247-3254.
  • [28] Leszczyńska A., Njuguna J., Pielichowski K., Banerjee J., "Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement", Thermochimica acta, 2007, 453 (2), 75-96.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Emre Tekay 0000-0001-5539-4105

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 5 Temmuz 2020
Kabul Tarihi 6 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE E. Tekay, “Halloysit Nanotüp Takviyeli Kopoliester Termoplastik Elastomer Kompozitler: Isıl ve Mekanik Özelliklerin İncelenmesi”, ECJSE, c. 7, sy. 3, ss. 1343–1354, 2020, doi: 10.31202/ecjse.764528.