Mekanik alaşımlama süresinin Ti10Nb10Sn alaşımının mikroyapı ve mekanik özelliklerine etkisinin araştırılması
Yıl 2021,
, 60 - 73, 31.01.2021
Ahmet Burçin Batıbay
,
Hasan Kotan
,
Atilla Evcin
Öz
Bu çalışmada titanyuma ağ.% 10Nb ve 10Sn ilaveleri yapılarak 30 saate kadar farklı sürelerde mekanik alaşımlama tekniği ile üretilmiş ve elde edilen tozlar preslendikten sonra 1000 0C de 2 saat sinterleme işlemine tabi tutulmuştur. X-ışını kırınımı (XRD), Taramalı Elektron Mikroskobu (SEM), sertlik, yoğunluk ve ultrasonik analizleri yapılarak elde edilen numuneler mikroyapısal ve mekanik olarak incelenmiştir. Çalışma sonucunda elde edilen sonuçlar, artan mekanik alaşımlama süresine bağlı olarak toz boyutunun azaldığını göstermektedir. Mekanik alaşımlama esnasındaki katı hal reaksiyonundan dolayı niyobyum ve kalay elementlerinin titanyum kafesinde katı çözelti oluşturduğu görülmüştür. Sinterleme sonrası elde edilen sertlik değerlerinin sinterleme öncesi sertlik değerlerinden yüksek olduğu ve bunun sebebinin ise sinterleme esnasında mikroyapıda oluşan TiC ikinci fazlarının varlığından kaynaklandığı tespit edilmiştir. Bağıl yoğunluk değeri hesaplanmış ve elde edilen numunelerin % 5 – 20 arasında gözenek barındırdığı görülmüştür. Son olarak mekanik alaşımlama süresinin artmasıyla elastik modül değerleri azalırken 30 saatlik mekanik alaşımlama süresinden sonra kemiğe en yakın elastik modül değerleri tespit edilmiştir. Elde edilen bu sonuçlar Ti10Nb10Sn alaşımının yeni nesil biyomalzeme olarak kullanım potansiyeli olduğunu göstermektedir.
Destekleyen Kurum
Afyonkarahisar Kocatepe Üniversitesi BAP
Proje Numarası
16.FENBİL.27
Kaynakça
- [1] Gerling, R., and Schimansky, F. P., Prospects for Metal Injection Moulding Using A Gamma Titanium Aluminide Based Alloy Powder, Materials Science and Engineering A, 2002, Volume 329-331, 45-49.
- [2] Gerling, R., Aust, E., Limberg, W., Pfuff, M., and Schimansky, F. P., Metal Injection Moulding of Gamma Titanium Aluminide Alloy Powder, Materials Science and Engineering A, 2006, 423, 262–268.
- [3] Ayday, A., Ti6Al4V Alaşımı ve Saf Titanyum (Cp-Ti) Oksidasyon Kinetiği, El-Cezerî Journal of Science and Engineering, 2020, 7, 402-409.
- [4] Adam, G., Zhang, D. L., Liang, J., and Macrae, I., A Novel Process for Lowering the Cost of Titanium, Advanced Materials Research, 2007, Volume 29-30, 147-152.
- [5] Yuhua, L., Yang, C., Zhao, H., Qu, S.,Li X., and Yuanyuan, L., New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7, 1709-1800.
- [6] Lütjering, G., and Williams, C., Titanium, Springer-Verlag, 2007, 449p, Heidelberg.
- [7] Biesiekierski, A., Wang, J., Gepreel, M. A-H., and Wen, C., A new look at biomedical Ti-based shape memory alloys, Acta Biomaterialia 8, 2012, 1661-1669.
- [8] Omran, A. M., Woo, K. D., Kim, D. K., Kim, S. W., Moon, M. S., Barakat, N. A., and Zhang, D. L., Effect of Nb and Sn on the transformation of α-Ti to β-Ti n Ti-35Nb-2.5Sn Nanostructure Alloys using Mechanical Alloying, Metals and Materials International, 2008, 14, 321-325.
- [9] Mohammed, M. T., Khan, Z. K., and Siddiquee, A. N., Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review, International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, 2014, Volume 8.
- [10] Leyens, C., and Peters, M., Titanium and Titanium Alloys, 2003, Wiley Verlag, 525p, Weinheim.
- [11] Nouri, A., Chen, X., Li, Y., Yamada, Y., Hodgson, P. D., Wen, C., Synthesis of Ti- Sn-Nb alloy by powder metallurgy, Materials Science and Engineering A, 2008, Volume 485, 562-570.
- [12] Nouri, A., Lin, G., Li, Y. C., Yamada, Y., Hodgson, P. D., and Wen, C. E., Microstructure Evolution of Ti-Sn-Nb Alloy Prepared by Mechanical Alloying, Materials Forum, 2007, Volume 31, 64-70.
- [13] Suryanarayana, C., Mechanical alloying and milling, Progress in Materials Science, 2001, 46, 1-184.
- [14] Wang, X., Xu, L., Chen, Y., Kee, D., Xiao S., Kong, F., and Liu, Z., Effect of milling time on microstructure of Ti35Nb2.5Sn/10HA biocomposite fabricated by powder metallurgy and sintering, Transactions of Nonferrous Metals Society of China, 2012, 22, 608-612.
- [15] Nouri, A., Hodgson, P., and Wen, C., Effect of ball milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy, Materials Science and Engineering C, 2011, 31, 921-928.
- [16] Xiong, J., Li, Y., Wang, X., Hodgson, P., and Wen, C., Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications, Acta Biomaterialia 4, 2008, 1963-1968.
- [17] Sanchez, C., McLaughlin, J., and Fotticchia, A., Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications, Journal of Alloys and Compounds 731, 2018, 189-199.
- [18] Mahundla, M. R., Matizamhuka, W. R., and Shongwe M. B., The Effect of Densification on Hardness of Ti, Ti-6Al-4V, Ti-34Nb-25Zr alloy produced by spark plasma sintering, Materials Today: Proceedings, 8 April 2020.
- [19] Kotan, H., Mekanik alaşımlama ile üretilen nanokristal yapılı östenitik paslanmaz çelik alaşımlarında Y ve Y2O3 ilavelerinin tane büyümesi ve sertliğe etkisi, Journal of Faculty of Engineering and Architecture Gazi University, 2019, 34:3, 1265-1272.
- [20] Kotan, H., Thermal stability, phase transformation and hardness of mechanically alloyed nanocrystalline Fe-18Cr-8Ni stainless steel with Zr and Y2O3 additions, Journal of Alloys and Compounds, 2018, 749, 948-954.
- [21] Kotan, H., Darling, K. A., Scattergood, R. O., and Koch, C., Influence of Zr and nano-Y2O3 additions on thermal stability and improved hardness in mechanically alloyed Fe base ferritic alloys, Journal of Alloys and Compounds, 2014, 615, 1013-1018.
- [22] Majumdar, P., Singh, S. B., and Chakraborty, M., Elastic Modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques-A comparative study, Materials Science and Engineering A, 2008, Volume 489, 419-425.
- [23] Mutlu, I., Ekinci, Ş., and Oktay, E., Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests, Journal of Materials Engineering and Performance, 2014, Volume 23, 2083-2091.
- [24] Wu, D., Isaakson, P., Ferguson, S. J., and Pearson C., Young’s modulus of trabecular bone at the tissue level: A review, Acta Biomaterialia 78, 2018, 1-12.
- [25] Geetha, M., Singh, A. K., Asokamani, R., and Gogia, A. K., Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science, 2009, 54, 397-425.
Investigation of the effect of mechanical alloying duration on the microstructure and mechanical properties of Ti10Nb10Sn alloy
Yıl 2021,
, 60 - 73, 31.01.2021
Ahmet Burçin Batıbay
,
Hasan Kotan
,
Atilla Evcin
Öz
In this study, 10% Nb and 10Sn additions of titanium were produced by mechanical alloying technique at different times up to 30 hours and sintered for 2 hours at 1000 °C after the powder were pressed. Obtained samples were examined by X-ray diffraction experiments (XRD), scanning electron microscopy (SEM), hardness, density and ultrasonic tests to investigate the microstructural and mechanics. Results obtained from the study show that the particle size decreases due to the increased mechanical alloy time. Due to the solid state reaction during mechanical alloying, niobium and tin elements have been found to form solid solutions in the titanium lattice. It was determined that the hardness values obtained after sintering were higher than the hardness values before sintering and the reason for this was due to the presence of TiC second phases formed in the microstructure during sintering. The relative density value has been calculated and it is seen that the details obtained between 5 and 20% pores. Finally, with the increase of the mechanical alloying time, the elastic modulus values were decreased while the closest elastic module values were determined after the 30-hour mechanical alloying time. These results show that Ti10Nb10Sn alloy has the potential to be used as a new generation biomaterial.
Proje Numarası
16.FENBİL.27
Kaynakça
- [1] Gerling, R., and Schimansky, F. P., Prospects for Metal Injection Moulding Using A Gamma Titanium Aluminide Based Alloy Powder, Materials Science and Engineering A, 2002, Volume 329-331, 45-49.
- [2] Gerling, R., Aust, E., Limberg, W., Pfuff, M., and Schimansky, F. P., Metal Injection Moulding of Gamma Titanium Aluminide Alloy Powder, Materials Science and Engineering A, 2006, 423, 262–268.
- [3] Ayday, A., Ti6Al4V Alaşımı ve Saf Titanyum (Cp-Ti) Oksidasyon Kinetiği, El-Cezerî Journal of Science and Engineering, 2020, 7, 402-409.
- [4] Adam, G., Zhang, D. L., Liang, J., and Macrae, I., A Novel Process for Lowering the Cost of Titanium, Advanced Materials Research, 2007, Volume 29-30, 147-152.
- [5] Yuhua, L., Yang, C., Zhao, H., Qu, S.,Li X., and Yuanyuan, L., New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7, 1709-1800.
- [6] Lütjering, G., and Williams, C., Titanium, Springer-Verlag, 2007, 449p, Heidelberg.
- [7] Biesiekierski, A., Wang, J., Gepreel, M. A-H., and Wen, C., A new look at biomedical Ti-based shape memory alloys, Acta Biomaterialia 8, 2012, 1661-1669.
- [8] Omran, A. M., Woo, K. D., Kim, D. K., Kim, S. W., Moon, M. S., Barakat, N. A., and Zhang, D. L., Effect of Nb and Sn on the transformation of α-Ti to β-Ti n Ti-35Nb-2.5Sn Nanostructure Alloys using Mechanical Alloying, Metals and Materials International, 2008, 14, 321-325.
- [9] Mohammed, M. T., Khan, Z. K., and Siddiquee, A. N., Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review, International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, 2014, Volume 8.
- [10] Leyens, C., and Peters, M., Titanium and Titanium Alloys, 2003, Wiley Verlag, 525p, Weinheim.
- [11] Nouri, A., Chen, X., Li, Y., Yamada, Y., Hodgson, P. D., Wen, C., Synthesis of Ti- Sn-Nb alloy by powder metallurgy, Materials Science and Engineering A, 2008, Volume 485, 562-570.
- [12] Nouri, A., Lin, G., Li, Y. C., Yamada, Y., Hodgson, P. D., and Wen, C. E., Microstructure Evolution of Ti-Sn-Nb Alloy Prepared by Mechanical Alloying, Materials Forum, 2007, Volume 31, 64-70.
- [13] Suryanarayana, C., Mechanical alloying and milling, Progress in Materials Science, 2001, 46, 1-184.
- [14] Wang, X., Xu, L., Chen, Y., Kee, D., Xiao S., Kong, F., and Liu, Z., Effect of milling time on microstructure of Ti35Nb2.5Sn/10HA biocomposite fabricated by powder metallurgy and sintering, Transactions of Nonferrous Metals Society of China, 2012, 22, 608-612.
- [15] Nouri, A., Hodgson, P., and Wen, C., Effect of ball milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy, Materials Science and Engineering C, 2011, 31, 921-928.
- [16] Xiong, J., Li, Y., Wang, X., Hodgson, P., and Wen, C., Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications, Acta Biomaterialia 4, 2008, 1963-1968.
- [17] Sanchez, C., McLaughlin, J., and Fotticchia, A., Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications, Journal of Alloys and Compounds 731, 2018, 189-199.
- [18] Mahundla, M. R., Matizamhuka, W. R., and Shongwe M. B., The Effect of Densification on Hardness of Ti, Ti-6Al-4V, Ti-34Nb-25Zr alloy produced by spark plasma sintering, Materials Today: Proceedings, 8 April 2020.
- [19] Kotan, H., Mekanik alaşımlama ile üretilen nanokristal yapılı östenitik paslanmaz çelik alaşımlarında Y ve Y2O3 ilavelerinin tane büyümesi ve sertliğe etkisi, Journal of Faculty of Engineering and Architecture Gazi University, 2019, 34:3, 1265-1272.
- [20] Kotan, H., Thermal stability, phase transformation and hardness of mechanically alloyed nanocrystalline Fe-18Cr-8Ni stainless steel with Zr and Y2O3 additions, Journal of Alloys and Compounds, 2018, 749, 948-954.
- [21] Kotan, H., Darling, K. A., Scattergood, R. O., and Koch, C., Influence of Zr and nano-Y2O3 additions on thermal stability and improved hardness in mechanically alloyed Fe base ferritic alloys, Journal of Alloys and Compounds, 2014, 615, 1013-1018.
- [22] Majumdar, P., Singh, S. B., and Chakraborty, M., Elastic Modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques-A comparative study, Materials Science and Engineering A, 2008, Volume 489, 419-425.
- [23] Mutlu, I., Ekinci, Ş., and Oktay, E., Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests, Journal of Materials Engineering and Performance, 2014, Volume 23, 2083-2091.
- [24] Wu, D., Isaakson, P., Ferguson, S. J., and Pearson C., Young’s modulus of trabecular bone at the tissue level: A review, Acta Biomaterialia 78, 2018, 1-12.
- [25] Geetha, M., Singh, A. K., Asokamani, R., and Gogia, A. K., Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science, 2009, 54, 397-425.